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ABSTRACT
Poly(dimethylsiloxane) (PDMS) is widely used as a microfluidics platform material; however, it absorbs various molecules, perturbing specific
chemical concentrations in microfluidic channels. We present a simple solution to prevent adsorption into a PDMS microfluidic device. We used
a vapor-phase-deposited nanoadhesive layer to seal PDMS microfluidic channels. Absorption of fluorescent molecules into PDMS was efficiently
prevented in the nanolayer-treated PDMS device. Importantly, when cultured in a nanolayer-treated PDMS device, yeast cells exhibited the ex-
pected concentration-dependent response to a mating pheromone, including mating-specific morphological and gene expression changes, while
yeast cultured in an untreated PDMS device did not properly respond to the pheromone. Our method greatly expands microfluidic applications
that require precise control of molecule concentrations.

METHOD SUMMARY
A PDMS microfluidic device was bonded using a nanoadhesive layer deposited via initiated chemical vapor deposition (iCVD). The barrier property
of the nanoadhesive was tested by measuring the absorption of fluorescent dye into PDMS. The yeast response to pheromone was tested in a
PDMS microfluidic device sealed with nanoadhesive and compared with the response in an untreated PDMS device.
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For the last three decades, poly(dimethylsiloxane) (PDMS) has been one of the most widely used materials for the fabrication of microflu-
idic devices owing to its excellent optical transparency, mechanical flexibility and biological inertness [1,2]. The advantageous charac-
teristics of PDMS-based microfluidic devices have enabled a wide variety of applications including organ-on-a-chip [3,4], sensors [5,6],
reactors [7,8] and cell isolators [9,10].

PDMS-based microfluidic devices are fabricated by molding PDMS from a microfluidic channel patterned on silicon (Si) wafer via pho-
tolithography, followed by bonding with a glass substrate by plasma treatment [11]. The simplicity of molding PDMS offers researchers
a quick way to test many different microfluidic designs patterned on a single Si wafer. Also, PDMS and glass substrates are simple and
reliable, enabling the fabrication of many kinds of microfluidic devices in a reproducible manner.

Despite its usefulness, however, the higher permeability of PDMS compared with other materials has been a drawback for many
applications. Liquid drying and leaching of small, unreacted molecules into the channel caused by its high permeability can have detri-
mental effects for biological samples [12,13]. Additionally, certain organic solvents can penetrate through the bulk of PDMS, causing
excessive swelling and damaging the channel [14,15]. This is especially important for biological applications involving cell culturing,
drug screening or even diagnostics because absorbed reagents, drugs or target analytes may lead to flawed results. Several materials
(e.g., polystyrene [16,17], cyclic olefin copolymer [18], poly(methyl methacrylate) [19], Norland Optical Adhesive [20], parylene [21,22] and
3D-printing resins [23]) have thus been developed as alternatives for biological applications, but despite these options, PDMS is still
widely used owing to the simplicity in generating various channel designs and ease of handling the microfluidic devices.

To overcome these limitations of PDMS, several approaches for surface passivation have been reported [24]. Some have employed
sol–gel chemistry to form a thin inorganic layer [25,26]. However, although the glass-like coating is excellent for blocking the penetra-
tion of chemicals into the bulk of PDMS, it alters the channel configuration and can critically impact biological applications requiring
microstructures. Others have used liquid-phase growth of polymers on the PDMS channel surface using a ‘grafting-from’ approach. This
approach offers great controllability over the polymer thickness, but requires complicated liquid-phase polymer reaction schemes, such
as atom transfer radical polymerization, that must be performed in an oxygen-free environment [27,28]. Vapor-phase parylene coating
has also been attempted on fabricated PDMS devices [29] but the coating uniformity is limited by the aspect ratio of the channel.
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Recently, a polymer thin film-based nanoadhesive layer deposited using the initiated chemical vapor deposition (iCVD) process has
been introduced for reliable sealing of microfluidic devices [30]. The iCVD process is a vapor-phase deposition method whereby a thin
polymer film can be coated on various substrates [31,32]. Because the entire process is performed in vapor phase, no solvents are
required to deposit the polymer thin films, which eliminates solvent-induced damage to the PDMS substrate. Also, the high step coverage
preserves the geometry of the PDMS. With a thickness of less than 200 nm, the nanoadhesive layer has been shown to be resistant to
various chemicals [30], to sustain a pressure of over 1 MPa [33] and to maintain the flexibility of the substrates [21]. Thus the advantages
of fabricating a PDMS microfluidic device using the nanoadhesive are twofold: first, nanoadhesives provide strong, reliable sealing and
second, they can minimize the penetration of molecules into PDMS.

Here we demonstrate that a nanoadhesive layer can successfully block the penetration of molecules and drugs into the bulk of a
PDMS device. Using fluorescent molecules, we show that the device bonded using nanoadhesive efficiently blocks the absorption of
dye by PDMS. More importantly, the nanoadhesive-bonded PDMS device dramatically reduces the absorption of yeast mating pheromone
(�-factor), demonstrating its potential for application in quantitative cell biology studies such as signal transduction, chemotaxis or drug
screening.

Materials & methods
Fabrication of microfluidic devices & bonding using nanoadhesive
The PDMS-based microfluidic device was fabricated using a standard photolithography process. Briefly, SU-8 2075 photoresist (Mi-
crochem) was spin-coated on Si wafer with a thickness of 85 μm and soft-baked at 65◦C for 5 min and 95◦C for 2 min. The photoresist
was subsequently exposed using UV light, post-exposure baked and developed to obtain a Si master. A PDMS device was molded from
the Si master by mixing Sylgard 184 (Dow Corning) PDMS base and curing agent at a ratio of 10 to 1. To fabricate a plasma-bonded
device, the molded PDMS device and a glass slide were exposed to oxygen plasma for 10 s at 15 W, assembled and cured at 100◦C for
1 h. To bond the device using a nanoadhesive layer, poly(glycidyl methacrylate) (PGMA) was deposited using the iCVD process on both
molded PDMS and glass slide as reported elsewhere [30]. Growth of the PGMA film was monitored in situ using an interferometer [34]

collecting reflection signals from a Si wafer placed alongside the PDMS substrates. The thickness on the Si wafer was taken as the
thickness of the PDMS substrate. Subsequently, the glass slide was briefly exposed to a vapor of ethylenediamine and assembled face-
to-face with PGMA-coated PDMS. The assembly was then cured for 8 h at 75◦C to obtain bonding. The static water contact angle of the
nanoadhesive-coated surface was measured using a contact angle analyzer (SEO, Inc, Korea).

Dye diffusion experiment
The efficacy of the nanoadhesive layer in preventing absorption of small molecules into PDMS was tested by filling the microchannel with
an aqueous solution of Rhodamine 123 (Sigma-Aldrich) at a concentration of 0.1 mg/ml and storing for 14 h with the inlet and outlet of
the device closed to prevent evaporation. For comparison, a plasma-bonded PDMS device was tested in the same way. Before imaging,
the channel was completely rinsed with water several times and dried with N2. Also, to test the effect of nanoadhesive thickness in dye
absorption, devices bonded with 50, 200 and 500 nm nanoadhesive were filled with the same dye solution and stored for 14 h. In both
experiments, the inlet and outlet were sealed to minimize evaporation. The fluorescence intensity profile was analyzed using ImageJ.

Yeast cell experiments
Budding yeast cells were grown overnight to saturation, then allowed to resume exponential growth by diluting them 50-fold into fresh
growth medium (Synthetic Defined Media with 2% glucose, OD600 ∼ 0.1) and finally incubated for at least 4 h at 30◦C before each
experiment in a PDMS-based microfluidic device consisting of a 4-μm gap to trap individual cells. Details of the design have been
reported elsewhere [35]. Synthesized �-factor was purchased from GeneScript.

Live cell microscopy & image analysis
The microfluidic device was mounted on the stage of an inverted Nikon Eclipse Ti microscope equipped with a hardware-based auto-
mated focusing system (Perfect Focus System) and placed into an incubation chamber set to 30◦C. Images were acquired with 40×
oil objectives and respective filter cubes, and controlled using micro-manager open source software. A motorized XY-stage was used
to capture multiple fields of view per time point. For single cell analysis, automated image analysis was performed using YeastQuant
software on raw images running in Matlab R© [36].

Results & discussion
In order to assess the barrier performance of the iCVD nanoadhesive layer on PDMS, we fabricated a single-channel microfluidic device
using PDMS and bonded it to the glass substrate by either plasma or nanoadhesive bonding (Figure 1A). Both methods achieved reliable
bonding between the substrates. However, unlike the plasma bonding method, where activated PDMS and glass participate directly in the
bonding reaction, the nanoadhesive approach utilizes the high crosslinking of a thin polymer layer that conformally covers the surface of
PDMS and glass. Epoxy-containing PGMA and ethylenediamine deposited on both the PDMS and glass substrates undergo a ring opening
curing reaction between the epoxides and amines to form a highly crosslinked polymer network. The thickness of the nanoadhesive
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Figure 1. Barrier performance of nano-adhesive-bonded device compared with plasma-bonded device. (A) Schematic drawing showing that in contrast
to the nanoadhesive-bonded device, rhodamine dye can diffuse through PDMS in the plasma-bonded device. (B) Bright-field and fluorescence images
of plasma-bonded (top) and nanoadhesive-bonded device (bottom) after 14 h exposure to a Rhodamine 123 solution. The white dotted lines indicate
the channel while the red lines denote the path of the fluorescence intensity profiles. (C) The intensity profiles across the channel width. Scale
bar = 100 μm.

layer is less than 200 nm, so the geometry of the microfluidic channel is fully retained (Figure 1B, left). The iCVD process is known to
possess high deposition conformality and preserves geometrical features, as demonstrated by several previous reports [37–39]. The
excellent conformality of the nanoadhesive layer is therefore highly advantageous considering the vast difference between nanoadhesive
thickness (0.05–0.5 μm) and typical microfluidic channel dimensions (10–1000 μm). Therefore, unless the channel dimension is of the
same order of magnitude as the nanoadhesive thickness, the bonding method shown here does not alter the geometry of the channel.

The barrier performance of the nanoadhesive layer was investigated by exposing the channel to Rhodamine 123 solution (0.1 mg/ml
in deionized water) for 14 h. In the case of the plasma-bonded device, fluorescence signal was detected in the channel even after rinsing
the device multiple times with deionized water, suggesting adsorption of rhodamine dye into the PDMS channel wall. Also, the relatively
high intensity near the channel shows penetration of the dye into the bulk of PDMS. The nanoadhesive-bonded device showed much
weaker fluorescence intensity (∼87% weaker) than the plasma-bonded device. Also, the intensity near the channel was much weaker than
in the plasma-bonded device, demonstrating the barrier capability of the nanoadhesive layer against the adsorption of the rhodamine
dye.

Clearly, the nanoadhesive acts as a physical barrier, preventing the penetration of dye into the bulk of PDMS. The plasma bonding
method renders the surface of PDMS hydrophilic by creating silanol functional groups on the surface [24]. Such groups can interact with
water molecules to form a thin layer of water, reducing the adsorption of large molecules such as proteins. Still, the intrinsic porosity of
the material permits penetration of chemicals. On the other hand, with a static water contact angle of ∼ 68.2 ± 1.1◦ (n = 3), the surface
of the nanoadhesive is less hydrophilic compared with that of plasma-treated PDMS. The excellent barrier property of the nanoadhesive
despite its lower hydrophilic surface characteristic compared with plasma-treated PDMS is therefore attributed to the physical barrier
property arising from the high crosslinking of the polymer network.

After bonding the microfluidic devices with nanoadhesive, unreacted epoxide groups that did not participate in the crosslinking reac-
tion with primary amines from ethylenediamine may remain. Although these groups may be useful for post-bonding functionalization,
unexpected epoxy-mediated adsorption is another form of loss that must be minimized when performing drug delivery experiments with
cells. We tested the adsorption of Rhodamine 123 using devices bonded with three different thicknesses of nanoadhesive (50, 200 and
500 nm) by exposing the channel to a solution containing Rhodamine 123. As shown in Figure 2, the device bonded with 50 nm showed
minimal dye adsorption in the channel, while the device bonded with 500 nm showed significant adsorption. The higher adsorption on
thicker nanoadhesion is attributed to a higher proportion of unreacted epoxide groups in the channel. However, it is worth noting that
even 50 nm of nanoadhesive can achieve reliable bonding and efficiently blocks dye penetration.

Next, we tested properties of live cells cultured in a PDMS microfluidics device bonded with a nanoadhesive layer. Many cells secrete
proteins that serve as mediators of cell–cell signaling and cellular proliferation; thus the secreted signal concentrations play an important
role in a wide variety of physiological and pathological processes. For instance, budding yeasts have two types of mating cells, a and
� cells (genotypes MAT a and MAT�), and the cells secrete mating type-specific pheromones, called a- and �-factor, respectively. When
a yeast cell is stimulated by pheromones secreted by a nearby cell of the opposite mating type, it undergoes a physiological program
including significant changes in the expression of about 200 genes, arrest in the G1 phase of the cell cycle, oriented growth toward
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Figure 2. Fluorescence images (top) and intensity profiles (bottom) of microchannels bonded with 50, 200, and 500 nm after exposure to aqueous
Rhodamine 123 solution (1 mg/ml). The white dotted lines indicate the channel walls and the red lines indicate the path of the fluorescence intensity
profiles. Adsorption of dye is highest when the thickness of nanoadhesive is 500 nm, mainly attributed to the presence of unreacted epoxide groups in
the nanoadhesive. Scale bar = 100 μm.
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Figure 3. Application of nanoadhesive layer to prevent �-factor absorption. (A) Schematic drawing of the budding yeast mating process. (B) The
response of MATa-type cells to �-factor (500 nM) in iCVD-bonded (left) and plasma-bonded (right) PDMS microfluidic devices. Scale bar = 10 μm. (C)
Quantification of �-factor responsive gene expression monitored by the pFIG1-qV reporter. (D) Single cell analysis of �-factor responsive gene
expression after 3 h �-factor treatment. At least 400 cells were analyzed from microscopy images in each experiment.

the mating partner, and, ultimately, fusion with the mating partner (Figure 3A) [40]. This process is a well-known model system for
understanding how cells sense and transduce signals; synthesized �-factor peptide is commonly used to control accurate concentration,
because a-factor is hard to purify and difficult to synthesize. Although yeast cells are often cultivated in liquid culture media or agar pads,
PDMS-based microfluidic devices are of interest for live cell imaging because all cells can be imaged in a single focal plane. The softness
of PDMS enables the trapping of yeast cells by designing a 4-μm gap between the bottom glass and the PDMS, corresponding roughly
to the dimension of budding yeast cells [41,42].
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Due to the high permeability of PDMS, �-factor can be absorbed into it. Although the channel walls are often preadsorbed with a
solution of nonspecific proteins like bovine serum albumin or casein to minimize loss when the signaling peptide is applied, the stability
and uniformity of the treatment is not guaranteed. To test whether the nanoadhesive layer method would prevent �-factor absorption,
we cultured yeast cells in PDMS microfluidics devices bonded via either plasma bonding or nanoadhesive bonding, and the devices were
used to monitor the cells by microscopy while continuously providing 500 nM of synthetic �-factor solution. Before culturing, the cells
were engineered to express a reporter construct based on the FIG1 promoter which drives the expression of quadruple-Venus fluorescent
protein (pFIG1-qV), specifically induced upon activation of the MAPK signaling cascade triggered by �-factor mating pheromone [43].
Upon �-factor pheromone treatment, cells cultured in devices with the nanoadhesive layer formed mating projections (shmoos) and
induced expression of the transcriptional pFIG1-qV reporter (Figure 3B & C). In contrast, these morphological changes and pFIG1-qV
expression were strongly attenuated in the plasma-bonded microfluidic device. We found a similar trend with lower concentrations of
�-factor (Figure 3D). Together, these results demonstrate that the nanoadhesive layer efficiently prevents �-factor adsorption in PDMS
microfluidic channels.

The nanoadhesive surface provides an appropriate environment for cells to attach and grow. Previously, Lee et al. [44] showed that a
titanium surface coated with poly(N-isopropylacrylamide)-grafted PGMA can improve cell adhesion while reducing bacterial attachment.
Improved cell attachment on PGMA-coated titanium implants was also reported by Park et al. [45]. In addition, Kim et al. utilized the
epoxide functionalities of PGMA to graft BMP-2 peptide for enhancing the osteogenic differentiation of human mesenchymal stem
cells [46]. Therefore we expect our method could be widely used for culturing not only yeast but also animal cells.

In this study, we successfully demonstrate that the nanoadhesive layer efficiently prevents absorption of fluorophore Rhodamine 123
and the yeast mating pheromone �-factor. The thin nanoadhesive layer not only enables reliable sealing of PDMS microfluidic devices,
but also acts as a barrier that complements the high porosity of PDMS. In addition, the iCVD process is straightforward and versatile,
and can be applied easily to a variety of PDMS microfluidic devices without additional changes to the fabrication protocol. We expect
that our method will further strengthen microfluidics as a methodology of quantitative cell biology in cases requiring precise control of
solute concentrations, such as during intracellular signaling, chemotaxis studies and drug screening.

Future perspective
PDMS microfluidic approaches in life sciences offer exciting possibilities for investigating cellular behavior. PDMS reproducibly main-
tains the cellular microenvironment in customized microsystems that allow for microfluidic manipulation. Although we demonstrate in
this study that an iCVD nanoadhesive layer is effective in preventing adsorption of hydrophilic materials that dissolved well in aque-
ous solution like the tested substrates, a large number of cell biological reagents are small hydrophobic molecules; ongoing and future
studies will determine whether the iCVD process can be applied broadly to microfluidic-based biology.

Author contributions
J You and S Lee conceived the study. J You, B Lee, Y Choi and S Lee performed experimental work and analyzed data. C-S Lee, M Peter,
S Im and S Lee provided supervision. J You and S Lee wrote the manuscript, with contributions from all authors.

Financial & competing interests disclosure
This work is funded by Global Research Laboratory (NRF-2015K1A1A2033054) and Wearable Platform Materials Technology Center
(WMC) (2016R1A5A1009926) through the National Research Foundation of Korea (NRF), grant of the Korea Government (MSIP). Work
in the Peter laboratory is additionally supported by the Swiss National Science Foundation and ETH Zürich. The authors have no other
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