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Abstract: The identification of potential microRNA (miRNA)-disease associations enables the
elucidation of the pathogenesis of complex human diseases owing to the crucial role of miRNAs in
various biologic processes and it yields insights into novel prognostic markers. In the consideration
of the time and costs involved in wet experiments, computational models for finding novel
miRNA-disease associations would be a great alternative. However, computational models, to date,
are biased towards known miRNA-disease associations; this is not suitable for rare miRNAs (i.e.,
miRNAs with a few known disease associations) and uncommon diseases (i.e., diseases with a few
known miRNA associations). This leads to poor prediction accuracies. The most straightforward way
of improving the performance is by increasing the number of known miRNA-disease associations.
However, due to lack of information, increasing attention has been paid to developing computational
models that can handle insufficient data via a technical approach. In this paper, we present a
general framework—improved prediction of miRNA-disease associations (IMDN)—based on matrix
completion with network regularization to discover potential disease-related miRNAs. The success of
adopting matrix factorization is demonstrated by its excellent performance in recommender systems.
This approach considers a miRNA network as additional implicit feedback and makes predictions
for disease associations relevant to a given miRNA based on its direct neighbors. Our experimental
results demonstrate that IMDN achieved excellent performance with reliable area under the receiver
operating characteristic (ROC) area under the curve (AUC) values of 0.9162 and 0.8965 in the
frameworks of global and local leave-one-out cross-validations (LOOCV), respectively. Further,
case studies demonstrated that our method can not only validate true miRNA-disease associations
but also suggest novel disease-related miRNA candidates.
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1. Introduction

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that bind to the 3′ untranslated
regions (UTRs) of target messenger RNAs (mRNAs) [1,2]. miRNAs tend to restrain gene expression by
control of their own regulatory sequences and promoters; they bind to specific target mRNAs through
base-paring, which inhibits the translation and stability. Since the first discovery of two miRNAs
(Caenorhabditis elegans lin-4 and let-7) in 1993 and 2000, increasing attention has been paid to this
research field. Numerous studies continue to demonstrate the crucial roles of miRNAs in diverse
biologic processes such as apoptosis [3], cell development [4], proliferation [5], viral infection [6] and
metabolism [7]. As indicated by previous studies, miRNAs are becoming diagnostic/therapeutic tools
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for diseases as well as potential prognostic biomarkers. For example, lower expression of miR-195
appeared in Alzheimer’s disease (AD) patients [8] and miR-101 was shown to be a significant factor
in breast cancer by targeting Stathmin1 [9]. Furthermore, miR-15 and miR16 were deleted in more
than half of the cases of B-cell chronic lymphocytic leukemia (B-CLL) [10]. Experiments further
validated that miR-185 plays a crucial role in breast cancer by targeting Vegfa [11] and miR-122 inhibits
cell proliferation and tumorigenesis of breast cancer by targeting IGF1R [12]. Therefore, predicting
miRNA-disease associations can expand the understanding of molecular mechanisms of multiple
human diseases and novel prognostic biomarkers.

Considering the time and costs involved in wet experiments, predicting disease-related miRNAs
through in silico experiments can be a good alternative while enhancing the prediction accuracy. To this
end, increasing attention has been paid to the design of competitive and effective computational models
to explore novel miRNA-disease associations. According to recent studies, existing computational
models can be mainly categorized into two categories: similarity-based and machine-learning-based
models. Similarity-based models predict novel disease-related miRNAs based on the assumption that
functionally similar miRNAs have a high possibility to be involved in phenotypically similar diseases
and vice versa. Machine-learning-based models predict miRNA-disease associations by adjusting the
optimal parameter combination of the model.

Jiang et al. developed a miRNA-disease association prediction model by integrating the miRNA
functional similarity network, disease similarity network and phenome-microRNAome network [13].
Mork et al. developed the computational model of miRPD that utilizes experimentally verified
miRNA-protein interactions and text-mined results of protein-miRNA interactions to indirectly
determine the miRNA-disease association [14]. In miRPD, proteins play a significant role as mediators
to link the miRNA-disease associations. Hence, miRNA-disease associations with more commonly
shared proteins are more likely to have high scores in miRPD. However, this method is biased towards
protein links, which is not applicable to the miRNAs with no protein interactions, thereby limiting
further improvement. Chen et al. proposed the similarity-based model of random walk with restart
for miRNA-disease association (RWRMDA) [15]. The authors first assigned the initial probability
on each node of the miRNA functional similarity network (MFSN); the random walk algorithm was
implemented before the probability of each node became stable. However, this model is not suitable
for the miRNAs with no disease associations; it leads to poor prediction accuracy. They also proposed
a prediction framework called within and between score for miRNA-disease association prediction
(WBSMDA) [16]. WBSMDA was developed to uncover the potential link between miRNAs and
complex human diseases by applying miRNA functional similarity, disease semantic similarity and
Gaussian interaction profile kernel similarity of miRNAs and diseases. This can be applied to new
miRNAs and diseases without any prior information. Chen et al. further investigated the prediction
of known disease-related miRNAs by presenting a computational model—heterogeneous graph
inference for miRNA-disease association prediction (HGIMDA) [17]. HGIMDA integrated the miRNA
functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity to
successfully reveal disease-related miRNAs by exploring all three-length paths in the heterogeneous
network. Xuan et al. proposed the computational model of human disease-related miRNA prediction
(HDMP) that predicts novel miRNA-disease associations by considering the weighted k most similar
neighbors [18]. HDMP assigns more weight to miRNAs within the same miRNA family or cluster.
However, the chosen number of k-nearest neighbors highly affects the prediction performance and
leaves room for improvement in accuracy by making full use of global network information.

With the rapidly growing amount of information available through various in vivo experiments,
it has become inevitable to inject the auxiliary omics datasets into the prediction model for discovering
novel miRNA-disease associations. Owing to the aid of the diverse biologic data, various computational
prediction models enhanced the prediction accuracy by prioritizing the disease-related miRNAs in
terms of prediction scores, which were assigned by each model. Ha et al. proposed the similarity-based
network model to predict the potential miRNA-disease associations [19]. They measured the similarity
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among miRNAs based on the assumption that two miRNAs are functionally related if the number of
shared environmental factors is statistically significant. Environmental factors include drugs, alcohol,
stress and diet. However, this model does not consider the chemical structure of the EF, which leaves a
room for improvement in prediction accuracy by measuring the precise similarity among the miRNAs.
Shi et al. made use of the protein-protein interaction (PPI) network by implementing the random
walk algorithm to exploit miRNA-disease associations [20]. In summary, most similarity-based
models have encountered difficulties in their performance owing to the lack of sufficient validated
interactions. Hence, these approaches are highly biased towards miRNA-disease associations, which is
not applicable for the miRNAs with no disease associations.

Machine learning-based approaches have delivered superior performance in various scientific
research areas including bioinformatics and computational biology. For example, Chen et al.
developed the computational framework named regularized least square for miRNA-disease association
(RLSMDA) [21]. This study is based on semi-supervised learning that can predict miRNA-disease
associations without using negative samples. However, the main drawback of this model is finding
optimal parameters of RLSMDA and combining the classifiers from two different spaces. Chen et al.
also presented the model of the restricted Boltzmann machine for multiple types of miRNA-disease
prediction (RBMMMDA) by utilizing the restricted Boltzmann machine (RBM) [22]. The main advantage
of this model is not just the resulting improvement in prediction accuracy, but mainly the ability of
estimating the corresponding types of miRNA-disease associations. Ha et al. proposed the matrix
factorization-based model called PMAMCA to identify potential miRNA-disease associations [23].
This model, with the utilization of miRNA expression data and known miRNA-disease associations,
outperformed the previous models in terms of area under the receiver operating characteristic (ROC)
curve (AUC) scores. However, this model leaves room for further improvement by using diverse
biologic information as implicit data. To date, Li et al. proposed a matrix completion algorithm-based
model called MCMDA [24]. In this study, they constructed binary adjacency matrix with known
miRNA-disease associations, and a singular value threshold (SVT) algorithm was constructed to find
novel disease-related miRNAs. However, finding optimal parameters of this model remains a critical
issue. Xio et al. proposed the framework graph regularized non-negative matrix factorization (GRNMF)
that exploits the weighted gene network to calculate the interaction profiles of new miRNAs and
diseases [25]. Chen et al. developed a model of ranking-based k-nearest neighbors for miRNA-disease
association prediction (RKNNMDA) by exploring the k-nearest-neighbors of miRNAs and diseases.
SVM was adopted for calculating the k-nearest-neighbors, and prioritized miRNA-disease associations
based on weighted voting [26]. Chen et al. proposed the approach of inferring miRNA-disease
associations by making complete use of inductive matrix complementation with matrix decomposition
and heterogeneous graphs (IMCMDA) [27]. This model not only explores disease-related miRNAs but
also measures the comprehensive similarities of miRNAs and diseases. Chen et al. presented the matrix
decomposition and heterogeneous graph inference (MDHGI). This model prioritizes disease-related
miRNAs by combining the matrix decomposition algorithm with miRNA functional similarity, disease
semantic similarity and Gaussian interaction profile kernel similarity [28]. In summary, most machine
learning-based approaches have difficulties in adjusting the optimal parameters and using negative
samples. Furthermore, various optimal parameter combinations may exist in different scenarios,
thereby resulting in more complicated sensitivity analysis.

Identifying novel miRNA-disease associations is beneficial for the understanding of disease
pathogenesis at the molecular level and the development of the disease diagnostic biomarkers.
However, most previous miRNA-prediction algorithms are still impeded by the data sparsity problem;
hence, it is challenging to predict the miRNAs with a few known disease associations. These miRNAs
are called rare miRNAs. In the recommender system, similar problems were efficiently addressed by
adopting matrix factorization to predict the most plausible rating scores of each user. Inspired by the
recent advancement of recommender systems, this study addresses common research problems by
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formalizing a matrix factorization-based model for collaborative filtering. In the light of this issue,
we transform the task of predicting miRNA-disease associations in a recommender task.

In this study, we present a computational miRNA-disease association prediction model for
improved prediction based on matrix completion with network regularization (IMDN). We consider the
miRNA network to efficiently handle rare miRNAs. The core idea of IMDN is based on the consideration
of relationship among the miRNAs within the network to better capture the embeddings through
the direct neighbors. To inject the influence of miRNA network, we coin the network regularization
term to consider network constraints on the prediction model. Because of the limited number of
predetermined weight values on the miRNA similarity network, our proposed model was extended to
calculate the precise miRNA similarity through the Gaussian interaction profile kernel. Our primary
contribution to IMDN relies on its expandability of matrix factorization-based model, which applies
miRNA similarity network as the regularization term and miRNA expression value as the weight of
the objective function. By mapping the miRNA expression value as a weight of the objective function,
we could train the model even though we do not know the miRNA-disease associations. Further,
calculation of new similarities among the miRNAs could be one of the main contributions to the delivery
of outstanding performance. We expect that IMDN can serve as an effective tool for discovering
potential miRNAs-disease associations by considering the miRNA network. Various experimental
results demonstrated that IDMN outperforms the state-of-the-art miRNA-disease association prediction
model in terms of the AUC scores and the survival analysis.

2. Materials and Methods

2.1. Methods Overview

We present the novel computational framework of IMDN to predict miRNA-disease associations.
IDMN comprises three main steps. First, to construct the miRNA functional similarity network,
we utilize the pre-calculated weight of misim and calculate the new miRNA similarity through the
Gaussian interaction profile kernel. Second, given a miRNA similarity network and miRNA expression
data, we apply matrix factorization-based model to efficiently train the miRNA latent feature vector
and disease latent feature vector based on the known miRNA-disease associations. Lastly, we prioritize
miRNA candidates based on scores that were assigned by the IDMN. The workflow of IDMN is
illustrated in detail in Figure 1.

2.2. Human miRNA-disease Associations

We collected human miRNA-disease associations data from HMDD v2 [29], dbDEMC [30]
and miR2Disease [31]. Despite the comparable effectiveness of MF in a wide variety of domains,
the challenge in prediction performance remains owing to the insufficient experimentally validated
interactions in binary adjacency matrix R. Therefore, the operation of combining the miRNA-disease
associations from three public databases was conducted to produce rich input data. As duplicate
entries exist in the three public databases, we implemented data preprocessing to eliminate the
duplicates. HMDD is an online public database that provides 10,368 experimentally confirmed human
miRNA-disease associations regarding 572 miRNAs and 378 diseases. dbDEMC is an integrated
human miRNA database of differentially expressed miRNAs in human cancers (dbDEMC) that contains
information on 2224 miRNAs and 36 diseases. miR2disease is a manually curated database that
contains in the form of 1939 entries on 299 miRNAs and 94 diseases. After unification, we conducted
an operation unifying the names of different miRNAs under one miRNA gene based on standard
mesh disease terms. Variables Nm and Nd stand for the number of miRNAs and diseases, respectively,
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and the Nm × Nd binary adjacency matrix R was constructed on the basis of the integrated human
miRNA-disease associations. The binary adjacency matrix R is expressed as follows:

R(m(u), d(i)) =
{

1, i f miRNA m(u) and disease(i)has veri f ied association
0, otherwise

(1)
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Figure 1. Workflow of IMDN. First, the functional similarity network in which node is miRNA was
constructed from already known database misim and the proposed inference approach. Second, matrix
factorization was performed with both the inferred miRNA network and miRNA expression data.
Finally, prioritization was implemented based on the highly scored miRNAs.

2.3. miRNA Expression Data

To model the prediction model more precisely and effectively, we utilized the miRNA expression
dataset to compensate insufficient miRNA-disease associations. As a large number of biologic datasets
are being generated with the help of the high-throughput technique, these datasets create opportunities
to decipher the understanding of diverse meaningful biologic functions such as disease pathogenesis
and disease etiology as well as discover novel disease biomarkers. Therefore, miRNA expression
data were obtained from the cancer genome atlas (TCGA), which provides multimodal genomics and
proteomics data for thousands of tumor samples for more than 20 types of cancer [32]. To construct the
Nm × Nd miRNA expression weight matrix W, min-max normalization was conducted first. We only
take the weight value W (u,i) into account when there is no association between miRNA m(u) and
disease d(i) in the original matrix R, otherwise, we regard it as one.

wui =

{
1 i f Rui = 1
miRNA expression value i f Rui = 0

(2)
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2.4. miRNA Similarity Network

2.4.1. miRNA Functional Similarity

miRNA functional similarity scores were calculated based on the hypothesis that functionally
similar miRNAs are more inclined to associate with phenotypically similar diseases. miRNA Functional
similarity data misim 2.0 was downloaded from http://www.lirmed.com/misim/ to construct the Nm ×

Nm miRNA functional similarity matrix FS [33]. The similarity score between miRNA m(u) and m(i)
can be expressed as FS(u,i).

2.4.2. Gaussian Interaction Profile Kernel miRNA Similarity

Multiple studies continue to prove the effectiveness of the Gaussian interaction profile kernel on
calculating similarities among both diseases and miRNAs [34,35]. To calculate the comprehensive and
precise similarity score among the miRNAs, we adopted the Gaussian kernel function, which is also
called radical basis function (RBF). We regraded two miRNAs to be functionally related if they have
similar patterns of interactions with the diseases on the basis of the known human miRNA-disease
associations. For a given miRNA u, the feature vectors of IP(m(u)) were extracted from the i-th row
of the miRNA latent feature vector to express the interaction profile of m(u). The Gaussian kernel
similarity between miRNA m(i) and m(j) could be computed by:

GS(m(u), m(i)) = exp(−rm|| IP(m(u)) − IP(m(i))||2) (3)

GS is denoted as Gaussian interaction profile kernel, where r′m is the hyperparameter that controls
the bandwidth of the kernel, which can be calculated as follows:

rm =
r′m

1
nm

∑nm
i=1 ||IP(m(u)||2

(4)

2.4.3. Integrated miRNA Similarity

We obtained the integrated miRNA similarity score that was used for constructing miRNA
similarity network based on the miRNA functional similarity FS and miRNA Gaussian interaction
kernel similarity GS. The integrated weight value that was used for the edge of miRNA similarity
network S can be expressed as follows:

S(m(u), m(i)) =
{

FS(m(u), m(i)) i f m(u)and m(i)has f unctional simialrity
GS(m(u), m(i)) otherwise

(5)

2.5. IMDN

Among various collaborative filtering methods, matrix factorization has yielded immense success
on recommendation systems [36]. However, the large-scale and sparse data of the original matrix
usually degrades the performance of the matrix factorization model. Hence, most of the matrix
factorization-based models are suffering from a cold start problem when there are miRNAs with few
disease associations in the binary adjacency matrix. To handle this issue, various advanced matrix
factorization methods have been proposed by utilizing various biologic datasets. In this work, we used
the miRNA network as auxiliary information to enhance the prediction accuracy.

The miRNA network can be defined as a graph where there is a node corresponding to each
miRNA, and an edge corresponding to each similarity weight. The physical meaning of the weight
edge in network Su,i can be interpreted as how much miRNA Mu is similar to the miRNA Mi.

Applying the network influence, the trait of each miRNA can be affected by its direct neighbors
Eu. Based on the intuition that nodes have similar structural roles in network should be located
close together, the miRNA latent feature vector Mu is highly affected by the latent feature vectors of

http://www.lirmed.com/misim/
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its direct neighbors v ∈ Eu. M̂u is an estimated latent feature calculated from feature vectors of its
direct neighbors. All the notations, which were used in following equations, are described in Table 1.
Formulation is described as follows:

Table 1. Notations.

Symbol Description

Nm number of miRNAs
Nd number of diseases
Nl size of latent vector dimension

R ∈ RNm×Nd miRNA-disease association matrix
M ∈ RNm×Nl miRNA latent space
D ∈ RNd ×Nl disease latent space
S ∈ R Nm×Nm miRNA similarity matrix
W ∈ R Nm×Nm miRNA expression weight matrix

M̂u=

∑
v∈Eu Su,vMv∑

v∈Eu Su,v
=

∑
v∈Eu Su,vMv

|Eu|
(6)

By fully taking advantage of the characteristic of miRNAs in the miRNA similarity network,
the new estimated latent feature vector of miRNA can be calculated by the weighted average of its
direct miRNA latent feature vectors as follows:

M̂u,1

M̂u,2

. . .
M̂u,k

 =


M1,1 M2,1 . . . MN,1

M1,2 M2,2 . . . MN,2

. . . ... . . . . . .
M1,k M2,k . . . MN,k




Su,1

Su,2

. . .
Su,N

 (7)

Considering the miRNA similarity network as implicit feedback does not change the conditional
distribution of known miRNA-disease associations. It only takes miRNA latent vectors into account.
Therefore, the expression of conditional probability can be expressed as follows.

p(R|M, D, σ2
R)=

∏Nm

u=1

∏Nd

i=1
[N(Ru,i|g(MT

u Di), σ2
R)]

IR
u,i (8)

The zero-mean Gaussian prior is assigned to miRNA latent vectors to avoid over-fitting. Motivated
by the fact that characteristic of miRNA is highly affected by its direct neighbor, conditional distribution
of miRNA latent vector is given the latent vectors of its direct neighbors as follows:

p(M, D|R, S, σ2
R, σ2

S, σ2
M, σ2

D) ∝ p(R|M, D, σ2
R) p(M|S, σ2

M, σ2
S) p(D|σ2

D)

=
∏Nm

u=1
∏Nd

i=1 [N(Ru,i|g(MT
u Di), σ2

R)]
IR
u,i

×
∏Nm

u=1N(Mu|
∑

v∈Eu Su,vMv, σ2
SI)

×
∏Nm

u=1N(Mu|0, σ2
MI)×

∏Nd
i=1N(Di|0, σ2

DI)

(9)

Our goal is to capture the most plausible latent vectors of miRNAs Mu and diseases Di, so that the
inner product of each latent vector would be close to the entry of binary association matrix Ru,i. Aiming
at modeling the cost function more accurately, we added additional miRNA terms to better capture the
characteristic of miRNA latent vector Mu which naturally reflects the neighbors’ characteristic of Mv in
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the miRNA similarity network S. We also coin the miRNA expression weight matrix as W to efficiently
train the latent vector of miRNA and disease.

lnp(M, D|R, S, σ2
R, σ2

S, σ2
M, σ2

D) =

−
1

2σ2
R

∑Nm
u=1
∑Nd

i=1 Wu,i(Ru,i − g(MT
u Di))

2

−
1

2σ2
M

∑Nm
u=1 MT

u Mu −
1

2σ2
D

∑Nd
i=1 DT

i Di

−
1

2σ2
S

∑Nm
u=1 ((Mu −

∑
v∈Eu Su,vMv)

T(Mu −
∑

v∈Eu Su,vMv))

−
1
2 (
∑Nm

u=1
∑Nd

i=1 WR
u,i)lnσ

2
R

−
1
2 ((Nm ×Nl)lnσ2

M + (Nd ×Nl)lnσ2
D + (Nm ×Nl)lnσ2

S)) + C

(10)

Maximizing the log-posterior over latent vectors of miRNAs and diseases can be thought of
equivalent to minimizing the cost function below. The goal is to minimize the loss between the entry
of Ru,i and dot product of corresponding miRNA latent vector Mu and disease latent vector Di.

L(R, S, M, D)= 1
2
∑Nm

u=1
∑Nd

i=1 Wu,i(Ru,i − g(MT
u Di))

2

+λM
2
∑Nm

u=1 MT
u Mu +λD

2
∑Nd

i=1 DT
i Di

+
λS
2
∑Nm

i=1((Mu −
∑

v∈Eu Su,vMu)
T(Mu −

∑
v∈Eu Su,vMu))

(11)

The derivative of Mu and Di for all miRNAs u and all diseases i can be expressed as follows by
performing a gradient decent. Our approach is efficient even when performing a simple gradient
descent method. λM, λD, λS are the hyper-parameters that were applied to control regulators to avoid
overfitting. Graphical modeling of IMDN is illustrated in Figure 2.

∂L
∂Mu

=
∑Nm

u=1 Wu,iDig′(MT
u Di)( g(MT

u Di) −Ru,i) + λMMu

+λS(Mu −
∑

v∈Eu Su,vMu) − λS
∑
{v|u∈Ev} Sv,u(Mv −

∑
u∈Ev Sv,wMw)

(12)

∂L
∂Di

=
∑Nd

u=1
Wu,iMug′(MT

u Di)(g(MT
u Di) −Ru,i) + λDDi (13)

Cells 2019, 8, x FOR PEER REVIEW 9 of 17 

 

 

Figure 2. Graphical modeling of IMDN. 

3. Results 

3.1. Performance Evaluation 

To demonstrate the superiority of IMDN, we compared our method with other state-of-the-art 

methods such as PMAMCA [23], MDHGI [28], RKNNMDA [26], RWRMDA [15], MCMDA [24] and 

RLSMDA [21]. All models were assessed by implementing leave-one-out cross-validation (LOOCV) 

based on integrated miRNA-disease associations (dbDEMC, miR2diseaes and HMDD v2). Typically, 

LOOCV can be divided into global and local LOOCV, wherein each known miRNA-disease 

association was left out in turn as a test sample, whereas all the other remaining miRNA-disease pairs 

were considered as training samples. Global LOOCV evaluates the performance of the model by 

considering all diseases simultaneously, whereas local LOOCV only considers miRNAs for a specific 

disease. That is to say, in global LOOCV, each association was considered as test sample while in turn 

the remains were regarded as training samples. In local LOOCV, assessment of local prediction was 

performed by considering the ability to recover the miRNA-disease associations for a specific disease. 

For both global and local LOOCV, all test samples are prioritized based on the prediction scores 

assigned by IMDN. This partition-prediction-ranking step was conducted 100 times to derive the 

mean AUC score of IMDN for reasonable estimation of the prediction accuracy. The AUC scores were 

calculated to demonstrate the performance of each method. We drew the ROC curve in terms of the 

true positive rate (TPR, sensitivity) and false positive rate (FPR, 1-specificity), where sensitivity and 

specificity could be defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                   (14) (14) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                   (15) 

Sensitivity refers to the extracted candidates ranked above the threshold and specificity refers to 

the candidates that are ranked below the threshold. TP and TN denote the numbers of correctly 

identified positive and negative samples, whereas FP and FN denote the numbers of misidentified 

positive and negative samples. Typically, an AUC value of 1 represents perfect prediction, whereas 

an AUC value of 0.5 represents random selections. Therefore, models with AUC scores that are close 

to 1 are considered competitive prediction models. We demonstrate the efficacy of IDMN over state-

of-the-art methods by comparing the AUC scores. The performance comparison in terms of the ROC 

Figure 2. Graphical modeling of IMDN.



Cells 2020, 9, 881 9 of 18

3. Results

3.1. Performance Evaluation

To demonstrate the superiority of IMDN, we compared our method with other state-of-the-art
methods such as PMAMCA [23], MDHGI [28], RKNNMDA [26], RWRMDA [15], MCMDA [24] and
RLSMDA [21]. All models were assessed by implementing leave-one-out cross-validation (LOOCV)
based on integrated miRNA-disease associations (dbDEMC, miR2diseaes and HMDD v2). Typically,
LOOCV can be divided into global and local LOOCV, wherein each known miRNA-disease association
was left out in turn as a test sample, whereas all the other remaining miRNA-disease pairs were
considered as training samples. Global LOOCV evaluates the performance of the model by considering
all diseases simultaneously, whereas local LOOCV only considers miRNAs for a specific disease. That is
to say, in global LOOCV, each association was considered as test sample while in turn the remains
were regarded as training samples. In local LOOCV, assessment of local prediction was performed by
considering the ability to recover the miRNA-disease associations for a specific disease.

For both global and local LOOCV, all test samples are prioritized based on the prediction scores
assigned by IMDN. This partition-prediction-ranking step was conducted 100 times to derive the
mean AUC score of IMDN for reasonable estimation of the prediction accuracy. The AUC scores were
calculated to demonstrate the performance of each method. We drew the ROC curve in terms of the
true positive rate (TPR, sensitivity) and false positive rate (FPR, 1-specificity), where sensitivity and
specificity could be defined as follows:

Sensitivity =
TP

TP + FN
(14)

Speci f icity =
TN

TN + FP
(15)

Sensitivity refers to the extracted candidates ranked above the threshold and specificity refers
to the candidates that are ranked below the threshold. TP and TN denote the numbers of correctly
identified positive and negative samples, whereas FP and FN denote the numbers of misidentified
positive and negative samples. Typically, an AUC value of 1 represents perfect prediction, whereas
an AUC value of 0.5 represents random selections. Therefore, models with AUC scores that are
close to 1 are considered competitive prediction models. We demonstrate the efficacy of IDMN over
state-of-the-art methods by comparing the AUC scores. The performance comparison in terms of
the ROC curve is illustrated in Figure 3. As shown in Figure 3, IMDN obtained an AUC value of
0.9162 in global LOOCV, which is superior to MDHGI (0.9040), PMAMCA (0.8967), MCMDA (0.8768),
RLSMDA (0.8588) and RKNNMDA (0.775). As for local LOOCV, IMDN obtained an AUC value of
0.8965, which is superior to PMAMCA (0.8693), MDHGI (0.8427), RKMFMDA (0.8292), RWRMDA
(0.7937), MCMDA (0.7850) and RLSMDA (0.7463). RWRMDA was not able to perform comparison
evaluation based on global LOOCV because it considers diseases one at a time. To demonstrate the
performance of IDMN more precisely, we additionally drew precision/recall curve and calculated
auprc scores. As illustrated in Figure 4, IMDN achieved the best performance compared to previous
prediction models. The comparison shows that IMDN achieves a comparable performance under the
reliable evaluation metric, which supports that our approach is capable of predicting a large number of
disease-related miRNAs.
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3.2. Effect of miRNA Functional Similarity Network

With the vast sizes of biologic datasets that are generated nowadays, an important issue for
evaluating IDMN is whether the model efficiently reflects additional biologic data. We validated
the possible expandability of IDMN for the new input data (i.e., implicit feedback) such as miRNA
functional similarity network data. In this study, we used the network regularization term to inject
the information of miRNA functional similarity data into the matrix factorization-based model.
To demonstrate the efficacy of miRNA functional similarity information, we checked the prediction
accuracy in two cases: 1) without the network regularization term, we only mine the miRNA-disease
association binary matrix and employ known miRNA-disease associations for making predictions;
2) with the network regularization term, we fuse the information from the miRNA similarity graph to
capture the trait of each miRNA purely from its direct neighbors. Consequently, we could confirm
the significant increase in the performance of IDMN with the miRNA functional similarity network,
as illustrated in Figure 5. The motivation behind applying the miRNA similarity network was to
reflect the hidden characteristics through its direct neighbors. We can conclude that IDMN supports
the well-known biologic assumption that functionally similar miRNAs are inclined to associate with
phenotypically similar diseases.
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3.3. Case Studies

We also studied three main common diseases in the human population to qualitatively ascertain
the performance of IMDN for novel disease-related miRNA prediction. We observed the number of
correctly identified disease-related miRNAs for the three diseases within the top 50 candidates.

Colon neoplasm (CN) is the most common malignant cancer that typically arises from lesions in
the human colon or rectum, which poses a major threat to human life. According to the latest statistic
in 2019 [37], 145,600 newly diagnosed CN cases and 51,020 deaths from CN were reported in the United
States. To date, many researchers have proposed that the utilization of miRNAs as new biomarkers
can be a good alternative for detecting CN. Therefore, IMDN was implemented to predict the potential
CN-related miRNAs by prioritizing the candidates with the scores assigned by IMDN. As shown
in Table 2, IMDN confirmed 46 out of the top 50 CN-related miRNAs. Among the four remaining
candidates, three were validated by experimental studies. For example, miR-150 was found to function
as a tumor suppressor in CN by targeting c-Myb [38]; overexpression of miR-122 could lead to the
development of CN liver metastasis [39]; expression of miR-199a-3p (pre-miRNA of miR-199a) could
be involved in the development, tumorigenesis and progression of CN [40]. Consequently, 49 out of
the top 50 potential CN-related miRNAs were validated by experimental results.

Kidney neoplasm (KN) is a nonhomogeneous cancer that accounts for 5% of the new male cancer
cases. Approximately 73,820 new KN cases were reported in the United States in 2019 [37]. Recent
studies showed that miRNAs can play a role in discovering the hidden mechanism of KN. Therefore,
we applied IDMN to extract potential miRNAs that are relevant to KN. As shown in Table 3, 46 out
of the top 50 candidates were confirmed to be KN-related miRNAs, whereas the remaining four
candidates were validated by recent studies. Overexpression of miR-142–3p could induce the apoptosis
in RCC 786-O and ACHN cells. RCC is the most common type of adult kidney cancer [41]. Expression
of miR-30a-5p was found to be substantially downregulated in the RCC tissues compared to normal
tissues [42]. To conclude, 48 out of the top 50 proved to be KN-related miRNAs by public databases
and other publications.
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Table 2. Prediction of top 50 colon neoplasms candidates.

Rank Name Evidence Rank Name Evidence

1 hsa-let-7a-3 HMDD v2.0 26 hsa-let-7f-2 HMDD v2.0
2 hsa-miR-19a dbDEMC, HMDD v2.0 27 hsa-miR-205 dbDEMC, HMDD v2.0
3 hsa-let-7f-1 HMDD v2.0 28 hsa-miR-125a dbDEMC, HMDD v2.0
4 hsa-miR-137 dbDEMC, HMDD v2.0 29 hsa-miR-106a dbDEMC, HMDD v2.0
5 hsa-let-7a-1 HMDD v2.0 30 hsa-miR-101-1 HMDD v2.0
6 hsa-miR-24-1 HMDD v2.0 31 hsa-miR-365a HMDD v2.0
7 hsa-miR-141 dbDEMC, HMDD v2.0 32 hsa-miR-21 dbDEMC, HMDD v2.0
8 hsa-miR-30c-2 HMDD v2.0 33 hsa-miR-9-3 HMDD v2.0
9 hsa-miR-128-2 HMDD v2.0 34 hsa-miR-296 dbDEMC, HMDD v2.0

10 hsa-miR-629 HMDD v2.0 35 hsa-miR-493 dbDEMC, HMDD v2.0
11 hsa-miR-486 dbDEMC, HMDD v2.0 36 hsa-miR-142 HMDD v2.0
12 hsa-miR-29b-1 HMDD v2.0 37 hsa-miR-9-2 HMDD v2.0
13 hsa-miR-92a-1 dbDEMC, HMDD v2.0 38 hsa-miR-19b-2 HMDD v2.0
14 hsa-miR-132 dbDEMC, HMDD v2.0 39 hsa-miR-145 dbDEMC, HMDD v2.0
15 hsa-miR-330 HMDD v2.0 40 hsa-miR-218-2 HMDD v2.0
16 hsa-miR-200c HMDD v2.0 41 hsa-miR-30a dbDEMC, HMDD v2.0
17 hsa-miR-584 dbDEMC, HMDD v2.0 42 hsa-miR-16-1 dbDEMC, HMDD v2.0
18 hsa-miR-1-1 HMDD v2.0 43 hsa-miR-122 Literature [41]
19 hsa-miR-365b HMDD v2.0 44 hsa-miR-125b-2 HMDD v2.0
20 hsa-miR-506 dbDEMC, HMDD v2.0 45 hsa-miR-127 dbDEMC, HMDD v2.0
21 hsa-miR-199a Literature [42] 46 hsa-miR-150 Literature [40]
22 hsa-miR-101-2 HMDD v2.0 47 hsa-miR-502 HMDD v2.0
23 hsa-miR-22 dbDEMC, HMDD v2.0 48 hsa-miR-615 HMDD v2.0
24 hsa-miR-9-1 HMDD v2.0 49 hsa-miR-6815-5p unconfirmed
25 hsa-miR-155 dbDEMC, HMDD v2.0 50 hsa-miR-16-2 HMDD v2.0

The first and third column correspond to the top 1–25 related miRNAs and 26–50 related miRNAs, respectively.

Table 3. Prediction of top 50 kidney neoplasms candidates.

Rank Name Evidence Rank Name Evidence

1 hsa-mir-194 dbDEMC 26 hsa-mir-26b dbDEMC
2 hsa-mir-204 dbDEMC 27 hsa-mir-29b dbDEMC, miR2Disease
3 hsa-mir-124a dbDEMC 28 hsa-mir-30e-3p dbDEMC
4 hsa-mir-199a dbDEMC, miR2Disease 29 hsa-mir-143 dbDEMC
5 hsa-mir-215 dbDEMC 30 hsa-mir-200a dbDEMC
6 hsa-mir-210 dbDEMC, miR2Disease 31 hsa-mir-224 dbDEMC
7 hsa-mir-199a* dbDEMC 32 hsa-mir-30a-3p dbDEMC
8 hsa-mir-182* dbDEMC 33 hsa-mir-146a dbDEMC
9 hsa-mir-30d dbDEMC 34 hsa-mir-20a dbDEMC, miR2Disease

10 hsa-mir-15a dbDEMC, miR2Disease 35 hsa-mir-422a dbDEMC
11 hsa-mir-136 dbDEMC 36 hsa-mir-130b dbDEMC
12 hsa-mir-22 dbDEMC 37 hsa-mir-130a dbDEMC
13 hsa-mir-101 dbDEMC, miR2Disease 38 hsa-mir-455 dbDEMC
14 hsa-mir-320 dbDEMC 39 hsa-mir-489 dbDEMC, miR2Disease
15 hsa-mir-122a dbDEMC 40 hsa-mir-183 dbDEMC
16 hsa-mir-30c dbDEMC 41 hsa-mir-30a-5p dbDEMC
17 hsa-mir-214 dbDEMC, miR2Disease 42 hsa-mir-30b dbDEMC
18 hsa-mir-198 dbDEMC 43 hsa-mir-139 dbDEMC
19 hsa-mir-107 dbDEMC 44 hsa-mir-181b dbDEMC
20 hsa-mir-192 dbDEMC 45 hsa-mir-30a Literature [42]
21 hsa-mir-106a dbDEMC, miR2Disease 46 hsa-mir-187 dbDEMC
22 hsa-mir-186 dbDEMC 47 hsa-mir-133b unconfirmed
23 hsa-mir-142 Literature [41] 48 hsa-mir-93 dbDEMC
24 hsa-mir-191 dbDEMC, miR2Disease 49 hsa-let-7e unconfirmed
25 hsa-mir-422b dbDEMC 50 hsa-mir-429 dbDEMC

The first and third column correspond to the top 1–25 related miRNAs and 26–50 related miRNAs.
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Lymphoma is a malignant tumor that has its origin in a type of white blood cells called lymphocytes.
Lymphoma can be divided into two main types: Hodgkin lymphoma (HL) and non-Hodgkin lymphoma
(NHL) [43]. According to statistics, 90% of people with lymphoma have non-Hodgkin’s lymphoma [44].
Recently, to elucidate the pathogenesis of lymphoma, researchers proposed the miRNAs as a novel
biomarker. Experimental studies demonstrated that deletion or down-regulation of miR-15a leads to
overexpression of B cell lymphoma 2 (BCL2), which is a common phenomenon of Lymphoma [45].
Moreover, studies have shown that overexpression of miR-18b may help in identifying patients with
poor prognosis in cell lymphoma treated cohorts. [46]. Therefore, it is imperative to take lymphoma as
a case study to verify the prediction performance. After implementing IMDN for lymphoma as a case
study, we confirmed that 45 out of 50 candidates proved to be lymphoma-related miRNAs. Table 4
shows this result.

Table 4. Prediction of top 50 lymphoma candidates.

Rank Name Evidence Rank Name Evidence

1 hsa-miR-138-1 HMDD v2.0 26 hsa-miR-135b HMDD v2.0, dbDEMC
2 hsa-miR-139 HMDD v2.0, dbDEMC 27 hsa-miR-19b-1 HMDD v2.0
3 hsa-miR-92a-2 HMDD v2.0 28 hsa-miR-101-2 HMDD v2.0
4 hsa-miR-124-1 HMDD v2.0 29 hsa-miR-181a-2 HMDD v2.0
5 hsa-miR-218-2 HMDD v2.0 30 hsa-miR-499a HMDD v2.0
6 hsa-miR-20b HMDD v2.0, dbDEMC 31 hsa-miR-122 HMDD v2.0, dbDEMC
7 hsa-miR-29c HMDD v2.0, dbDEMC 32 hsa-miR-135a-2 HMDD v2.0
8 hsa-miR-16-1 HMDD v2.0 33 hsa-miR-150 HMDD v2.0, dbDEMC
9 hsa-miR-200b HMDD v2.0, dbDEMC 34 hsa-miR-92a-1 HMDD v2.0

10 hsa-miR-181a-1 HMDD v2.0 35 hsa-miR-550a-2 HMDD v2.0
11 hsa-miR-550a-1 HMDD v2.0 36 hsa-miR-155 HMDD v2.0, dbDEMC
12 hsa-miR-125a HMDD v2.0, dbDEMC 37 hsa-miR-15a HMDD v2.0, dbDEMC
13 hsa-miR-24-1 HMDD v2.0 38 hsa-miR-92b HMDD v2.0, dbDEMC
14 hsa-miR-17 HMDD v2.0, dbDEMC 39 hsa-miR-16-2 HMDD v2.0
15 hsa-miR-133b HMDD v2.0, dbDEMC 40 hsa-miR-138-2 HMDD v2.0
16 hsa-miR-218-1 HMDD v2.0 41 hsa-miR-18a HMDD v2.0, dbDEMC
17 hsa-miR-382 unconfirmed 42 hsa-miR-203 HMDD v2.0, dbDEMC
18 hsa-miR-363 HMDD v2.0, dbDEMC 43 hsa-miR-518b HMDD v2.0, dbDEMC
19 hsa-miR-19b-2 HMDD v2.0 44 hsa-miR-26a-1 HMDD v2.0
20 hsa-miR-146a HMDD v2.0, dbDEMC 45 hsa-miR-429 unconfirmed
21 hsa-miR-184 HMDD v2.0, dbDEMC 46 hsa-miR-126 HMDD v2.0, dbDEMC
22 hsa-miR-511 unconfirmed 47 hsa-miR-135a-1 HMDD v2.0
23 hsa-miR-101-1 HMDD v2.0 48 hsa-miR-147 unconfirmed
24 hsa-miR-26a-2 HMDD v2.0 49 hsa-miR-210 HMDD v2.0, dbDEMC
25 hsa-miR-21 HMDD v2.0, dbDEMC 50 hsa-mir-320a unconfirmed

The first and third column correspond to the top 1–25 related miRNAs and 26–50 related miRNAs, respectively.

3.4. Survival Analysis

Consideration of the relationship between miRNAs and prognosis of breast cancer can give new
insights into disease etiology [47,48]. We analyzed whether miRNA, which was identified to be related
with certain disease, could be used as a prognostic biomarker according to the change in expression
level. We also performed survival analysis by plotting Kaplan-Meier curve and testing statistical
significance based on log-rank test. miRpower-Kaplan-Meier plotter web tool provides the function of
Kaplan-Meir survival analysis [49]. We only considered the miRNAs with a p-value less than 0.005
as significant when factoring the overall survival rate of breast cancer patients. By performing the
Kaplan-Meier survival analysis of the highly ranked miRNA candidates (has-let-7e, has-miR-101,
has-let-7c and has-miR-139), we could prove that these miRNAs highly associate with the survival
rates of breast cancer patients. The overall analysis is illustrated in Figure 6.
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4. Discussion

Identification of potential miRNA-disease associations could expand the understanding of disease
etiology and pathogenesis. To this end, this study presents the novel framework of improved prediction
of miRNA-disease associations based on matrix completion with network regularization (IMDN) for
prioritization of disease-related miRNAs. The goal of IMDN is to learn miRNA and disease latent
vectors through matrix factorization while preserving the properties of miRNA-disease associations.
With the vast amount of omics datasets that are publicly available, an important criterion for evaluating
the IMDN is whether the model effectively reflects additional biologic data while enhancing the
prediction accuracy. Traditional MF-based prediction models are highly dependent on the known
miRNA-disease associations while they ignore the relationship among the miRNAs in the network.
To address this issue, we modified a cost function that we could use to adaptively learn miRNAs and
disease latent vectors, given the miRNA similarity network constructed using misim and Gaussian
interaction profile kernels. Our prediction model was characterized by fully exploring the constructed
miRNA similarity network to inject the correlations among the miRNAs. After implementing matrix



Cells 2020, 9, 881 15 of 18

factorization model with various biologic data, it was natural that miRNAs with a high chance of
involvement in disease incidence would be highly prioritized with a high score. The AUC value was
adopted to measure the prediction accuracy. As a result, the IMDN delivered superior performance with
reliable AUC values of 0.9162 and 0.8965 in the frameworks of global and local LOOCV, respectively.
Furthermore, case studies were conducted on three significant human diseases to verify the stable
and reliable performance of IMDN. In summary, the experiments under various evaluation metrics
qualitatively validated the excellent performance of IMDN compared to previous methods.

5. Conclusions

The excellent prediction performance of IDMN may be attributed to several important factors.
First, we applied a matrix factorization model that yielded immense success in the recommender
system. Among various collaborative filtering techniques, matrix factorization has been a promising
technique in a wide variety of domains. In bioinformatics, matrix factorization helps in identifying
hidden links among genes—and in recommender systems—it infers the most plausible rating scores
that users may give to certain items. Thus, we transform the prediction of miRNA-disease associations
into a recommender task. Second, IMDN is expandable in terms of additional biologic data, such as
miRNA expression data and it improves the prediction accuracy. Lastly, our model exploited not only
the known miRNA-disease associations but also integrated the miRNA similarity to better capture the
characteristic of miRNA through its direct neighbors in the miRNA similarity network. It is noteworthy
that the consideration of the miRNA similarity network lead to train the miRNA latent vector well.
Most importantly, we anticipated that IMDN can serve as an effective tool for discovering potential
links between miRNAs and diseases.

For future work, larger biologic datasets can be used to better capture the latent vectors of miRNAs
and diseases to infer potential disease-related miRNAs. Furthermore, evaluation of miRNA candidates
with not only the in silico experiments but also in vivo experiments shall clearly demonstrate the
performance of the model and improve the credibility of the study. We also expect more comprehensive
and public databases to be open in the future such that inferring novel miRNA-disease associations
would achieve a more accurate and stable performance.
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