
86 COMMUNICATIONS OF THE ACM | APRIL 2020 | VOL. 63 | NO. 4

big trends

B IN ARY CODE ANALYSIS (binary analysis, for short) is
a vital security approach for protecting commercial
off-the-shelf (COTS) software and understanding
malware, where there is no source code available.
From the perspective of computer security, it is
imperative to analyze binary code, as source-level
scrutiny does not always reveal lurking software bugs
due to compiler or interpreter misbehavior.

Since the late 1990s, there has been significant
research interest worldwide on binary analysis.

The BitBlaze project (by Carnegie
Mellon University and University of
California, Berkeley)14 is one of the few
pioneering research prototypes that
incorporates a variety of tools for bi-
nary analysis, such as VINE for static
analysis, TEMU for dynamic analysis,
and Rudder for symbolic execution.
Following up on BitBlaze, BAP (by
Carnegie Mellon University)3 provides
a wealth of APIs that can be used to
build a custom binary analyzer, while
DECAF (by Syracuse University)7 pro-
vides efficient, platform-neutral sup-
port for dynamic binary analysis. Angr
(by University of California, Santa Bar-
bara)13 offers a user-friendly platform
for common binary analysis tasks,
such as disassembly, instrumenta-
tion, and symbolic execution that are
utilized by an active user community.

In recent years, the expanding cyber
infrastructure supporting govern-
ments and industry sectors in Asia has
ignited strong interests in software
security, leading to a surge of research
activities in binary analysis in the
region. Thanks to the broad inter-
national support, researchers have
begun to drive new ideas and delve
into various research topics in binary
analysis, such as automatic exploit
generation, vulnerability discovery,
and automated reverse-engineering.
This article outlines the key research
developments and trends in binary
analysis led by researchers in the East
Asia and Oceania region.

Growing Research Interest
in Vulnerability Discovery and
Exploit Generation
Fuzzing is a popular technique to dis-
cover software vulnerabilities by ran-
domly or semi-randomly generating
inputs to tested software programs. It
has been an area of focus for research-
ers from China, Korea, and Singapore.
AFLFast (from the National University
of Singapore)2 is one noteworthy proj-
ect used by many security practitioners
today to find security vulnerabilities
in software. It served as the catalyst
for grey-box fuzzing research: many

DOI:10.1145/3378424

BY SANG KIL CHA /KAIST AND ZHENKAI LIANG /
NATIONAL UNIVERSITY OF SINGAPORE

Asia’s
Surging
Interest
in Binary
Analysis

http://dx.doi.org/10.1145/3378424

APRIL 2020 | VOL. 63 | NO. 4 | COMMUNICATIONS OF THE ACM 87

hot topics east asia & oceania region

research papers on grey-box fuzzing
came out after its release.12 CollAFL
(by Tsinghua University, China)6
and Eclipser (by the Korea Advanced
Institute of Science and Technology,
or KAIST)4 are examples of regional ef-
forts in improving fuzzing efficiency.

Another research focus is on new
types of memory vulnerabilities and
exploits. Data-oriented exploitation
(by National University of Singapore)8,9
is a new type of memory error exploit
that works by manipulating non-
control data of the program without
hijacking the control flow of a target
program, which brings the expressive-
ness of data-oriented exploits to a new
level.

Automatic Exploit Generation
(AEG, by Carnegie Mellon University)1
is a pioneering work of automatically
finding and exploiting the vulnerabili-
ties of a program, which incorporates
analysis techniques such as symbolic

execution and fuzzing. AEG is im-
portant for software security, as one
can apply the technique to discover
vulnerabilities and quickly fix security-
relevant vulnerabilities prior to the
release of software products. AEG
typically requires binary code, as it
is not possible to figure out the exact
memory layout by simply looking at
the source code. The importance of
AEG was realized by the Cyber Grand
Challenge (CGC), the first hack-
ing competition between machines
hosted by DARPA in 2016. To expedite
the AEG process, one needs to search
for exploitable states in program paths
diverging from crashing inputs found
by fuzzing. Revery (by the Univerity
of Chinese Academy of Sciences and
Tsinghua University, China)15 tackles
this challenge by adopting a control-
flow stitching technique.

Since the CGC, several Asian coun-
tries have started to organize similar

competitions. Korea ran the AI-based
Automated Vulnerability Discovery
Challenge in 2018, and Japan also
hosted the Automatic Cyber Hacking
Challenge at the Code Blue Confer-
ence in 2018. Both competitions were
focused on attacks, that is, binary-level
exploitation, rather than defenses,
unlike CGC, where binary patching
played a crucial role. However, the Ko-
rean Ministry of Science, ICT, and Fu-
ture Planning (MSIT) have announced
this year’s competition would include
both attacks and defenses.

Efforts in Building Scalable
Binary Analysis Frameworks
Binary analysis faces a constant
challenge due to the ever-increasing
demands of researchers and cyber-
security responders. The dramatic
increase of binary analysis tasks calls
for frameworks that reduce human
effort and boost productivity, which I

M
A

G
E

 F
R

O
M

 S
H

U
T

T
E

R
S

T
O

C
K

.C
O

M

east asia & oceania region big trends big trends east asia & oceania region

88 COMMUNICATIONS OF THE ACM | APRIL 2020 | VOL. 63 | NO. 4

benefit any binary analysis framework
available today.11

Concluding Remarks
Binary analysis has been gaining popu-
larity in Asia. Built on the momentum
of vulnerability discovery and exploit
generation, as well as the foundational
work to build scalable platforms for bi-
nary analysis, we hope to see more ac-
tive regional research collaboration in
the field. With extended collaborative
effort, we believe researchers in this
region will trigger major technological
breakthroughs in the future. 

References
1.	 Avgerinos, T., Cha, S.K., Hao, B.L.T. and Brumley, D.

AEG: Automatic exploit generation. In Proceedings of
the Network and Distributed System Security Symp.,
2011.

2.	 Bohme, M., Pham, V.-T. and Roychoudhury, A.
Coverage-based grey-box fuzzing as Markov chain.
In Proceedings of the ACM Conf. Computer and
Communications Security, 2016.

3.	 Brumley, D., Jager, I., Avgerinos, T. and Schwartz, E.J.
BAP: A binary analysis platform. In Proceedings of the
Intern. Conf. Computer-Aided Verification, 2011.

4.	 Choi, J., Jang, J., Han, C. and Cha, S.K. Grey-box
concolic testing on binary code. In Proceedings of the
Intern. Conf. Software Engineering, 2019.

5.	 Chua, Z., Wang, Y., Bălut̨ă, T., Saxena, P., Liang, Z. and
Su, P. One engine to serve’em all: Inferring taint rules
without architectural semantics. In Proceedings of the
Network and Distributed System Security Symp., 2019.

6.	 Gan, S. et al. CollAFL: Coverage sensitive fuzzing. In
Proceedings of the IEEE Symp. Security and Privacy,
2018.

7.	 Henderson, A., Prakash, A., Yan, L.K., Hu, X., Wang, X.,
Zhou, R. and Yin, H. Make it work, make it right, make
it fast: building a platform-neutral whole-system
dynamic binary analysis platform. In Proceedings
of the Intern. Symp. Software Testing and Analysis,
2014.

8.	 Hu, H., Chua, Z., Adrian, S., Saxena, P. and Liang, Z.
Automatic generation of data-oriented exploits. In
Proceedings of the USENIX Security Symp., 2015.

9.	 Hu, H., Shinde, S., Adrian, S., Chua, Z., Saxena, P.
and Liang, Z. Data-oriented programming: On the
expressiveness of non-control data attacks. In
Proceedings of the IEEE Symp. Security and Privacy,
2016.

10.	 Jung, M., Kim, S., Han, H., Choi, J. and Cha, S.K. B2R2:
Building an efficient front-end for binary analysis. In
Proceedings of the NDSS Workshop on Binary Analysis
Research, 2019.

11.	 Kim, S., Faerevaag, M., Jung, M., Oh, S.J.D., Lee, J. and
Cha, S.K. Testing intermediate representations for
binary analysis. In Proceedings of the Intern. Conf.
Automated Software Engineering, 2017.

12.	 Manès, V.J. et al. The art, science, and engineering of
fuzzing: A survey. IEEE Trans. Software Engineering,
2019.

13.	 Shoshitaishvili, Y. et al. (State of) the art of
war: Offensive techniques in binary analysis. In
Proceedings of the IEEE Symp. Security and Privacy,
2016.

14.	 Song, D. et al. BitBlaze: A new approach to computer
security via binary analysis. In Proceedings of the
Intern. Conf. Information Systems Security, 2008.

15.	 Wang, Y, Zhang, C., Xiang, X., Zhao, Z., Li, W., Gong,
X., Liu, B., Chen, K., Zou, W. Revery: From proof-of-
concept to exploitable (one step towards automatic
exploit generation). In Proceedings of the ACM Conf.
Computer and Communications Security, 2018.

Sang Kil Cha is an asssistant professor at KAIST, South
Korea.

Zhenkai Liang is an associate professor at the National
University of Singapore.

© 2020 ACM 0001-0782/20/4

can be scaled to meet real-world
demands. Based on the common
abstractions used in binary analysis,
such as intermediate representation
(IR), instruction semantics, data flow,
control flow, and others, research in
the region aims to develop automatic
methods to generate abstractions and
optimize analysis processes, as well as
enabling analysis by various tools to
inter-operate.

Many of the efforts carried out in
the Asia region aim to produce solid
building blocks for scalable binary
analysis frameworks. For example,
writing the specification of instruc-
tions from scratch is largely an error-
prone task; instruction-set manu-
als typically comprise thousands
of pages of descriptions written in
natural language. To write a binary
analysis front-end, which translates
binary code into an IR, one should
carefully read the manuals and
implement the logic. This process
requires tremendous engineering
effort and thus, many researchers
consider it too costly to investigate.
TaintInduce (by the National Uni-
versity of Singapore and the Chinese
Academy of Sciences)5 is a project to
automatically generate taint rules (or
data-flow properties) without manual
specifications; it infers taint rules
based on observations of instruction
executions. In addition, TaintInduce
proposes a common definition and
API for taint rules, enabling follow-up
work to be built on a common knowl-
edge base.

In 2019, researchers from KAIST
made public their binary analysis
framework, called B2R2.10 This was
the first attempt to build a binary
analysis framework in this region.
It focused on optimizing the per-
formance and accuracy of a binary
analysis front end, which was often
neglected by binary analysis research-
ers, as the front end had been regard-
ed as a simple translation module.
However, they presented various opti-
mization techniques, including paral-
lel lifting and big-integer splitting,
that achieve an order-of-magnitude
improvement in the performance
of the front end. The same research
team published a novel technique for
finding semantic bugs that appeared
in IRs for binary analysis, which can

The expanding
cyberinfrastructure
supporting
governments and
industry sectors
in Asia has ignited
strong interests in
software security,
leading to a surge of
research activities
in binary analysis in
the region.

