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Probing nanomechanical responses 
of cell membranes
Jichul Kim   1,2,3,4

Despite the importance in various cellular processes, the nanomechanical responses of the living 
cell membrane have been elusive due to complexities in the membrane associated with the 
hidden architecture of multiple molecular components, including the lipid bilayer. Here, combined 
experimental and theoretical frameworks that can probe and interpret nanomechanical responses 
of the cell membrane are demonstrated. A magnetic tweezer assay was introduced to apply pico-
Newton scale forces to lipids and E-cadherin molecules at the living cell surface. Two unique classes 
of force-extension curves were identified: one with a deflection transition (Type I) and another with a 
discontinuous transition (Type II). The repeated observations of these responses, regardless of cell type 
and targeted cell surface molecule, suggest the Type I and II curves are the primary nanomechanical 
responses of cell membranes. To reproduce these responses in vitro, a model system using synthetic 
lipid vesicles was also developed. Together with a finite element model of lipid bilayers, the reproduced 
responses suggest that the confined fluidity and curvature constraints imposed on the lipid bilayer 
components of the cell membrane are the main parameters responsible for the generation of these 
responses. This work provides an insight into how forces on membrane molecules propagate to the lipid 
bilayer components to generate specific nanomechanical responses. In addition, the consistent results 
obtained using different methodologies demonstrate that the presented force-probing assays and the 
theoretical model can serve a combined testbed to investigate nanoscale mechanics of the living cell 
membrane.

Mechanical forces applied across the cell surface are an important means by which cells communicate with the 
outside world. Many mechanobiological activities begin with forces applied to membrane-bound receptors 
responsible for specific cellular tasks. For example, forces applied on adhesion proteins, such as cadherin and 
integrin, recruit signaling proteins to the cytoplasmic region which influence vital cellular functions, including 
morphogenesis, migration, and gene expression1–5. Those forces on receptor filaments are also known to activate 
transmembrane channel proteins in order to alter intracellular ionic environments6,7.

Less well-appreciated thus far, however, is the fact that forces applied to membrane-bound proteins can also 
be conveyed to the lipid bilayer membrane itself. Then, the bilayer’s mechanical response can influence the trans-
mission of those mechanical inputs across the cell surface. Membrane tubules are known as micro-mechanical 
responses of cell membranes observed in numerous past investigations. However, the generation of these tubules 
can accompany significant modifications of the molecular integrity within the cell surface8. Furthermore, their 
micrometer-scale size and irreversibility hardly support fast and robust propagation of mechanical inputs across 
the cell surface.

Results
Pulling lipids at the living cell surface: observation of Type I and Type II responses.  To this end, 
nanomechanical responses of cell membranes were investigated using magnetic tweezers9,10. Human bone oste-
osarcoma epithelial cells (U2OS)5,11,12 were seeded and cultured until they formed an epithelial monolayer on a 
substrate. Then, biotin-conjugated lipids were treated and washed to attach magnetic beads to the apical surface 
of the cultured cells via biotin-avidin binding (Fig. 1a,b, see Supplementary Fig. S1 for the cellular viability test). 
Here, beads with greater thermal fluctuations were more frequently observed by reducing the treatment of the 
biotin-conjugated lipids, which may suggest the reduced bead-surface interaction with the treatment of smaller 
amounts of the biotin lipids (Supplementary Fig. S2a).
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Before making force response measurements for cells incubated with ~65–260 nM of the biotinylated lipids, 
both the natural fluctuation and induced rotation of the magnetic beads were checked. Beads with minimal 
fluctuation and wider or non-circular rotations with severe wobbling, which may indicate poor surface targeting, 
were not sampled during magnetic tweezer experiments (Fig. 1c). Note that sliding of beads on the cell sur-
face was occasionally observed during rotation. Finally, the force-extension curves were recorded by pulling the 
biotin-conjugated lipids with a constant loading rate and tracking the vertical position of the magnetic beads.

A lot of complexity were observed in the measured responses, including both vertical motion and lateral 
shifting of the beads even without significant force application. In repeated experiments, however, two types of 
nanoscale responses with unique mechanistic features were identified. These responses were distinct from the 
classic tubular structures formed at the cell membrane. Figure 1d shows one representative force-extension curve 
(referred to as Type I) in the second and fourth loading cycles. This type of force-extension curve starts with a 
compliant regime and exhibits a biphasic character organized around a deflection or kink in the curve. Figure 1e 
shows another type of force-extension curve (hereafter referred to as Type II). Without the noticeable deflection, 
the second, fourth, and fifth cycles of the responses start with an initial stiff barrier and feature a discontinuous 
transition (i.e. unstable stretching of the membrane) to another stiff regime. In many cases, a small sign for the 
discontinuous re-transition was also observed during the relaxation. Finally, the microscopic movement of the 
magnetic beads was observed when the cells were treated with Latrunculin-A. The force-extension response 
demonstrated the micro-scale extraction of the cell membrane (Fig. 1f–h). Since Latrunculin-A is known to 
inhibit actin polymerization13, the result suggests an intact cytoskeletal network is important for the generation 
of Type I and II nanomechanical responses.

Mathematical model of nanomechanical lipid bilayers: comparison between measurements 
and calculations.  Next, whether theories of lipid bilayer mechanics can explain the Type I and II meas-
urements was investigated. To this end, a simple mathematical model of the nanomechanical lipid bilayer that 

Figure 1.  Nanomechanical responses generated by pulling cell surface lipids. (a) Schematics for the magnetic 
tweezer experiments (Top, Middle). Bright-field image for the U2OS sample (Bottom). (b) Magnetic bead 
survival fraction (with ~13 pN in ~15 seconds) with different amounts of biotin-conjugated lipid applied to the 
cells. About half of the injected beads were still bound to the surface after the force application in the condition 
of 130 nM biotin lipid. (c) Sample traces tracking the center of the magnetic beads as they were rotating with 2–4 
pN of pulling force from a magnet. The traces in red show centric rotational motion. (d,e) Representative force 
vs. extension curves obtained from successive loading cycles. rct = 500 nm, rcr = 650 nm (purple); rct = 500 nm, 
rcr = 850 nm (gray); rct = 500 nm, rcr = 1000 nm (dark blue); and rct = 500 nm, rcr = 1100 nm (blue) were used 
for calculations in (d). rct = 160 nm, rcr = 1000 nm (dark blue); rct = 160 nm, rcr = 1500 nm (blue); rct = 160 nm, 
rcr = 1170 nm (purple) were used in e. The calculated membrane shapes (at red marks) were plotted at the top 
of (d,e). (f) Schematic for the magnetic tweezer experiments with Latrunculin-A treatments. (g) Representative 
force vs. extension curve with Latrunculin-A. (h) The fraction of magnetic beads that generated membrane 
tubules (see black arrows in g) with 20 pN in ~15 seconds. (i) Parameterized rct vs. rcr scatter from multiple 
bead measurements of three different cell lines (NU2OS = 16, NHUVEC = 10, NIMR90 = 19). Measurements with the 
discontinous transition (Type II) are shown in red and measurements with the kink (Type I) are shown in blue. 
The decision boundaries (black line) are: −1.0531 + 0.0351rct − 0.0105rcr = 0; −4.0420 + 0.038rct − 0.0091rcr = 0; 
and −1.3143 + 0.0245rct − 0.0063rcr = 0 for U2OS, HUVEC, and IMR90, respectively.
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combines a well-known curvature elasticity theory with an expression for membrane surface tension was intro-
duced14–17. The total energy functional in domain Ω Ψnano membrane was formulated as in Eq. (1).

∫ ∫ ∫σ αΨ = + + ⋅
α

α

Ω Ω

k H k K dA d dA(2 )
(1)

nano membrane m g
2 c

0

The first term integrates the energy densities due to the mean (H) and Gaussian curvatures (K) over the mem-
brane area (A). Here km and kg denote the bending and Gaussian curvature moduli of the membrane, respectively. 
The second term incorporates the free energy change due to area strain of the membrane. The surface tension (σ) 
is a function of the area strain (α) of the membrane (α = (A − A0)/A0) with a resting area of A0, and the function 
integration of σ with respect to α gives the surface strain energy density. Finite element modeling for this theory 
was performed, whose full description is shown in the Methods (also see an approach in ref. 18). The estimates 
of shape and applied force resulting from the application of a specific displacement of the lipid bilayer can be 
calculated using this model.

Note the presence of geometric parameters in this model (Fig. 1a): the radius of the lipid reservoir that defines 
the limit of lateral membrane stretching (rcr) and the radius of the area where the membrane is tightly associated 
with the rigid cytoskeleton (rcc). From rcr and rcc, the radius of the membrane tented (rct = rcr − rcc) can be defined. 
In the rotational axisymmetric configuration, these simple parameters provide a conceptual idea on the physical 
boundaries responsible for the generation of the nanomechanical responses. Remarkably, with an assumption of 
point-like pulling, these model-based membrane predictions showed a reasonable fit to the Type I and II observa-
tional data. For the Type I data presented in the second and fourth cycles of Fig. 1d, rct = 500 nm and rcr = 1000 nm 
were used to fit the calculation to the measurements. Without introducing additional parameter values, a reason-
able fit for the Type II data was also achieved by modulating the rct and generating a sigmoidal-type curve. With a 
fixed rcr, reducing rct resulted in the generation of the initial barrier for the force vs. extension calculation. For the 
fourth and fifth cycle of Fig. 1e, rct = 160 nm and rcr = 1000 nm were used.

In many cases, using more than one rcr values provided a better interpretation for the single force vs. exten-
sion measurement. An additional rcr value (i.e. another limit of the lipid reservoir) was introduced to explain a 
secondary transition (see blue arrows) followed by the deflection in the first and third cycles of Fig. 1d, and the 
discontinuous transition in the first, third, and sixth cycles of Fig. 1e (also see other examples in supplementary 
Fig. S5e). Four rcr values with a shared rct of 500 nm were used for all four successive cycles of measurements in 
Fig. 1d. Similarly, three rcr values with a single rct of 160 nm were used for all six successive cycles of measurements 
in Fig. 1e.

While measurements were sorted into Type I or Type II responses, a more detailed examination of their 
force-extension shapes did show some variation. By using the lipid bilayer model, a diagram of Type I and II 
measurements was generated for Fig. 1i. The data in this diagram were smoothly separated in the rct-rcr plane, 
depending on the type of measured force-extension responses. These results suggest that the simple model rea-
sonably explains not only the individual force vs. extension trace but also the whole data set on a higher level. 
There are also limitations in comparison between the model and the observation. According to the model, for 
example, beads attached with non-negligible membrane area can also generate Type I and II nanomechanical 
responses, providing a possibility of an underestimation for the rct and rcr values (see Supplementary Fig. S3 for 
the discussion). In addition, same material parameters for the membrane were used for all calculations while they 
may vary for different region of the real cell surface (see Supplementary Table S1). Nevertheless, predictions made 
by using theories of lipid bilayers seem to indicate that the bilayer’s elastic properties determined by rct and rcr are 
important factors for the generation of Type I and II responses. Of note, rct values in the diagram were similar to 
the size of membrane compartments determined from imaging molecular hop diffusion19,20. Studying whether 
these share a common biophysical underpinning might be informative.

Pulling lipids at the surface of different cell types.  Lipid bilayers are a common factor of the mem-
brane, regardless of the type of the cell. To test observed Type I and II responses in other cell types beyond 
U2OS cells, the same pulling protocol was applied to living human umbilical vein endothelial cells (HUVEC) and 
human fetal lung fibroblasts (IMR-90). Because these cell types are distinct from U2OS cells, they may have differ-
ent underlying cellular substructures. Nevertheless, both Type I and II responses were also observed when pulling 
the lipids of these cell types. In addition, the model similarly explained these measurements (Supplementary 
Figs. S4 and S5). While the Type I and II data fell in slightly different regions of the rct-rcr diagram, the decision 
boundaries determined for each respective cell line were largely overlapping (Fig. 1i). The result suggests a sim-
ilar principle of membrane nanomechanics for different cell types, even if their predominant targeting response 
might be different.

In vitro model of synthetic nanovesicles: repnroduction of Type I and Type II responses.  The 
observed Type I and II nanomechanical responses, likely generated from the lipid bilayer components of living 
cell membranes, were reproduced in vitro. To this end, synthetic lipid vesicles with a mean diameter of 118 ± 14 
(S.D.) nm were made via an extrusion method (Fig. 2d, see Supplementary Information online). These nanoscale 
vesicles have a limited size of lipid reservoir. The vesicles were immobilized on a glass substrate using biotin-avidin 
bonding. Magnetic beads were then attached to single vesicles via minimally treated dinitrophenyl-conjugated 
lipids as demonstrated in Fig. 2a. Before beginning the pulling protocol, rotatory motion of the beads was checked 
as similarly done for the cell membrane. With these nanovesicles, remarkably, the Type I force-extension response 
was reproduced as shown in Fig. 2e (also see Supplementary Fig. S6a–c).
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Analysis performed for the cell membrane measurements suggested increased curvature constraints (i.e., 
increased rcc or decreased rct) can generate the Type II response. To validate this idea, greater levels of rigid body 
interaction was imposed on the immobilized vesicles by simply increasing the biotin-avidin interactions between 
the vesicles and the underlying surface. A higher concentration of avidins increased the area of attachment, which 
led to a flattening of the immobilized vesicles (Fig. 2b–d, see Supplementary Information online). Finally, when 
these vesicles of higher avidin condition were pulled, the Type II response was more frequently observed than the 
Type I (Figs. 2f and 3a, also see Supplementary Fig. S6d,e).

The reproduced vesicle responses were also interpreted with the finite element model (see Methods). The 
energy functional is expressed in Eq. (2).

Figure 2.  Reproduced nanomechanical responses from synthetic lipid vesicles. (a) Schematics for the magnetic 
tweezer experiments with synthetic lipid vesicles. (b) Atomic force microscopy (AFM) Quantitative Imaging 
(QI) of vesicles with different levels of avidin density (top: lower avidin density, bottom: higher avidin density) 
on a glass substrate. (c) The reconstructed shape of the vesicles in (b). (d) Vesicle height vs. width scatter 
obtained from the AFM images with the two different surface conditions. (e) Representative force vs. extension 
measurements obtained from a single vesicle in successive loading cycles in the lower avidin condition. The 
calculation was fitted for the measurements, and the corresponding vesicle shapes at three extension points were 
plotted. rvr = 75 nm and rvc = 1 nm were used. (f) Successive force vs. extension measurements from a vesicle in 
the higher avidin condition. rvr = 62 nm and rvc = 62 nm were used for the calculation.
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The last term with the Lagrange multiplier (λ) reflects the condition of the fixed volume (V0) spanned by the 
vesicle. Here, the two geometric parameters introduced for the cell membrane, rcr and rcc, were replaced with 
rvr (the vesicle radius in a deformation-free configuration) and rvc (the radius of the area of contact with the 
underlying surface). Figure 2e,f show that calculations with reasonably defined rvr and rvc values explain both 
Type I and II responses of vesicles (also see Supplementary Fig. S6). The force decomposition analysis shown in 
Supplementary Fig. S7 provides an interpretation of these biphasic responses21. According to the analysis, the 
initial force-extension curve is dominated by the force due to the membrane curvature development. The deflec-
tion (Fig. S7a) and the re-rise of the curve after the turning point (Fig. S7b) coincide with the point where the 
force due to membrane stretching becomes significant. The analysis suggests that additional membrane curvature 
development, to prevent the membrane strain energy from becoming excessive, is responsible for the responses 
in the larger extension regime.

With a particular interest in the bi-stable system, how the energy landscape of Type II responses interprets 
the observed discontinuous transitions was investigated in Fig. 3. For a vesicle where Type II force-extension 
curves were measured from sufficiently repeated loading cycles, the shape was calculated and divided into three 
partitions (Fig. 3a,b, see Supplementary Information online). Then, the energy of these three partitions (i.e., tip, 
middle, and bottom partitions) was calculated by taking the vesicle height as a generalized coordinate (Fig. 3c, 
see Supplementary Fig. S8 and Supplementary Information online). Even with nearly zero tension, the energy 
landscape of the middle partition showed two minima separated by an energy barrier (Fig. 3c blue arrows). As 
the tension was increased, the local minimum with a larger extension was shifted downward, becoming a global 
minimum at around 9 pN (Fig. 3c). Calculations suggest that the transition between these two energy minima 
appears as the step extension in the Type II force vs. extension curves.

The energy landscape was also evaluated by using a theory widely used in single-molecule force spectros-
copy22. The membrane calculation suggests that the change of the generalized force to the middle partition is 
nearly the same with the tip force within the force range examined. Accordingly, transition and re-transition force 
histograms for the middle partition were generated from magnetic force measurements (Fig. 3a,d,e), where the 
energy barrier information was estimated (Fig. 3d–g, see Supplementary Information online). The results of this 
analysis were consistent with the estimates of the membrane model (Fig. 3c red marks). Together, the highly con-
trolled measurements and subsequent multidisciplinary analyses performed with synthetic lipid vesicles reveal 

Figure 3.  Energy analyses for the bi-stable response of lipid vesicles. (a) Force vs. extension cycles repeated 
multiple times (Nrepeat = 26) for a single vesicle. The calculation used rvr = 70 nm and rvc = 58 nm. (b) The 
calculated vesicle shapes (corresponding to the red marks in a) were divided into three partitions. (c) Energy 
vs. extension calculations for each of the three partitions in (b) with different levels of tip force (colors are 
matched). Energy barriers are indicated by blue arrows. See Supplementary Fig. S8 for the detailed calculations 
of the free energy of each partition. (d,e) Transition and re-transition force histograms obtained from data 
in (a). (f,g) The kinetic rate plots correspond to (d,e), respectively. Fitting the data with a transition kinetic 
theory (green curves in d–g) provides information about the free energy barrier (Δxǂ, ΔGǂ, k force change) of the 
transition and retransition. See Supplementary Information online for the details of the analysis.
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the biophysical principles that produce the novel mechanical responses of the cell membrane, which include 
bistability.

Pulling E-cadherins at the living cell surface.  Force is transmitted to the cell surface, in many cases, 
through membrane receptor proteins. To gain collective insight on how these receptor forces are conveyed to 
the lipid bilayer, the experimental and theoretical methodologies were also applied to pulling E-cadherin pro-
teins expressed endogenously on the surface of living U2OS cells. Here, the membrane proximal ectodomains 
of the cadherins were targeted with biotinylated E-cadherin antibodies (Fig. 4a, Supplementary Figs. S2b and 
S9)23,24, so any possible contributions from the extracellular cadherin repeats would be minimized25. Notably, 
force-extension curves with the deflection and the discontinuous transition were also observed in repeated 
experiments pulling E-cadherins (Fig. 4b,c). Furthermore, when these responses were examined by using the 
lipid bilayer model, the individual force-extension curves could be fitted with similar rct and rcr values as for the 
lipid pulling experiments. Finally, the scatter of these values in the rct-rcr diagram largely overlaps with the data 
obtained from the lipid pulling experiments (Fig. 4d). These results suggest the remarkable possibility that lipid 
bilayer responses can be triggered by the pulling of the E-cadherin. Although it is unclear whether and how 
the cadherin and any associated molecules contribute to the observed responses, the results demonstrate that 
mechanical pulling on a membrane-bound protein could produce direct displacements of the lipid bilayer.

To further support the idea of bilayer responses generated via force on a membrane-bound protein, a buffer 
of cholesterol saturated in 20 mM methyl-β-cyclodextrin (MβCD) was treated while pulling E-cadherin (Fig. 4e). 
First, the magnetic beads that showed the nanomechanical responses were selected and treated with pure buffer 
injections. Next, the beads were asked whether similar force-extension responses can be produced even after the 
buffer flow. In many cases, the force-extension shapes were altered after the flow, likely due to structural changes 
of the perturbed cell membrane. There were cases, however, without critical modifications in the force vs. exten-
sion responses. When these beads were further treated with the cholesterol-MβCD buffer, changes in curves 
were observed within several cycles of pulling and relaxation of the cadherin. These changes were explained by a 
decrease of rct or rcr within the presented model framework (Fig. 4e,f). Cholesterol-MβCD complexes are known 
to enrich the membrane cholesterol level26,27, suggesting that cholesterol is inducing this reduction. Cholesterols 
are known to modulate rigidity and fluidity of the lipid bilayer28. The idea that the changes in the nanomechanical 

Figure 4.  Nanomechanical responses generated by pulling cell surface E-cadherins. (a) Schematic for 
magnetic tweezer experiments pulling E-cadherins. (b,c) Representative force vs. extension curves obtained 
from successive loading cycles. rct = 650 nm, rcr = 930 nm (dark blue) and rct = 650 nm, rcr = 1200 nm (blue) 
in (b); rct = 230 nm, rcr = 950 nm in (c) were used. (d) rct vs. rcr scatter (Nbead = 12). The decision boundary is 
2.1785 + 0.0176rct − 0.0066rcr = 0. Data points from Fig. 1i are also shown for comparison. (e) Representative 
force vs. extension curves in successive cycles of force with treatment of a buffer of cholesterol saturated 
with 20 mM methyl-β-cyclodextrin. Magnetic force was held at 15 pN during buffer flow. Minimum holding 
force during the cycles is 1.3 pN. rct = 200 nm, rcr = 600 nm for blue; rct = 220 nm, rcr = 600 nm for purple; 
and rct = 110 nm, rcr = 500 nm for dark blue were used. (f) Median values for change of rct and rcr after buffer 
exchange (Nbead = 4). (g) A mechanism of force transmission in the cell membrane. Force (red arrows) 
applied on different membrane molecules (magenta and green) is conveyed to generate Type I or Type II 
nanomechanical force (F) vs. extension (E) responses of the lipid bilayer (blue).
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responses are due to changes in the lipid bilayer itself is well-supported by the functional and biochemical prop-
erties of membrane cholesterols.

Discussion
Numerous cellular events begin with force applied across the cell membrane. In addition to asking for how 
applied forces are transduced into a certain cellular phenotype2,5,29, an important subject in recent studies of 
mechanobiological processes is to investigate how the mechanical responses propagate within the force-bearing 
elements30. Detailed mechanical responses had been identified for various systems at the single-molecular level 
in vitro25,31–35. However, the nanomechanical responses of cell membranes that can serve an important role in the 
propagation of mechanical energy across the cell surface had been largely elusive.

Here, by targeting cell surface molecule lipids and E-cadherins, two primary nanomechanical responses of 
living cell membranes were identified, one with a deflection (Type I) and the other with a discontinuous transition 
(Type II) of the force-extension curve. These responses were universal regardless of tested cell type and targeted 
molecule in the cell membrane. In vitro vesicle and theoretical analyses performed for the observed responses 
suggested that, while force receptors can vary on the cell surface, the shape of the mechanical responses can be 
determined by the lipid bilayer components in which the molecule is inserted (Fig. 4g). The modulation of the flu-
idity and flexibility of the lipid bilayer are important determinants of the properties of these responses. Questions 
remain to be answered for how cells take advantage or disadvantage of these unique mechanical characteristics of 
the lipid bilayer for specific physiological functions. Overall, the work provides standardized living, synthetic, and 
theoretical frameworks to study nanoscale mechanics of the cell membrane. Furthermore, the work demonstrates 
how mechanical cues can propagate from the receptor proteins to the lipid bilayer components to contribute to 
nanomechanical responses of the cell membrane, and thus provides a coupled force transmission paradigm for 
various processes at the cell surface.

Methods
Finite element modeling for lipid membranes.  Weak form of the problem.  Finite element methods for 
the membrane theory are provided here in detail. Since Eqs. (1) and (2) share the identical formalisms without 
the third term of Eq. (2), descriptions are adapted for Eq. (2). As shown in the results section, the total energy 
functional in (2) is expressed with three terms: (1) the Canham-Helfrich curvature energy term, (2) a simple area 
strain energy term, and (3) a term for the fixed volume V0 with a Lagrange multiplier λ. Note that λ = 0 can be 
defined for Eq. (1).
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The differential forms of the surface are described using the Monge gauge with respect to the parametric coor-
dinate of the model. The mean curvature H and Gaussian curvature K for the rotational axisymmetric membrane 
geometry can be expressed as follows36,37
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here, the function h measures the height of the lipid membrane with respect to the radial function r. Since the 
model describes vesicle shape in a parametric domain s[0,1], the first and second derivatives of the membrane 
height h with respect to r, which are indicated by hr and hrr, can be expressed through parametric derivatives by 
hr = hs/rs and hrr = hss/rs

2 − hsrss/rs
3, respectively. The expressions π= +r h r dsdA 2 s s

2 2  and π= rdV 2(−hs)ds are 
the vesicle axisymmetric area and volumetric elements, respectively. The constants km and kg in Eq. (2) are the 
bending and Gaussian curvature modulus of the membrane, respectively. Here kg = 0.5 km is used. An expression 
for the membrane surface tension σ was determined from Eq. (4)16,17
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here, the cut-off strain αcut and cross-over strain αcross are defined to have smooth continuity for the two surface 
tension expressions in Eq. (4) at αcross. The constant σ0 is surface tension with zero strain, and Kapp is the apparent 
area stretching modulus. The vesicle area strain is α = (A − A0)/A0 = (φ0 − φ)/φ with resting (i.e., initial) area A0 
or initial lipid density φ0. Therefore, the function integration of surface tension with respect to the area strain α 
from initial zero strain α0 to the strain under consideration αc estimates surface strain energy density as denoted 
in the second term of Eq. (2). See Supplementary Table S1 for the membrane parameters used in this study.

In the variational context, finite element solutions can be found by taking the first variation of Eq. (2) equal 
to zero–a condition necessary to minimize free energy. To this end, the variational equation is defined in (5) as 
follows:

∫Ψδ = δ + δ + δ + δ + δ + δλ =
Ω

(A h B h C r D r E r F )ds 0
(5)

nano vesicle ss s ss s
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where = ∂ψ
∂

A
h

H

ss
, = + π∂ ψ + ψ

∂ +

λ αB T rh

h r

( )
h

2H s

s ss 2 2
, = ∂ψ

∂
C

r
H

ss
, = + π∂ψ

∂ +

αD T rr

h rr
2H s

s ss 2 2
, π= + +∂ ψ + ψ

∂ α
λ T h rE 2 s s

( )
r

2 2H , and 

= ∂ψ
∂λ

λF . Here ψH is integrand associated with the curvature energy and ψλ is integrand for the term of volumetric 
constraints when Eq. (2) is expanded with respect to parametric domain s. The expression Tα is defined as derived 
in the Appendix A in Supplementary Information online. Here, the Gaussian curvature energy contribution can 
be omitted because surface integration of the Gaussian curvature is invariant for the axisymmetric deformation. 
Therefore, their variations are identically zero, according to the Gauss-Bonnet theorem38. The functions δh and δs 
denote variations of the membrane shape functions h and r, respectively.

Since Eq. (5) is expressed by the maximum second order of the membrane shape functions, the collection 
of trial solutions S and admissible variations V with boundary conditions up to its first derivative are defined as 
follows:

= | = = = =
= = = =

S {(h, r) smooth h(0) h , h (0) h , h(1) h , h (1) h , r(0)
r , r (0) r , r(1) r , r (1) r } (6)

0 s s,0 1 s s,1

0 s s,0 1 s s,1

and

= δ δ |δ = δ = δ = δ = δ = δ = δ = δ =V {( h, r) smooth h(0) h(1) h (0) h (1) r(0) r(1) r (0) r (1) 0} (7)s s s s

here, h0 and r0 are the prescribed displacements at s = 0, as well as hs,0 and rs,0 are the prescribed slope at s = 0. 
Similarly, h1, r1, and hs,1, rs,1 are the prescribed displacements and slopes at s = 1. Finally, the weak form of the 
presented boundary value problem can be stated, “Find (h, r) ∈ S and λ ∈  satisfying Eq. (5) for ∀(δh, δr) ∈ V and 
∀δλ ∈ ”.

Galerkin form.  The Galerkin form of the problem can be stated by approximating function spaces S (6) and V 
(7) in the weak statement to the finite dimensional space Sh and Vh. Here, the parameterized functions for mem-
brane shape (hh, rh) and their variation (δhh, δrh) belong to Sh and Vh, respectively, i.e., (hh, rh) ∈ Sh ⊂ S and (δhh, 
δrh) ∈ Vh ⊂ V. Therefore, the Galerkin approximated solution of Eq. (5) can be found by solving (8) as follows:

∫ ∫Ψδ = δψ = δ + δ + δ + δ + δ + δλ =
Ω

Ω
ds (A h B h C r D r E r F )ds 0

(8)

h h h
ss
h h

s
h h

ss
h h

s
h h h h

where δψ = δψ λ(h , h , r , r , r , )h
ss
h

s
h

ss
h

s
h h . With Eq. (8), it is required to assume a function uh that belongs to the 

space Vh (i.e., uh ∈ Vh ⊂ V), and then define the function hh with respect to uh by introducing a function wh that 
satisfies the boundary conditions in S, i.e., wh(0) = h0, wh

s(0) = hs,0, wh(1) = h1 and wh
s(1) = hs,1. Here, the func-

tions hh, uh, and wh are related as follows: = +h u wh h h. By similarly introducing a function vh and xh for rh where 
= +r v xh h h, the Galerkin approximation for the weak form can be stated: “Find (uh, vh) ∈ Vh and λ ∈  satisfy-

ing Eq. (8) for ∀(δhh, δrh) ∈ Vh and ∀δλ ∈ .”

B-spline-based approximation.  With the given Galerkin form of the problem, the structure of the functions δhh, 
δrh, uh, and vh in space Vh, as well as the structure of the given functions wh and xh that satisfy the boundary con-
ditions need to be defined. Since δhh, δrh, uh, and vh belong to H2 functions, C1 conforming elements are required. 
The model parameterizes axisymmetric membrane shape with parametric B-spline functions. Although quadratic 
functions are used here, the numerical framework introduced in this work can be extended for any type of spline 
function family.

Instead of parameterizing δhh and δrh (and uh and vh) independently to provide full two-dimensional degrees of 
freedom (DOFs) for the finite element nodes, the motion of each node was constrained into the one-dimensional 
normal direction of a given reference curve. As previously discussed, such treatment was effective for avoiding the 
so-called zero-energy mode in numerical methods for Helfrich-type membrane models18. Since the model solves 
the shape of the membrane by applying infinitesimal displacement steps during nonlinear calculations, here, the 
reference curve was simply defined from the membrane shape calculated in the previous displacement step.

Based on the approach summarized above, the parameterized variation of the shape δhh and δrh can be 
expressed as follows by setting that a spline basis function N(s)i is associated with the ith node in the discretized 
parametric coordinate s.

∑δ = θ
=

h N c sin
(9)

h

i 1

n

i i i

and

∑δ = θ
=

r N c cos
(10)

h

i 1

n

i i i

here, c1 to cn are unknown values, and θ1 to θn define the normal direction for the DOFs with respect to the given 
reference curve.

To model the parameterized shape function hh, wh is defined as in Eq. (11) using the same spline basis function N.

= + + +− − + + + +w N dh N dh N dh N dh (11)h
1 1 0 0 n 1 n 1 n 2 n 2
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Since δhh and uh belong to the same function space Vh, hh is defined as follows (see Supplementary Fig. S10 for 
the visualization of the parameterization):

∑= + = + + θ + + +− −
=

. + + + +h u w N dh N dh N (d sin dh ) N dh N dh
(12)

h h h
1 1 0 0

i 1

n

i i i ref ,i n 1 n 1 n 2 n 2

where

∑= θ +
=

.u N (d sin dh )
(13)

h

i 1

n

i i i ref ,i

In Eqs. (11) and (12), N−1, N0, Nn+1, and Nn+2 are B-spline basis functions for the boundary region, and dh−1, 
dh0, dhn+1, and dhn+2 are the given fixed values that define the boundary conditions. d1 to dn are unknown values. 
The constant values dhref.,1 to dhref.,n are obtained from the reference configuration. Similarly, rh can be defined as 
follows with dr−1, dr0, drn+1, drn+2, and drref.,1 to drref.,n.

∑= + + θ + + +− −
=

. + + + +r N dr N dr N (d cos dr ) N dr N dr
(14)

h
1 1 0 0

i 1

n

i i i ref ,i n 1 n 1 n 2 n 2

The first and second derivatives with respect to s can be derived from the given structure of δhh, hh, δrh, and rh. 
Substituting those into Eq. (8) as well as the arbitrariness of ci in Eqs. (9) and (10) and δλ results in coupled n + 1 
nonlinear simultaneous equations, as denoted by the vector notation in (15).

=










+

G
[G ]
G (15)

a

n 1

Here, the residual vector G has a total of n + 1 rows with its ath row component Ga (for 1 ≤ a ≤ n) being defined 
in Eq. (16). There, each equation contains five nodal unknowns in using the quadratic B-spline basis function.

∫=








































θ
θ
θ

θ
θ














=
Ω











G

A
B
C
D
E

N (s) sin
N (s) sin
N (s) cos
N (s) cos
N(s) cos

ds 0

(16)

a

ss a a

s a a

ss a a

s a a

a a

a

Here, 


A, 


B, 


C, 


D and 


E represent parameterized Ah, Bh, Ch, Dh, and Eh in Eq. (8), respectively. The n + 1th ele-
ment of the residual vector that is associated with a Lagrange multiplier can be defined as follows:

∫= 





 =+

Ω



G F ds 0
(17)

n 1

Here, similarly, 


F represents the parameterized Fh in Eq. (8).

Linearization: jacobian matrix for the newton–raphson method.  Given n + 1 nonlinear equations in (15), a tan-
gential operator (i.e., n + 1 by n + 1 Jacobian matrix) can be derived to use Newton’s method to iteratively obtain 
solutions of the nonlinear equation system (i.e., d1, d2, …, dn and λ). For this purpose, a symmetric and 
positive-definite Jacobian matrix J of the residual vector G is defined as follows:

=
















+

+
J

[j ] [j ]
j 0 (18)

a,b a,n 1

n 1,b

Here, the elements in the ath-row and the bth-column of the matrix (for 1 ≦ a ≦ n, 1 ≦ b ≦ n) can be found from Eq. 
(19) (see Appendix B in Supplementary Information online).

=
∂
∂

− ≤ − ≤

=

j G
d

for 2 b a 2

0 otherwise (19)

a,b
a

b

Based on a general pursuit of finer elements in the methods, terms of Ga associated with the membrane area 
strain α i.e., Tα (see Appendix A in Supplementary Information online) are assumed to be constant values, which 
provides great simplicity for expanding Eq. (19). The elements of n-by-1 



+ja,n 1  and 1-by-n 



+jn 1,b  matrices can be 

obtained as =+
∂
∂λ

ja,n 1
Ga  and =+

∂

∂
+jn 1,b

G
d
n 1

b
, respectively.

Finally, by substituting an initial guess for the solutions d0 (i.e. d1, d2, …, dn and λ) to the Jacobian matrix J and 
the residual vector G, the solution vector d for j + 1th Newton’s iteration can be calculated from 

= + ⋅ ⋅+
−( ) ( )d d J d G dj 1 j j

1
j . Here fixed values for the d were substituted into the terms associated with the area 

strain Tα to avoid the potent numerical oscillation and thus the divergence of the iterative process. The strain 
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value for kth displacement step was predicted from k − 1th step and corrected for k + 1th step. Such treatments 
might be supported by assuming the infinitesimal lateral oscillation of the membrane area from the outside of the 
parametric domain for different displacement steps. To account some large deformation of the cell membrane, the 
infinitesimal shifting of the rcr was also allowed to satisfy a condition that the tented membrane area of the kth 
stretching step is greater than or equal with that of the k − 1th step and by assuming the curvature deformation 
limit. Gaussian quadrature and standard mapping techniques were used to compute element arrays for the 
Jacobian matrix J and the residual vector G. With given boundary values, this iterative process is continued until 
the difference of two subsequent solution vectors converges to a certain tolerance. See Supplementary Information 
and Algorithm S1 online for simulation details.

Experimental Methods
The mechanical pulling experiments were carried out using a previously developed magnetic tweezer appa-
ratus9,10. After introducing polystyrene reference beads to the bottom surface of the channel slides purchased 
from ibidi, cells were seeded and cultured on the slides until they formed an epithelial monolayer. Then, 
streptavidin-coated magnetic beads (Dynabeads® M-280 streptavidin) were introduced to the upper surface 
of the cellular layer after treatment and washing of ~65–260 nM biotinylated lipids (Fig. 1), and ~0.5 μg/ml of 
biotinylated E-Cadherin monoclonal antibody (Fig. 4). The force vs. extension responses were measured with 
a constant loading rate in 2.1–2.6 pN/s. For the cholesterol flow experiments, a sufficient amount of cholesterol 
powders was mixed with 20 mM methyl-β-cyclodextrin. After overnight incubation at 37 °C with vortexing, 
undissolved cholesterol remains were filtered from the buffer. This cholesterol solution was applied with a flow 
velocity of 3.3 ul/sec during the buffer exchange process.

For the vesicle experiments, a channel of ~20 μl volume where the bottom coverslip was coated with polyeth-
ylene glycol (PEG) polymer chains was constructed. Two types of PEG-coated coverslips were prepared with two 
different ratios used in mixing the PEG polymer chains and the biotin-conjugated PEG polymer chains. Vesicles 
were made by following a typical extrusion protocol39,40 using polycarbonate membrane filters with 100 nm pores. 
The anti-dinitrophenyl antibody was conjugated to the magnetic beads (Dynabeads® M-270 Carboxylic Acid) 
to target dinitrophenyl-conjugated lipids in the vesicle. Atomic force microscopic images for the vesicle were 
acquired with NanoWizard Ultra Speed (JPK Instruments) in Quantitative Imaging (QI) mode. Triangular Si3N4 
cantilevers with the spring constant of 0.02 N/m were used. Both vesicle and live-cell experiments were performed 
at room temperature (22–25 °C). See Supplementary Information online for experimental method details.
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