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Spin-helix-driven insulating phase in two-dimensional lattice
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Motivated by emergent SU(2) symmetry in the spin-orbit-coupled system, we study the spin-helix-driven
insulating phase in a two-dimensional lattice. When both Rashba and Dresselhaus spin-orbit couplings are
present, the perfect Fermi-surface nesting occurs at a special condition depending on the lattice geometry. In
this case, the energies of spin up at any wave vector K are equivalent to the ones of spin down at I;—|—Q with the
shifting wave vector Q. Thus, the system stabilizes the magnetic insulator with spiral-like magnetic ordering even
in the presence of tiny electron-electron interaction where the magnetic ordering wave vector is proportional to 0.
We first show the condition for the existence of the shifting wave vector in a general lattice model and emergent
SU(2) symmetry in the spin-orbit-coupled system. Then, we exemplify this in a square lattice at half filling
and discuss the insulating phase with (non)coplanar spin density wave and charge order. Our study emphasizes
different possible types of two-dimensional magnetic materials that can be applicable to various van der Waals
materials and their heterostructures with the control of electric field, strain, and pressure.
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I. INTRODUCTION

Spin SU(2) symmetry invariance with respect to electron
spin rotation is an important quantity giving conservation of
spin polarization in the system. When spin and orbital degrees
of freedom are coupled, however, such SU(2) symmetry is
generally broken, and thus spin polarization is no longer a
good quantum number. Particularly for a two-dimensional
system including surfaces, two different types of spin-orbit
couplings (SOCs) are mainly addressed due to broken in-
version symmetries, Rashba and Dresselhaus spin-orbit cou-
plings. The Rashba effect originates from the effective electric
field at the surface or interface of crystal structures (SIA),
whereas the Dresselhaus effect comes from the bulk inver-
sion asymmetry (BIA). Their measurement and controllability
have been widely studied in quantum wells for several decades
[1]. More recently, the possible creation of such interactions
has been explored even in optical lattices [2,3].

Despite general consensus that the spin-orbit effect breaks
spin SU(2) symmetry, some exotic cases are known to host
emergent symmetry higher than SU(2), such as SU(4), as a
result of strong spin and orbital coupling [4]. Moreover, it has
been pointed out that well control of Rashba and Dresselhaus
effects can give rise to not only U(1) symmetry [5], but also
emergent SU(2) symmetry [6]. In particular, when Rashba
and Dresselhaus SOCs are equal in two-dimensional electron
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gas, it can be exactly mapped into the Dresselhaus [110]
model which describes a quantum well grown along the [110]
direction [7,8]. Then the effective magnetic field via SOC
is unidirectionally induced, and thus spin polarization of a
helical mode is conserved along that special direction, leading
to a new type of SU(2) symmetry. Such emergent SU(2)
symmetry with persistent spin helix has become one of the
central topics of experimental realization in semiconductor
quantum wells and their direct observations [2,3,9,10].

In general, microscopic control of SOC has been regarded
as a very challenging task. In the two-dimensional electron gas
of semiconductors, however, possible control of SOC is stud-
ied via the gate electric field or tunneling current, etc. [11-14].
Moreover, at the interface of oxide heterostructures and van
der Waals heterostructures, the realization of a giant SOC
with heavy ions is extensively studied both in experimental
and theoretical aspects [15-19]. Such controllability and en-
hancement of SOC have received much attention in pursuing
control of spin precession potentially related to spintronic
devices and quantum computations. Along with controlling
SOCs mentioned above, the interplay of electron correlation
can also give rise to new emergent phenomena. Especially
in oxide heterostructures and transition-metal chalcogenide
heterostructures, both SOC and electron correlation play an
important role.

In this paper, taking into account the possible controlla-
bility of SOC in two-dimensional heterostructures, we dis-
cuss the magnetic insulator induced by the interplay of SOC
and electron correlation. We extend the analysis of two-
dimensional free gas [6] and determine the ratio § between
Rashba and Dresselhaus SOC strengths specific to the lattice
geometry to generate a spin helix. Our work is not simply the
generalization of free gas, but rather suggests a different type
of magnetic insulator characterized by the shifting wave vector
0 satisfying e; 104 = €y Two types of magnetic instabilities
are considered, where one is intrinsic to the system [20]
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and the other is induced by tuned SOCs. Consequently, an
infinitesimal electron interaction drives the ground state to
develop a long-range magnetic order which is absent in the
free gas.

We demonstrate our scenario through the Hubbard model
on a half-filled square lattice. To investigate the magnetic
instability, we evaluate the susceptibility and a phase diagram
as varying the Coulomb repulsion U and SOC strength ratio
8. Based on the noninteracting limit, the magnetic instability
associated with the nesting allows us to employ the Hartree-
Fock approximation in the small-U regime [21,22]. We find
a magnetic insulator stabilized by a noncoplanar spin density
wave in addition to charge order. By controlling the relative
ratio between Rashba and Dresselhaus SOCs, we discuss the
possible phase diagram for a metal-insulator transition and
generalize to other lattices. Our work introduces a mecha-
nism of two-dimensional magnetic insulators applicable to
many transition-metal oxides and chalcogenides, and their
heterostructures.

II. GENERAL LATTICE MODEL AND SHIFTING
WAVE VECTOR

On a two-dimensional lattice, we consider the Hubbard
model with SOCs as

==Yty + et U Smms, 0
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where c?a, ¢i.o» and n;, are the electron creation, annihilation,
and number operators at site i with spin o, € (1, | ), respec-
tively. In Egs. (1) and (2), the lattice sites #, j are not restricted
to the nearest neighbors and the unit vector d; ; characterizes
the SOC with the Pauli matrices 6 = (0%, 67, 0%).

Let us first consider the noninteracting system (U = 0) and
examine the Fermi-surface properties. We focus on the case
when the magnitudes of Rashba and Dresselhaus SOCs satisfy
a particular ratio specific to the lattice geometry. (We will
show this later.) Then, the SOC in Eq. (2) after a proper spin
rotation can be written as

Hgoe =i E o sz](clg
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In this limit, our aim is to demonstrate the existence of the
shifting wave vector 0, which is defined to satisfy the shifting
condition €z, 5 1 =€ where €; . is the energy dispersion in
k space with spin 1, | . For a given hopping magnitude 7;; and
the SOC strength s;;, the shifting wave vector 0 always exists
if they meet

sij =t tan[Q - (& — ¥;)/2]. )

This indicates that it is possible to choose the appropriate SOC
strength s;; for an arbitrary vector 0 and the hopping strength
t;;. Generically, it can be shown that a two-level Hamiltonian
with a form H,- (k) = h(k)lrx» + g(k)o* admits these shifting
conditions (see the Supplemental Material [23]). To study the

nesting property, we define the spin operators

R
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obeying the standard SU(2) commutation relations
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SU(2) symmetry enables us to mampulate Eq. (5) for the
magnetic order parameters.

Since they commute

0, the emergent

III. PERFECT NESTING IN HALF-FILLED
SQUARE LATTICE

Now suppose the square lattice and the nearest-neighbor
hoppings f;; = t only. The shifting condition given by Eq. (4)
requires s;; = %8y for 7 =7; £X(P), and s;; = 0 other-
wise. We can choose (s, s,) = f[tan(Q/2), tan(Q,/2)] for
a given shifting vector 0 = (O, 0,). Inversely, the shifting
vector O = 2[tan~(s,/t), tan~'(s,/¢)] can be designated for
arbitrary strength (sx, sy). With the nearest-neighbor SOCs,
Eq. (2) is decomposed into Rashba and Dresselhaus SOCs,

Hyp = isp Z ( — 5,36‘;’0(6'7_%,5 + Uéﬂc;,ac7+§vﬂ) + H.c.,

. T )
Hp = isp Z (0apCt o Crisp — oéﬁc;,ac;ﬁ,ﬂ) + H.c.
?

(©)

The prerequisite for the shifting condition given by Eq. (3)
can be attained when sp = sp = s/ﬁ, whose ratio sg/sp =
1 is specific to the square lattice. After m /2 spin rotation
along the (X+9) axis, Hg + Hp is rearranged into the form of
Eq. (3) with the dispersion €; . = —21[cos(ky) + cos(ky)] +
2s0%[sin(k,) + sin(ky)]. It satlsﬁes the shifting property
€iio.r = €y in the rotated spin basis, with the shifting wave
vector 0 = 2tan~!(s/t)(1, 1). For a small SOC, this agrees
with the results of free electron gas since the hopping ampli-
tude is inversely proportional to the effective mass [6].
Taking into account the shifting property in the case
sg = sp, the Fermi surfaces for up/down spins are perfectly
split, as shown in Fig. 1(a). This generates the nesting be-
tween Fermi surfaces for opposite spins with the wave vec-
tors K. = (, ) &+ Q. Furthermore, due to the shape of the
Fermi surface itself at half filling, there is additional nesting
for each Fermi surface with the wave vector K* = (mw,m).
Having these in mind, one expects the magnetic instabil-
ities near K+ and K*. The spin susceptibility at a wave
vector g is related to the scattering amplitude between the
filled and empty states near the Fermi level separated by g,
K@) = = Y0 [ (€5.0) = flepsa gV (€10 — €10 With
w =L, [20]. Here, o =—o’ for x*, whereas 0 = o’ for x/
and f(ez ) is the occupation number of the energy €z . It is

noteworthy that the instability of x!'(§) near K* is special for
the square lattice at half filling, while the behavior of x*(§)
near Ky is comprehensive regardless of the lattice geometry
and the electronic filling.
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FIG. 1. Fermi surface and spin susceptibilities for square lattice
at half filling with equal magnitudes of Rashba and Dresselhaus spin-
orbit couplings. (a) The split Fermi surfaces with the shifting vector

= (0.6, 0.67). With a proper spin rotation, the green and purple
colors represent the Fermi surfaces for up- and down-spin electrons,
respectively. The dashed lines correspond to the wave vectors Ky
for perfect Fermi-surface nesting. (b) Spin susceptibilities x''(7) and
x(§) for G = (q, q). The specific choice of Q only shifts the peak
and does not affect the overall behavior.

Along the line k, =k, in k space, the spin susceptibil-
ity x!(q, q) is approximately evaluated as x''(g, g) ~ F(q),

where F(q) = g /2)1n[ }fi:ézg;] The divergence of F(x) at

x = 7 represents the magnetic instability at § = K*. Sim-
ilarly, one can estimate x*(g,q) as x*(q,q) ~ F(qg+ Q)
for 0 < g <, and x'(q,q) ~ F(g— Q) for 7 < q < 2.
This implies that the perfect Fermi-surface nestings at § = K*
and K, are associated with the spontaneous magnetization
(S}‘{*) and (Slé), respectively. As the magnitude of SOC, s,

varies, the peak of x(§) moves with the shifting vector O,
while x!l(7) does not. In Fig. 1(b), the spin susceptibilities
are numerically evaluated with Q = 0.6 as functions of § =
(¢, q). Indeed, the magnetic susceptibilities x*(7) and x''(§)
diverge at Ky and K*, respectively. The overall weight near
the peak reflects the density of states in which the nesting
happens close to the Fermi surfaces. The magnetic suscep-
tibility | x!'(7 ~ K*)| originates from the density of states for
both spins, while | x (g ~ Ky)|is proportional to the ones for
each spin, which explains half of the magnitude compared to

1x'1(G ~ K*)|.

IV. MAGNETIC INSULATOR WITH SPIN-HELIX
ORDERING

With the magnetic instabilities at the wave vectors K.,
K*, the ground state is expected to stabilize the spin and
charge orderings with electron interaction U. We consider
the quartic term Un;yn;, with the Hartree-Fock approxima-
tion, keeping the dominant orderings (Sa), (Sg*), and (ng.)
only. We further generalize our analysis when the ratio of
Rashba SOC to Dresselhaus SOC deviates from the emergent
SU(2) symmetric point, § = sg — sp 7 0. A small but finite
8 implies the collapse of the perfect Fermi-surface nesting.
The polarized spin identifying the band dispersion is now
momentum dependent, €; . — €7 ;. ©) (see the Supplemental
Material [23] for details.) Unlike the case of perfect Fermi-
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FIG. 2. The phase diagram as functions of electron interaction
U and § = sg — sp. Insulator I: The charge density wave and spin
density wave exist with the wave vector K* = (7, ), where the
collinear magnetic moments are (anti)parallel to the * 4 ¥ direction.
Insulator II: In addition to the charge and spin density waves of
Insulator I, spiral magnetic order with the wave vector I?i =(r £
Q, m £ Q) is further stabilized on the plane perpendicular to x + 9,
resulting in noncoplanar spin states. See Fig. 3 for details of the
charge and spin density waves.

surface nesting, the critical value of electron interaction U is
required to stabilize the magnetic order when 6 # 0. Similar
to the Stoner criterion for a ferromagnet, the critical values
of U are inversely proportional to the maximum peak of
the magnetic susceptibilities x; L(K,) and Xs (K*) which are
damped for § # 0.

Figure 2 represents the phase diagram as functions of
electron interaction U and 6 = sg — sp. With increasing elec-
tron interaction U, there exists the phase transition from a
metal to insulator I phase, where both the spin density wave
(SDW) and charge density wave (CDW) are stabilized with
the wave vector K*. Further increasing electron interaction
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FIG. 3. Schematic depiction of the insulator II phase with 0 =
(0.61, 0.67r). The circle size and caged arrow represent the amount
of charge order (ng.) and (in-plane perpendicular % + y axis) mag-
netic order (S 1%, ), respectively. The out-of plane magnetization (S}l* )s

:CDW
]‘ SDW

which is (anti)parallel to the X + ¥ axis, is built in the (red) blue circle
with magnitude proportional to the circle size.
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FIG. 4. The characterizing SOC vector s; jc?[ = df} + dl’; on the
link ij and the mirror reflected one s,—de,-k about the mirror plane
(dashed line) on the (a) square lattice and (b) triangular lattice. The
SOC vector s;;d;; (black arrow) is decomposed as a sum of the
Dresselhaus (yellow arrow) and Rashba (blue arrow) SOCs.

U, the system develops the insulator II phase and stabilizes
the SDW with the wave vector K % in addition to CDW and
SDW with the wave vector K*. Thus, in this regime, the
system develops the noncoplanar magnetic ordering both with
(SL (7)) ~ cos(K* - 7) and (S!I(7)) ~ cos(K* - ) in addition
to the charge order. Figure 3 shows the noncoplanar mag-
netic order along with charge order specifically with R~ =
(0.47, 0.47) and K*. It is worthwhile to note that the insulator
I phase is specific to the square lattice at half filling, while the
generic metal-insulator phase transition will occur between
the metal and the insulator II regime.

V. DISCUSSION

We have studied the possible spin-helix-driven insulating
phases, exemplifying the case of a square lattice at half filling.
In this case, the shifting vector exists with an emergent SU(2)
symmetry when Rashba and Dresselhaus SOCs take equal
magnitudes. However, as mentioned above, our argument gen-
erally holds for other lattice geometries by controlling SOCs
in different ratios. This implies that the transition to magnetic
insulator II in Fig. 2 occurs quite generally regardless of the
shape of the Fermi surface, while insulator I is specific to the
square lattice at half filling. Thus, here we briefly discuss how
to obtain emergent SU(2) symmetry for the case of a triangular
lattice and compare with the case of a square lattice.

In order to obtain the emergent SU(2) symmetry, combina-
tions of SOCs should be the form of Eq. (3) after a proper spin
rotation. Equation (3) can be constructed when the character-
izing vector c?,-j in Eq. (2) is aligned in a collinear fashion. The
characterizing vector s; jc?,- ;in Eq. (2) is decomposed as a sum
of the Dresselhaus and Rashba SOCs, s;;d;; = diDj + df-i- =

dgfc +d5j}, in the coordinate whose % axis is towards the

link ij. In the presence of the translational invariance, all
vectors s;;d;; on other links can be obtained by the lattice

translations combined with the mirror reflection. Here, for
simplicity, we consider the mirror planes (containing dashed
lines in Fig. 4), which bisect the acute angles between two
adjacent links. To ensure that SOC vector d; ; 1s collinear with
the mirror reflected one c?ik, the requirement is a’fj / dl-? =tan(p)
or dff /d}) =tan(rr /2+¢), where ¢ is the angle between the
mirror plane and the lattice link. This angle corresponds to the
half acute angle between two adjacent links emanated from
i to j and k. For example, the square lattice with ¢ = /4
demands |df| = |df}| on every link.

Now, we move on to the triangular lattice. Unlike the
square lattice, there is a perpendicular link jk which is re-
flected in itself, allowing sjd;x = d’} only and d, = 0. All
SOC vectors s jkc? ik on these perpendicular links keep arbitrary
magnitudes of dﬁ( unless constrained by other symmetries.
Meanwhile, on the link ij to be reflected in ik, the SOC
condition becomes df; = df}/ V3 or af = —«/§d3 since ¢ =
7 /6. On the perpendicular link jk, d’fk is forbidden in both
cases, while arbitrary dfk is allowed only in the latter case

af = —ﬁdg. In this manner, one can readily generalize
the nesting condition with the emergent SU(2) symmetry by
controlling the SOCs ratio § for a generic two-dimensional
lattice.

VI. CONCLUSION

Perfect Fermi-surface nesting and emergent SU(2) symme-
try are present exactly at fine tuning of Rashba and Dressel-
haus SOCs to satisfy the special ratio, which is very chal-
lenging. However, as we have discussed above, Fermi-surface
nesting induced by the combination of SOCs is still present
in the vicinity of such fine tuning, even away from the exact
ratio between SOCs. In principle, the effective electric fields
for both in plane and out of plane can be controlled via
applying gate voltage, pressure, or strain effect due to the
substrate. Thus, at surfaces or interfaces of heterostructures,
one may be able to access the parameter range where the
system stabilizes the spin-helix-driven insulating phase due
to the combination of SOCs. Our theoretical study introduces
a way to approach magnetic insulators induced by the SOC
effect in two-dimensional materials and their heterostructures.
In the future, it would be interesting to explore the experi-
mental controllability of SOCs in two-dimensional materials,
especially the transition-metal chalcogenide series and oxide
heterostructures, and look for magnetic insulators and their
phase transitions.
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