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1 Introduction

A global Peccei-Quinn (PQ) symmetry, U(1)PQ, is a leading candidate to solve a fine-

tuning problem, the strong CP problem, of the standard model (SM) [1, 2]. Through the

spontaneously breaking of U(1)PQ, an axion, which is a pseudo-Nambu Goldstone boson

(pNGB), arises [3–8]. Since the anomaly of U(1)PQ-SU(3)2
C is non-vanishing, the axion

gets a potential with a CP-conserving minimum due to the non-perturbative effect of the

QCD, and thus at the vacuum the strong CP problem is solved. Because of the coherent

oscillation in the early universe, the axion condensate can contribute to the matter density

and hence can explain the dark matter [9–11]. (See e.g. refs. [12–19] for reviews.)

The solution, however, suffers from hierarchy and quality problems. The first problem

is due to that the PQ scale, or the decay constant of the QCD axion, fa, is constrained to

be within the so-called classical axion window:

108 GeV . fa . 1012 GeV, (1.1)

which is smaller than the reduced Planck scale, Mpl = 2.4 × 1018 GeV. The lower bound

comes from the duration of the neutrino burst in the SN1987a [20] (See also refs. [21, 22]).

The upper bound comes from the axion abundance constraint. One simple way to address

this hierarchy is to open the window. This is possible if the Hubble parameter during the

inflation, which lasts long enough, is lower than the QCD scale [23, 24].1 Another way is

1This low scale inflation can also alleviate the moduli problem at the same time [25]. See also related

topics [26–32]. It is also possible to introduce other degrees of freedom to, e.g., dilute or transfer the axion

abundance [10, 33–37].
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to extend the PQ sector to make the scale of the classical axion window natural, e.g. the

axion is composite [38, 39], or with supersymmetry. Our proposal will belong to the latter.

The quality problem, on the other hand, is somewhat related to quantum gravity. It

is believed that any global symmetry should be explicitly broken by Planck-scale physics

(See e.g. refs. [40–42]). Thus the PQ symmetry should be explicitly broken. It was pointed

out that a PQ symmetry with good enough quality can be obtained as an accidental

symmetry of discrete gauge symmetries [43–47], abelian gauge symmetries [48–50], and

non-abelian gauge symmetries [51–54]. A relevant criterion for quantum gravity is weak-

gravity conjecture (WGC) [55], which suggests that gravity is the weakest long-range force.

From this conjecture, given the charged particle spectrum, we cannot take the coupling of an

unbroken gauge symmetry to be arbitrarily small, especially zero to get a continuous global

symmetry. In other words, given the gauge coupling, the particle spectrum is constrained.

In fact, by introducing an unbroken U(1)B−L symmetry which is weakly coupled, the

hierarchy between the electroweak and Planck scales was discussed within the WGC [56].

It may be also important to discuss the scale of the PQ symmetry in the context of the

WGC via the gauge symmetry introduced for the quality problem.

In this paper, we find that by introducing a U(1)′ gauge symmetry in a KSVZ axion

model [5, 6], the hierarchy between the scale of axion window and the Planck scale can

be explained within the context of the WGC, which restricts an unbroken abelian gauge

symmetry. However it cannot solve the quality problem because if the PQ symmetry

appears as the accidental symmetry of U(1)′, U(1)′ must be broken in order to have the

spontaneous PQ symmetry breaking. From this finding, we study a fundamental axion

model with a hidden SU(N) gauge symmetry, which is incompletely broken down via the

PQ symmetry breaking, and solves the quality problem. In this case, a Tower/Sub-Lattice

WGC (sLWGC) [57–60] can set a cutoff to the energy scales of the field theory [61]. If

the cutoff is around the axion window, the PQ scale cannot be higher than that and, as a

result, both the quality and hierarchy problems are solved. We also point out that within

this low-cutoff theory, one may have a consistent cosmology.

This paper is organized as follows. In the next section we review the hierarchy problem

for the PQ scale, and discuss the possible solution by introducing an unbroken abelian

gauge symmetry with mild-version of WGC. In the section 3, we study the non-abelian

gauge theory with tower/sLWGC and show that both the quality and hierarchy problems

can be solved. The cosmology of the scenario is also discussed. The last section is devoted

to conclusions and discussion.

2 Scale of fundamental axion and WGC

2.1 Hierarchy problem of the PQ scale

Let us consider a KSVZ model with the following particle contents

q : (1, rSM), q̄ : (0, r̄SM), HPQ : (−1, 1) (2.1)

Here q and q̄ are exotic PQ quarks, and HPQ is a PQ Higgs field, under the represen-

tation of (U(1)PQ,GSM). rSM denotes the representation of the SM gauge group GSM =
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(U(1)Y , SU(2)L, SU(3)C), and we take rSM = (Y, 1L, 3C) here and hereafter. Then it is

allowed to write down the Yukawa coupling of

L ⊃ yq q̄HPQq. (2.2)

The potential of the HPQ is given as

VPQ = −m2
PQ |HPQ|2 +

λ

2
|HPQ|4 . (2.3)

m2
PQ(> 0) and λ are the mass parameter and quartic coupling, respectively. Thus one

readily gets that the HPQ obtains a non-vanishing vacuum expectation value (VEV) as

vPQ ≡ 〈HPQ〉 =
mPQ√
λ
. (2.4)

The quarks get mass of

Mq = yqvPQ. (2.5)

Then the PQ symmetry is spontaneously broken and a (pseudo) NGB, a, appears which

couples to q and q̄. Since the anomaly of U(1)PQ-G2
SM is non-vanishing, by integrating out

the heavy quarks one obtains

Leff ⊃ 1

16π2

a√
2vPQ

(
3Y 2g2

Y FY F̃Y + g2
3 tr[FC F̃C ]

)
. (2.6)

Thus a is the QCD axion and

fa =
√

2vPQ (2.7)

which should satisfy the classical axion window (1.1).

Next, let us introduce a hierarchy problem of this model, which can be regarded as a

radiative instability problem. The radiative correction to the mass parameter of the PQ

field is

δm2
PQ = O(max [λ, y2

q ])
Λ2

c.o.

16π2
(2.8)

where Λc.o. is the cutoff scale of this model. We will take into account the quantum gravity

effects, which we have omitted here, later. By assuming the cutoff scale Λc.o ∼ Mpl,

the radiative correction is 1017 GeV for O(1) couplings. This implies that m2
PQ in the

conventional axion window (2.7) requires fine-tuning of m2
PQ/δm

2
PQ . 10−10 between the

bare mass squared and δm2
PQ. Notice that by simply taking the coupling small the tuning

cannot be relaxed. Since v2
PQ = λ−1m2

PQ, a small λ implies an even smaller m2
PQ, i.e. the

ratio δm2
PQ/m

2
PQ remains.

2.2 WGC and PQ scale: case of U(1)′

The WGC states that gravity is the weakest long-range force. More precisely, it says that

in the effective theory of U(1)′ gauge symmetry consistent with the quantum gravity, there

is at least a charged particle with mass m and charge q′ satisfying [55]

m . q′g′Mpl (WGC) (2.9)
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where g′ is the coupling of the U(1)′ at the scale of m. In this section, we take q′ = 1 for

simplicity. If the WGC is violated, charged black holes would become stable which is unnat-

ural. There is not yet any counterexample found in string theory to (the mild version of) the

WGC. Moreover, there are several proof of the WGC under certain assumptions [62–66].

Now let us follow [56] to explain the hierarchy by using eq. (2.9). Let us introduce an

unbroken U(1)′ gauge symmetry under which

q : 1 q̄ : −1. (2.10)

The other fields (including the SM particles) are all supposed to be charge-less for simplic-

ity.2 For later convenience, let us rewrite the gauge coupling

g′ ≡ yq
f̃√

2Mpl

' 3× 10−7yq

(
f̃

1012 GeV

)
, (2.11)

by the dimensionful parameter f̃ .

From eq. (2.9), it turns out that

Mq ≤ yq
f̃√
2
. (2.12)

Consequently, from eq. (2.5), one obtains that

vPQ .
f̃√
2

(2.13)

Notice that this bound is from the consistency condition with quantum gravity if the WGC

is correct, and thus the näıve radiative instability discussion neglecting quantum gravity

does not apply. The mildest tuned mass parameter of PQ Higgs satisfies

mPQ '
√
λ

2
f̃ , (2.14)

i.e. the WGC bound is saturated.3 As a result, if f̃ is within or slightly above the axion

window, fa can be naturally within (1.1).

In the explanation of the hierarchy between the vPQ and Mpl, we have introduced a

small parameter g′. Although the small parameter is technical natural, the mildest tuned

parameter set is

g′ ∼ 10−6 (for f̃ ' 1012 GeV), yq = O(1). (2.15)

One may wonder if U(1)′ with a proper charge assignment can lead to an accidental

PQ symmetry, and solve the quality problem. However, it is difficult. If the PQ symmetry

2One notices that the anomalies of U(1)PQ-U(1)Y -U(1)′ and U(1)PQ-U(1)′2 are non-vanishing if Y is

non-vanishing. This, and possible kinetic mixing to a photon, may lead to the axion couplings to the hidden

photon field strength, F ′, as Leff ⊃ 3Y gY g
′

16π2vPQ
aFY F̃ ′ + 3g′2

16π2vPQ
aF ′F̃ ′ ≡ gaγγ′

4
aFY F̃ ′ +

gaγ′γ′
4

aF ′F̃ ′ which is

studied in e.g. refs. [67–70].
3Strictly speaking, the total gauge group including the GSM is a product group, and one should apply

the convex hull condition [56]. We have checked that this does not change much our conclusion as an order

of estimate.
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were an accidental symmetry relevant to U(1)′, a PQ Higgs field, which breaks the PQ

symmetry, should be also charged under U(1)′. Therefore U(1)′ symmetry must be broken,

which means that the WGC cannot apply. To sum up, in the context of the mild version

of the WGC, an unbroken U(1)′ symmetry can solve the hierarchy problem of the PQ

symmetry but cannot solve the quality problem.4

3 PQ scale and quality with non-abelian hidden gauge symmetry

To have an unbroken gauge symmetry relevant to the quality of the accidental PQ symme-

try, we will introduce a non-abelian gauge symmetry instead of U(1)′. This gauge symme-

try is spontaneously broken down to an unbroken gauge symmetry via the PQ symmetry

breaking. In this case, the WGC can apply to the remnant unbroken gauge symmetry.

3.1 A hidden SU(N) gauge model for precise PQ symmetry

To be concrete, let us assume that the exotic quarks are charged under a hidden SU(N)

gauge group. The charge assignments of (SU(N),GSM) are given as

q : (N̄ , rSM), q̄ : (N̄ , r̄SM), ψa : (N, 1) (3.1)

where N is the fundamental representation of SU(N), and ψa are needed to cancel the

gauge anomaly of SU(N)3 with a = 1 · · · 2 dim [rSM].

To give masses to the exotic quarks let us introduce a Higgs field who is a symmetric

tensor of the second rank,

HPQ ≡ H{ij}PQ :

(
N2 +N

2
, 1

)
. (3.2)

We have explicitly written the symmetric indices, i, j = 1 · · ·N of SU(N). (We consider

this representation because of simplicity, and because that N required for the PQ quality,

as discussed below, is smallest. From the discussion in ref. [54], it is easy to consider

other representations with good PQ quality. Another simple possibility is discussed in

appendix A, in which however, SU(N) is completely broken.) The renormalizable Yukawa

terms are given by

L ⊃ yq q̄HPQq + yabψ ψaH
∗
PQψb (3.3)

where yq, and yψ are the Yukawa couplings.

In fact, it was pointed out in ref. [54] that a large N SU(N) gauge theory can gener-

ically lead to an accidental U(1)BH global symmetry (hidden baryon number symmetry)

originating from the N -ality due to the group structure. The U(1)BH charge assignment is

automatically obtained as

q, q̄ : −1, ψa : 1, HPQ : 2, (3.4)

by counting the number of the indices with the sign corresponding to the complex rep-

resentation. One can check that in the Yukawa term and the following Higgs potential

4One option is to introduce another gauge symmetry to solve the quality problem, namely the quality

and hierarchy problems are solved by different gauge symmetries.
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that U(1)BH manifests with good quality. The leading operator that breaks U(1)BH has a

dimension N as

L ⊃ cN
det [HPQ]

MN−4
pl

. (3.5)

Here cN is a constant and this term may be generated through a quantum gravity effect (e.g.

refs. [42, 71, 72]). One notices that

U(1)BH -G2
SM ⊃ U(1)BH -SU(3)2

c (3.6)

is anomalous. It turns out that the U(1)BH is the PQ symmetry

U(1)PQ ≡ U(1)BH . (3.7)

The PQ symmetry can be precise enough against Planck-scale suppressed terms and solve

the strong CP problem if

N & 9 (3.8)

with cN = O(1), fa = 108 GeV [41]. Consequently, the notorious quality problem of the

PQ symmetry can be solved.

It may be non-trivial whether the U(1)PQ can be spontaneously broken down, although

we have implicitly assumed. The potential of the HPQ is obtained as

V =
λ1

4
tr[H†PQHPQ]2 +

λ2

4
tr[(H†PQHPQ)2]−

m2
PQ

2
tr[H†PQHPQ]. (3.9)

Here λ1, λ2 are quartic couplings. At the minimum of the potential, one obtains the non-

vanishing VEV

〈HPQ〉 = vPQ diag [1, · · · 1] if λ2 > 0 (3.10)

[When λ2 ≤ 0, 〈HPQ〉 ∝ diag [1, 0 · · · 0], which we do not consider throughout the paper.]

Here,

v2
PQ =

m2
PQ

Nλ1 + λ2
. (3.11)

Thus,

SU(N)×U(1)PQ → SO(N)× Z2, (3.12)

where Z2 is the remnant of the U(1)PQ. Thus, HPQ not only breaks SU(N) but also U(1)PQ

incompletely. A QCD axion appears with the coupling of

√
N

16π2

a

vPQ

(
3Y 2g2

Y FY F̃Y + g2
3 tr[FC F̃C ]

)
. (3.13)

It turns out that

fa =
1√
N
vPQ. (3.14)
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3.2 WGC and PQ scale: case of SO(N)

Since there is an unbroken gauge symmetry SO(N), the WGC can apply. However the

mild-version of the WGC for any U(1) in the subgroup of SO(N) is satisfied due to the

charged massless gauge bosons of SO(N) and the charged massive gauge bosons eating

the massless NGBs in HPQ. On the other hand, it is considered that the WGC should

be somewhat sharpened. One reason is that the mild-version is not invariant under the

dimensional reduction.

The Tower/sub-lattice WGC (sLWGC) [57–60], belonging to the stronger variants of

the WGC motivated by the invariance under dimensional reduction, states: an infinite

tower of particles/resonances of different charges satisfying (2.9) exists. This conjecture

also clears various theoretical tests. Since a large number of particles exist, they come

into the loop of gravity and makes the gravity strongly coupled at a scale ΛQG. ΛQG

satisfies [73]

Mpl &
√
NstatesΛQG , (3.15)

where Nstates is the number of states below the ΛQG. ΛQG can be seen as the cutoff scale for

the quantum field theory. If N is so large that the number of states in the tower increases

fast enough [61],

ΛQG . gNMpl (3.16)

where gN is the coupling of the large N gauge theory at the scale gNMpl. In the sLWGC,

logNstates ∼ N2 log (ΛQG/gNMpl) for large N and one can get (3.16) from (3.15) [61].

Now let us discuss the hierarchy between the mPQ and Mpl. Since there is an unbroken

SO(N) gauge symmetry, following (3.16) one gets the cutoff of the quantum field theory of

ΛQG . 1013 GeV

(
gN

10−5

)
. (3.17)

By identifying

Λc.o. = ΛQG, (3.18)

the radiative correction is then given by

δm2
PQ = O(max[|λ1|N2, |λ2|, |yq|2 , |yψ|2 , g2

N ])
Λ2

QG

16π2
. (3.19)

There is no fine-tuning between the radiative correction and the bare mass if

O(
ΛQG√
16π2

) . vPQ . ΛQG. (3.20)

When the lower bound is satisfied,

fa ∼ 2× 1011 GeV

√
13

N

(
ΛQG

1013 GeV

)
. (3.21)

Consequently, both the quality and hierarchy problems of the PQ symmetry are solved in

this model in the context of the Tower/sLWGC.

– 7 –
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3.3 Cosmology

The cosmology of models solving the quality problem is usually troublesome. For instance,

in our model Z2 symmetry in (3.12) stabilizes q, q̄, and ψa which could cause cosmological

problem,5 although some of the fermion could be the dark matter. Also, the PQ symmetry

breaking, if happens during the thermal history, may generate domain walls. If the PQ

symmetry is not restored during inflation and the axion is the dominant dark matter,

there can be an isocurvature problem. These problems are all solved if the inflation scale

is small enough. However, again, a hierarchy between the inflation and the Planck scales

is introduced.

In our scenario, the inflation scale must be smaller than ΛQG, i.e. the Hubble parameter

during inflation, Hinf , satisfies

Hinf < 2× 107 GeV

(
ΛQG

1013 GeV

)2

. (3.22)

Thus the above problems can be solved with small inflation scales with the hierarchy

explained in the context of the Tower/sLWGC and the marginally small gN . A direct

prediction of the scenario is the suppressed tensor/scalar ratio,

r ≈ 1.6× 10−15

(
Hinf

107 GeV

)2

. (3.23)

If we maximize the inflation scale, and if the QCD axion is dominant dark matter, the

induced isocurvature perturbation is close to the current bound [74]. Thus it may be

searched for in the near future.

Interestingly, the cutoff scale ΛQG ∼ 1013 GeV is close to the seesaw scale. If the right-

handed neutrino masses are around the cutoff scale, and the neutrino Yukawa couplings are

not too small, one explains the active neutrino masses with correct scales via the seesaw

mechanism [75–79]. Thermal leptogenesis is possible [80].

Now let us come back again to the quality problem, which we have assumed that the

PQ breaking terms appear from the Planck-scale-suppressed terms. On the other hand, the

higher dimensional operator (3.5) may be generated at the scale of ΛQG, cN ∼
( Mpl

ΛQG

)N−4
,

although it is model dependent (See cf. refs. [81, 82]). With vPQ/ΛQG ∼
√

1/16π2, the

quality can be good enough if N & 50. If the higher dimensional terms of the SM particles

are generated at the scales of ΛQG, the axion dark matter with fa ' vPQ/
√
N ∼ 1012 GeV

implies a cutoff of ΛQG ∼ 1013−14 GeV. In this scenario, the neutrino masses can be

generated by the higher dimensional operators of

cab

ΛQG
HSMLaHSMLb (3.24)

correctly for the dimensionless coefficient cab ∼ O(1). Here HSM and La are the SM Higgs

and lepton doublet fields with the flavor indices a, b = e, µ, τ. In this case, the baryon

number violating operators may also exist although it again depends on the detail of the

5This problem may be solved if we consider q : (N̄(N̄ + 1)/2, rSM), q̄ : (N̄(N̄ + 1)/2, r̄SM), ψa :

(N(N + 1)/2, 1) instead. They have charges 2 and −2 under U(1)BH , and thus neutral under the Z2

symmetry. In this case, dimension 4 or 5 terms involving SM particles are allowed if Y = ±1/3 or ± 2/3.

– 8 –
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UV model (See e.g. refs. [81–83]). To avoid the proton decays, one can introduce a Z2

symmetry under which SM leptons are odd but the baryons are even or vise versa. In this

case, the baryon asymmetry may be correctly obtained from neutrino oscillation with the

higher dimensional term (3.24) [84, 85] and also the quark oscillation could be important

via the baryon-number-violating but baryon-parity-conserving operator [86].

Lastly, let us mention the confinement of SO(N). The unbroken SO(N) becomes non-

perturbative at low energy scales. However, gN is tiny, which means that the “QCD”

scale ΛSO(N) = e−8π2/bg2
N fa with b = 11(N − 2)/3, is extremely low. For N < 109, gN <

10−5, fa ∼ 1012 GeV, the size of the instanton 1/ΛSO(N) is much larger than 1/H0, where

H0 is the current Hubble parameter, and thus we can neglect the non-perturbative effect

in phenomenology.

4 Conclusions and discussion

An anomalous PQ symmetry solves the strong CP problem, which is a fine-tuning problem.

The solution, however, suffers from other fine-tuning problems, the quality and hierarchy

problems. Moreover, to solves the potentially existing domain wall, stable PQ fermions,

and isocurvature problems, a low inflation scale may be needed, which may introduce

another hierarchy problem.

In this paper, we have studied whether the hierarchy and the quality problems for the

PQ symmetry can be both explained by introducing a simple hidden gauge group which

satisfies the WGC or its variant. By introducing an unbroken U(1)′ gauge symmetry under

which some PQ fermions are charged, the mild version of the WGC can constrain the PQ

scale to be below 1012 GeV for the coupling g′ . 10−6. However, the quality problem

cannot be solved. A non-abelian hidden gauge symmetry which is partially broken down

via the spontaneous PQ breaking can solve the quality problem. In this case, according

to a stronger version of the WGC, the Tower/sLWGC, the cutoff scale of the field theory

is reduced to be around the QCD axion window if the coupling satisfies gN . 10−5. As

a result the small PQ and inflation scales can be simultaneously explained. Interestingly,

the seesaw scale is also around the cutoff scale.

A ΛQG < 1015−16 GeV may not be compatible with the ordinary grand unified theory

(cf. ref. [83]), which explains the quantized charges of the SM. However the charge quan-

tization can be achieved if supersymmetry restores at the scale around ΛQG and a slepton

is the SM Higgs field [87], given the three generations.

Although we have focused on the QCD axion, in general a light pNGB with a small

decay constant, has both the problems of quality and hierarchy. Our mechanism can also

apply to a general pNGB or ALP.6 Then the tiny mass of the ALP can be generated

via the higher dimensional terms or the non-perturbative effect of SO(N) dynamics if

U(1)BH -SO(N)2 is anomalous7 and g2
NN is large enough. The non-perturbative effect, if

sizable, requires an extremely large N for a small ΛQG.

6Such ALP may be important in various contexts e.g. ALP inflation [88–90], and the explanation of the

XENON1T excess [91–97].
7For instance, we may change the fermion contents, (3.1) to ψα : (N, 1), ψ̃ : (N̄(N̄ + 1), 1) where α =

1 · · ·N + 4, we find U(1)BH -SO(N)2 anomaly is non-vanishing. Here, ψ̃ has U(1)BH charge 2 accidentally.
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Note added: while preparing this paper, we found ref. [98] where the model with SU(N)

hidden gauge symmetry broken down to SO(N) was discussed in the context of quality

problem. In this paper, we mainly focus on the small gN regime, and find that due to the

unbroken SO(N) the spectra may be restricted by weak gravity conjectures. We showed

that the much lower PQ scale than Mpl and safe cosmology can be obtained due to the

resulting low cutoff scale. These are not discussed in [98].
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A Alternative models with sLWGC

It was discussed that the cutoff ΛQG may be set even with the non-abelian gauge field

completely broken by higgsing [61, 99]. In this case, we can consider instead of eqs. (3.1)

and (3.2)

q : (N̄ , rSM), q̄l : (1, r̄SM), ψa : (N, 1). (A.1)

and

H l
PQ : (N, 1), (A.2)

where l = 1 · · ·N and a = 1 · · · dim[rSM]. The Yukawa interaction is given by

L ⊃ (yq)
m
l q̄mH

l
PQq. (A.3)

Again we get accidental U(1)PQ where q : −1, ψa : 1, H i
PQ : 1, q̄l : 0. Supposing that

we have a potential at the minimum
〈

(H l
PQ)i

〉
= viδlj 6= 0, we obtain SU(N) × U(1)PQ

completely broken, and an axion appears. The axion couples to the gluon with the decay

constant given by

fa =

√√√√2
∑
i

(
1

vi
∑

j 1/v2
j

)2

. (A.4)

The hierarchy are quality problems are similarly solved as in the main part.

If a spontaneous broken U(1)′ symmetry is also restricted by the sLWGC, the cutoff

is set by ΛQG . (g′)1/3Mpl [61]. Then both the quality and scale of the PQ symmetry can

be explained with g′ ∼ 10−15 and with certain charge assignment [48–50].
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