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ABSTRACT In the field of surface mount technology (SMT), early detection of defects in production
machines is crucial to prevent yield reduction. In order to detect defects in the production machine without
attaching additional costly sensors, attempts have been made to classify defects in solder paste printers using
defective solder paste pattern (DSPP) images automatically obtained through solder paste inspection (SPI).
However, since the DSPP images are sparse, have various sizes, and are hardly collected, existing CNN-
based classifiers tend to fail to generalize and over-fitted to the train set. Besides, existing studies employing
only multi-label classifiers are less helpful since when two or more defects are observed in the DSPP image,
the location of each defect can not be specified. To solve these problems, we propose a dual-level defect
detection PointNet (D3PointNet), which extracts point cloud features from DSPP images and then performs
the defect detection in two semantic levels: a micro-level and a macro-level. In the micro-level, a type of
printer defect per point is identified through segmentation. In the macro-level, all types of printer defects
appearing in a DSPP image are identified by multi-label classification. Experimental results show that the
proposed D3PointNet is robust to the sparsity and size changes of the DSPP image, and its exact match score
was 10.2% higher than that of the existing CNN-based state-of-the-art multi-label classification model in
the DSPP image dataset.

INDEX TERMS Defect detection, multi-label classification, PointNet, segmentation, solder paste printer
defects.

I. INTRODUCTION

W ITH the rapid development of the electronics industry,
multiple studies have been actively carried out to

improve production yield by detecting defects in the surface
mount technology (SMT) process [1] in earlier stages. For
this, inspection machines are placed at the end of each step
of SMT whose process consists of solder paste printing,
pick-and-place, and reflow. Solder paste inspection (SPI)
machines monitor the outputs of the solder paste printer,
and automated optical inspection (AOI) machines check the
products of pick-and-place or reflow procedure. On the other
hand, early detection of defects in the machines can help
the process manager respond quickly and minimize the yield

reduction. Nonetheless, there has been little progress in de-
tecting defects in the SMT machines and we focus on this in
this work.

Early studies [2], [3] tried to detect defects in machines
by attaching additional sensors directly to the production
machines. These methods have the disadvantages that the
required sensors are expensive to install and cannot be ap-
plied to existing pre-installed production machines. In order
to eliminate the sensor installation costs, a recent study [4]
attempted to diagnose a solder paste printer defect using a
defective solder paste pattern (DSPP) image1 automatically

1In [4], it is referred to as an SPI Image. In this paper, we call it a DSPP
image to distinguish it from a solder volume map.
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obtainable from a pre-installed SPI machine2.
As shown in Fig. 1, a DSPP image is obtained by post-

processing a solder volume map measured in the process of
solder paste inspection. Each pixel in a solder volume map
consists of a measurement of the solder volume printed on
a printed circuit board (PCB), where each measurement is
represented as relative proportions based on predetermined
criteria, as illustrated in Fig. 1 (a). If a volume value in a
solder volume map falls within a predefined normal range3, it
is classified as ‘normal,’ otherwise classified as ‘excessive’ or
‘insufficient,’ resulting in a DSPP image composed of three
binary channels, as depicted in Fig. 1 (b).

DSPP images are generally used by human experts to
detect defects in solder paste printers. Since this manual anal-
ysis is time-consuming and expensive, attempts are underway
to automate this process using neural networks. However,
training a neural network with DSPP images is more chal-
lenging than training one with typical RGB images because
of the following characteristics of DSPP images:
• Sparseness: The ratio of non-zero elements in DSPP

images is generally less than 1.0%, which makes it
difficult for a neural network to aggregate meaningful
features. In addition, the sparsity varies from data to
data even within the same class. Therefore, the neural
network must be able to deal with various levels of the
sparsity of input data.

• Various sizes: The size of DSPP images is very diverse,
as the size of the PCB varies (e.g., from a PCB of an
earphone to that of a computer). Resizing a DSPP image
can cause some loss of data, which leads to a decrease
in defect detection performance. Therefore, the neural
network must be able to handle DSPP images without
resizing them.

• Limited data: It is not easy to collect enough data for
training since the cost of acquisition and annotation of
DSPP images is highly expensive. In other words, the
prepared training set does not have as much variety as
the actual SMT field data for characteristics such as size
and sparsity. Therefore, the neural network must have
the generalization ability to deal with unseen data with
only a small amount of training data distribution.

Due to those characteristics of DSPP images, conventional
CNNs [5], [6] fail to generalize and often over-fitted to
training set dealing with DSPP images. In [4], a multi-label
classification network to deal with DSPP images of various
sizes, named MarsNet, was proposed. MarsNet can handle
small DSPP images by increasing the resolution of feature
maps employing an improved dilated residual network [7]
as its backbone. However, MarsNet, like other CNN-based
models, significantly reduces its classification performance

2SPI machines generate DSPP images automatically using the PCB infor-
mation stored in SPI database.

3A PCB contains multiple chips, and each chip type has its own normal
range. Since this information is provided by PCB producers and is usually
pre-built into the SPI Machine, no human intervention is required for an SPI
machine to create DSPP images.

(a) (b)

FIGURE 1: (a) Solder volume map. (b) Corresponding DSPP
image processed from (a). In (b), pixels with excessive, nor-
mal, and insufficient solder paste are marked with red, white,
and blue, respectively. Pixels with no solder paste are marked
as grey.
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FIGURE 2: Dual-level defect detection PointNet (D3PointNet)
for solder paste printers in SMT. Given a DSPP image,
D3PointNet performs segmentation (micro-level defect detec-
tion) and multi-label classification (macro-level defect detec-
tion) for the five defects of the solder paste printer.

when the size of the input DSPP image is large enough to
exceed the distribution of its training dataset.

To overcome the above-mentioned challenges and boost
the detection performance, we propose the dual-level defect
detection PointNet (D3PointNet) as illustrated in Fig. 2. The
proposed D3PointNet consists of three components designed
in this work: 1) conversion of DSPP images into point clouds
to deal with sparseness, 2) two hand-crafted features for
generalization ability, and 3) a set of a single encoder and
two decoders for dual-level defect detection.

First of all, we convert defective regions of DSPP images
into point clouds. By converting DSPP images into point
clouds as proposed, we can employ effective networks robust
to sparseness and size change. Next, we design two hand-
crafted features that earns more generalization ability: the
edge feature (EF) and the prior feature (PF). The EF is
designed to prevent the loss of position information caused
when converting a DSPP image into a point cloud and the PF
is derived from prior knowledge of DSPP images.

The set of a single encoder and two decoders recognizes
defects of a solder paste printer in two semantic levels: the
micro-level and the macro-level. In the micro-level, it seg-
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ments the defects in DSPP images that are caused by defects
of solder paste printers and identifies the type of defects
for each point. In the macro-level, it detects the occurrence
of the defects and classifies the multi-label of the solder
paste printer defects. Moreover, the set of a single encoder
and two decoders is designed by following the multi-task
learning scheme [8] [9]. The encoder is shared across two
levels and two different decoders are used for each level, and
additional skip concatenation paths between the two decoders
are designed.

The key contributions of our work are as follows:

• We design a dual-level defect detection model,
D3PointNet, inspecting solder paste printer defects
through segmentation and multi-label classification.

• We introduce the problems of sparseness and various
sizes of DSPP images and solve them by converting
DSPP images to point cloud form and applying a point
cloud processing network.

• We define two hand-crafted features, EF and PF, using
prior knowledge regarding PCB patterns to boost the
generalization performance of the solder paste printer
defect detection.

The remainder of this paper is organized as follows.
Section II describes related works including SMT products
inspection, SMT machine inspection, and deep learning on
point clouds. Section III briefly reviews the mechanism of
PointNet. Section IV presents the proposed D3PointNet, in-
cluding problem statement, image to point cloud conversion,
hand-crafted feature generation, and the multi-task learning
architecture. Section V describes the datasets used in this pa-
per and reports experimental results including ablation stud-
ies. Finally, Section VI summarizes the proposed method.

II. RELATED WORKS
Our goal is to detect defects in SMT machines given DSPP
images representing defects of SMT products, using neural
networks processing point clouds. Therefore, our work re-
lates to three areas: 1) defect detection of SMT products, 2)
defect detection of SMT machines, and 3) deep learning on
point clouds. These three areas are briefly described in the
following.

A. DEFECT DETECTION IN SMT PRODUCTS
The detection of defects in SMT products are divided into
three stages depending on the inspection point of the prod-
ucts: before solder paste printing, between solder paste print-
ing and pick-and-place, and after pick-and-place and reflow.
First, the defect detection before solder paste printing in-
spects the condition of bare PCBs using vision sensor in two
steps: defect region proposal [10] and defect classification
on proposals [11]–[14]. Additionally, microwave sensors are
also used to capture defects such as strains that are difficult
to detect with cameras and vision algorithms [15].

Next, the defect detection between solder paste printing
and pick-and-place checks the quality of the solder paste

printed on bare PCBs. The quality of solder paste is assessed
by measuring the volume, the shape, the coplanarity of solder
pastes on each pad [16], [17], [18]. The defect detection at the
last stage inspects the quality of solder joints in two steps,
where a solder joint is a solidified solder connecting a pad
and a component in a PCB. First, defect region proposals
are extracted. Then, a detection model classifies the type
of defects. For the detection model, Bayesian network [19],
multi-layer perceptrons (MLPs) with hand-crafted feature
extraction methods [20] or CNN-based end-to-end models
[21], [22] are used.

B. DEFECT DETECTION OF SMT MACHINES
The defect detection methods of SMT products have a lim-
itation in that they only detect the occurrence of defects
and cannot infer the cause of the defects. Studies that try to
overcome the limitations are underway. Their primary goal is
to detect defects of SMT machines. One preliminary study
attempted to detect defects of solder paste printer stencils
[2]. They collected an image dataset of solder paste printer
stencils with optical equipment, trained a CNN using stencil
images, and classified the defects. However, this method
has a disadvantage that the stencil must be photographed
using separate photographic equipment. In another study, a
method to detect the defect of SMT machines using the sound
from the machines [3] was presented. The method models
the steady-state of SMT machines using an auto-encoder.
The reconstruction error of the auto-encoder can classify the
defect of the SMT machines. A recent study [4] attempted to
classify defects in solder paste printers using DSPP images
that can be obtained by solder paste inspection without
additional sensor attachment to SMT machines. A variant
of CNN-based multi-label classification network, MarsNet,
was proposed in [4] to handle various sizes of DSPP images.
MarsNet employs dilated residual network [7], hierarchical
vertical pooling (HVP), and two MLPs for a classifier and a
threshold estimator, respectively.

C. DEEP LEARNING WITH POINT CLOUDS
Point clouds compactly represent the sparse data acquired by
3D sensors. The resulting representations are highly irreg-
ular in that the distributions of points are uneven. Typical
convolutional architectures, however, require highly regular
input data formats such as 3D voxels and image grids. The
point clouds need to be rendered as a sequence of images
[23] or 3D voxels [24] in order to be fed into the convolu-
tional architectures, but the rendered representations become
voluminous and contain quantization artifacts. To resolve
this problem, researchers have attempted to extract features
directly from point clouds. PointNet [25] achieves the invari-
ance of input order by the use of symmetric functions over
point clouds. PointNet2 [26] and SO-Net [27] apply PointNet
hierarchically and capture local structures with improved
accuracy.

III. PRELIMINARIES

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013291, IEEE Access

Jin-Man Park et al.: D3PointNet: Dual-level Defect Detection PointNet for Solder Paste Printer in SMT

Per-Point
MLP

Max 
Pool MLP

Input
points

(𝑀𝑀,𝐷𝐷)

Point 
features

(𝑀𝑀,𝐶𝐶)
Output
(1,𝐹𝐹)

Global 
features

(1,𝐶𝐶)

FIGURE 3: The architecture of basic PointNet. PointNet ex-
tracts a fixed-size feature vector from a set of points.
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FIGURE 4: The architecture of PointNet2. Pointnet2 is a
hierarchically extended version of PointNet, which enables
high performance segmentation and classification of point
clouds.

A. POINTNET
PointNet [25] extracts a fixed-size feature vector from a set
of unordered points, as shown in Fig. 3. After receiving M
points as input, PointNet converts each D-dim point into a
vector of C-dim through a per-point MLP. Then, theM point
vectors are transformed into a global feature vector of C-
dim by the gloabal max-pooling. Finally, another MLP is
applied to the global feature vector to map it to the output
vector of F -dim. Since the per-point MLP and global max-
pooling are symmetric, the output of PointNet is invariant
to the order of input points. Due to its global max-pooling,
however, PointNet alone cannot capture the local structure of
the input.

B. POINTNET2
PointNet2 is extended from PointNet to a model in the form
of an encoder-decoder, and extracts features hierarchically
utilizing a set of basic PointNets. Due to its hierarchical
feature learning architecture, PointNet2 overcomes the lim-
itation of the basic PointNet. In this paper, we exploit both
basic PointNet and PointNet2 for the defect detection of
solder paste printer.

The encoder of PointNet2 consists of L set abstraction lev-
els where each abstraction level consists of a sample&group
layer and a per-group PointNet layer, as shown in Fig. 4.
At the l-th set abstraction level (l = 1, ..., L), given an
input point set of size Nl−1 × Cl−1, Nl points are chosen as
centroids of local regions where Nl ≤ Nl−1. Then for each
centroid point, the k-nearest neighbors (kNN) are grouped
as a local region by the sample&group layer. Through the
sample&group layer, Nl groups are formed, where a group
is a subset of the input point cloud of size Kl × Cl−1, and
k = Kl is the number of points in a group which corresponds
to neighbors of a centroid point. Then, the per-group Point-

Net layer, where weights are shared across different local
regions, is applied to the groups of point sets to extract an
output point set of size Nl×Cl where Cl is the dimension of
each point. Finally, the output is fed into the next abstraction
level.

Next, PointNet2 has two types of decoders: a segmenta-
tion decoder and a classification decoder. The segmentation
decoder is composed of stack of feature propagation levels,
where a feature propagation level consists of an interpolation
layer and an unit PointNet layer. Once the point features are
fed to an interpolation layer, they are propagated fromNl×Cl

toNl−1×Cl−1. Here, the features of the newly created points
are computed through the inverse distance weighted average
of their surrounding points selected via kNN. Then, the
interpolated features of sizeNl−1×Cl are concatenated with
the point features from the set abstraction level l− 1 through
the skip link. Then, the features of sizeNl−1×(Cl+Cl−1) are
fed into a unit PointNet layer, where PointNet is applied for
each point, updating feature vector of each point. Repeating
this feature propagation process, the number of points in the
resulting point set becomes that of the original input point
set. Finally, per-point softmax is applied to extract an output
point cloud containing per point probabilities for each class.
In the classification decoder, point features are abstracted
to a global feature vector by applying a basic PointNet to
the whole point sets. Then, an MLP with a softmax layer is
applied to extract an output vector containing probabilities
for each and every class.

IV. PROPOSED D3POINTNET
A. OVERVIEW
The proposed D3PointNet takes a DSPP image, I ∈
R3×w×h, as input, and outputs per-point scores, Sseg ∈
RN×k, and class scores, Scls ∈ R1×m, as illustrated in Fig.
5. Here, w and h are respectively width and height of the
DSPP image, m is the number of defect classes, k=m+1 is
the number of defect classes and a normal class, and N is
the number of defective non-zero pixels in the DSPP image,
which is equivalent to the number of points in a point cloud
representation of the DSPP image.

The DSPP image is converted to a set of points where
each point is a 3-dim vector containing 2D position (2-dim)
and excessive/insufficient information (1-dim) of defective
pixel. Each converted point is regarded as a position feature.
Then, the two hand-crafted features are extracted by the PF
and EF extraction. A PF and an EF for a point are a 2-dim
vector and a 4-dim vector, respectively. The three features
are concatenated, resulting the dimension of 9 for each point.
Next, PointNet2 encoder is applied to the set of points to
extract hierarchical features. The hierarchical features are
fed to segmentation decoder and multi-label classification
decoder to generate Sseg and Scls, respectively. Additional
input and score concatenation paths are designed to boost
multi-task learning efficiency, which further increases the
performance of both tasks.
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FIGURE 5: An overview of D3PointNet. It employs 1) position feature extraction converting DSPP images into point cloud, 2)
effective hand-crafted features designed only for DSPP images: edge feature (EF) and prior feature (PF), and 3) multi-task
learning structures: input and score concatenations.

B. IMAGE TO POINT CLOUD CONVERSION

We first convert a DSPP image to a point cloud, where a point
is equal to a position feature. Then, we extract PF and EF
along with the basic position feature. Procedure of converting
a DSPP image into a point cloud is described in the following.

1) Position Feature Extraction

A DSPP image, I consists of three binary channels: Ima ∈
R1×w×h, Iex ∈ R1×w×h, and Iin ∈ R1×w×h. Ima is a mask
containing all of the solder paste patterns which includes
every normal and defective solder paste, Iex is an excessive
solder paste pattern, and Iin is an insufficient solder paste
pattern. We extract the 2D coordinates of the defective solder
pastes respectively from Iex and Iin. The defective solder
pastes are non-zero pixels in each channel.

Let (xi, yi) denote a 2D coordinate of a defective solder
paste, di, where 0 ≤ xi < w, 0 ≤ yi < h and i = 1, ..., N .
We first translate the 2D coordinate so that the center of the
coordinate system matches the center of the DSPP image, and
normalize the coordinate so that the area of the DSPP image
equals to one, as follows:

x̂i =
xi − w/2

αx
, ŷi =

yi − h/2
αy

, (1)

where αx and αy are scaling parameters for normalization.
There are two options for αx and αy . For the first option,
we keep the original aspect ratio of the DSPP image in the
resulting point cloud by setting

αx = αy =
√
wh. (2)

For the second option we change the aspect ratio of the
original DSPP image to 1:1 in the resulting point cloud by
setting

αx = w, αy = h. (3)

The resulting 3D position feature, fposi , corresponding to
di is the concatenation of the normalized 2D coordinate,
(x̂i, ŷi), of the defective solder paste, di, and the type of

channel it belongs to, and it can be expressed as follows:

fposi =

{
[x̂i; ŷi; +c] di ∈ Iex
[x̂i; ŷi;−c] di ∈ Iin,

(4)

where i = 1, ..., N and c, a constant, is a z-axis coordinate.
The position features represent only non-zero elements

of its corresponding DSPP image, which makes neural net-
works robust to sparsity. Thus, the proposed D3PointNet
could extract relevant features even when the sparseness of
DSPP images increases. On the other hand, image-processing
neural networks, such as CNNs, could not extract meaningful
feature from DSPP images as the ratio of non-zero elements
decreases (increasing sparseness). In addition, resizing of
images causes loss of information, while the position feature
does not suffer from it and does not lose any information.

2) Edge Feature Extraction
Since the a position feature, fposi , cannot express the edges
of the DSPP image, the distance information from the i-th
defective solder paste, di, from the four edges of the top,
bottom, left, and right of the DSPP image disappears during
the position feature extraction process, as illustrated in Fig.
6 (a). However, The distance information of each point is
crucial in the domain of DSPP images as it may affect the
defect class of the DSPP image, as shown in Fig. 6 (b).
Therefore, we design EF to keep the distance information.

The EF, fedgi ∈ R4, extracted from di, is defined as
follows:

fedgi =
[xi
w
;
yi
h
;
w − xi
w

;
h− yi
h

]
, (5)

where i = 1, ..., N , and each element of fedgi is the nor-
malized distance between di and the four edges of the DSPP
image.

3) Prior Feature Extraction
It is a well-known prior knowledge that given a region
containing defective solder pastes, r, in a DSPP image, the
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(marked as a red arrow). (b) An example when the same
defective solder paste pattern with different locations resulting
in different defect types. Here, each grid represents a DSPP
image, where defective solder pastes are marked as red.
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FIGURE 7: A piece of prior knowledge from DSPP images.
A region, r, is represented as a dashed line, and each
defective and normal solder paste are marked as red and
white, respectively. (a) If defective solder pastes are sparse
compared to normal ones in a region, the cause of the defects
in the solder paste is likely to be noise, not a malfunction of the
solder paste printer. (b) Otherwise, the cause of the defects in
the solder paste is likely the failure of the solder paste printer.

probability that the defect is due to a defect in the solder paste
printer, P(r), is proportional to the number of defective solder
pastes divided by the number of total solder pastes as follows:

P(r) ∝ n(Dr)/n(Tr), (6)

where Dr is a set of defective solder pastes in r, and Tr is
a set of total solder pastes in r. Fig. 7 illustrates the prior
knowledge with two examples. We use this prior knowledge
to formulate the PF. Given a defective solder paste, di, and
its position, (xi, yi), we set Ri as a union of Rver

i and
Rhor

i , where Rver
i = {(x1, y1), ..., (xNv , yNv )} and Rhor

i =
{(x′1, y′1), ..., (x′Nh

, y′Nh
)} are a set of vertically located sol-

der paste positions and a set of horizontally located solder
paste positions, respectively. Here, (x1, y1), ..., (xNv

, yNv
)

are solder paste positions located on the vertical line of di,
(x1 = ... = xNv ) where Nv is the number of vertically
located solder pastes, and (x′1, y

′
1), ..., (x

′
Nh
, y′Nh

) are solder
paste positions located on the horizontal line of di, (y1 =
... = yNh

) where Nh is the number of the horizontally
located solder pastes.

Then, we define the PF, fprii ∈ R2, as a concatenation of
the two defect ratios:

fprii =
[n(Dver

i )

n(Rver
i )

;
n(Dhor

i )

n(Rhor
i )

]
, (7)

where Dver
i ⊂ Rver

i and Dhor
i ⊂ Rhor

i are the defective
solder paste positions in Rver

i and Rhor
i , respectively. Dver

i

and Dhor
i are obtained from the defective channels, Iex and

Iin, and Rver
i and Rhor

i are obtained from the mask channel

Ima.

4) Union of All Point Cloud Features
We concatenate the three proposed features to create the
final input point cloud, P in = {p1, ..., pN}, where pi =
[fposi ; fedgi ; fprii ] ∈ R9.

C. POINTNET2 ENCODER
The input point cloud, P in, is fed to the PointNet2 encoder
which has two abstraction levels to extract hierarchical point
cloud features, Ph1 ∈ RN1×C1 and Ph2 ∈ RN2×C2 as
follows:

G1 = Sample&Group1(P
in)

Ph1 = PerGroupPointNet1(G
1)

G2 = Sample&Group2(P
h1)

Ph2 = PerGroupPointNet2(G
2),

(8)

where a set abstraction level consists of a sample and group
layer and a per-group PointNet layer. G1 ∈ RN1×K1×9 and
G2 ∈ RN2×K2×C1 are grouped point clouds, whereNj is the
number of groups in Gj and Kj is the number of points in
Gj (j = 1, 2). A group, Gj , is aggregated to a point by the
per-group PointNet layer, resulting in a set of Nj points.

D. DUAL-LEVEL DECODERS
The proposed model detects printer defects in two semantic
levels: the micro-level and the macro-level. In the micro-
level, for every point, the segmentation decoder identifies
the type of the solder paste printer defect that has made the
point excessive/insufficient. In the macro-level, the multi-
label classification decoder identifies the types of solder paste
printer defects that appear throughout the set of points. The
two decoders, described below, share their encoder, which
is the hard parameter sharing architecture for multi-task
learning [8]. Furthermore, we add two additional paths: input
concatenation and score concatenation in order to increase
the multi-task performance.

1) Segmentation Decoder
As described in Section III, the segmentation decoder prop-
agates point features through its feature propagation layers.
A feature propagation layer consists of a sequence of a
interpolate layer and a unit PointNet layer as follows:

P e1 = Interpolate1(P
h2)

Pu1 = UnitPointNet1([P e1 ;Ph1 ])

P e2 = Interpolate2(P
u1)

Sseg = UnitPointNet2([P e2 ;P in]),

(9)

where P e1 ∈ RN1×C2 and P e2 ∈ RN×C3 are the inter-
polated set of points from Ph2 and Pu1 , respectively, and
Pu1 ∈ RN1×C3 and Sseg ∈ RN×k are the outputs of the unit
PointNet layers. We set the number of class k asm+1 where
m is the number of printer defect types and the +1 is for the
normal class.
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Mask SBD SD RA SNK CD

(a) DSPP images when there is one solder paste printer defect.

SD, SNK SD, CD RA, SNK RA, CD SNK, CD

SBD, SD SBD, RA SBD, SNK SBD, CD SD, RA

Mask

Mask

(b) DSPP images when there are two solder paste printer defects.

FIGURE 8: Defective solder paste pattern (DSPP) image
dataset. Excessive solder pastes are marked as red while
insufficient solder pastes are marked as blue.

2) Multi-label Classification Decoder
We extract a global fixed-size feature, P c2 ∈ R1×C4 , from
the hierarchical point cloud feature, Ph2 , using a basic Point-
Net layer as follows:

P c2 = PointNet2(Ph2). (10)

Then, we extract another global fixed-size feature, P c1 ∈
R1×C5 , from the concatenation of the input set of points,P in,
and the segmentation output, Sseg , using another PointNet
layer as follows:

P c1 = PointNet1([P in;Sseg]). (11)

Class scores, Scls ∈ R1×m, can be obtained by applying
an MLP to the concatenation of P c1 and P c2 as follows:

Scls = MLP([P c1 ;P c2 ]). (12)

Finally, a sigmoid layer, φ, is applied to Scls to represent the
result as an m-dim vector of probabilities.

3) Multi-task Loss
The total loss is the weighted sum of the segmentation loss,
Lseg , and the multi-label classification loss, Lcls, where the
two losses are equally weighted. Here, Lseg is obtained by a
cross entropy loss between Sseg and a segmentation ground-
truth, T seg ∈ RN×k, while Lcls is obtained by a binary cross
entropy loss between Scls and a multi-label classification
ground-truth, T cls ∈ R1×m.

V. EXPERIMENTS
We evaluated the proposed D3PointNet on two customized
datasets: a various-size DSPP image set and a fixed-size
DSPP image set. In the various-size DSPP image set, there
are nine types of DSPP image sizes from nine different PCBs
where the image size varies from 75× 121 to 341× 397. For
each PCB type, 8,400 DSPP images were collected where

a DSPP image contains a maximum of two solder paste
printer defects. Following the same experimental setting in
[4], we used four of them as a train set and the rest as a test
set, resulting 8, 400 × 4 = 33, 600 images for training and
8, 400 × 5 = 42, 000 images for testing. The experimental
setting for the fixed-size DSPP image set was identical to
that of the various-size DSPP image set, except that the size
of all DSPP images in the fixed-size DSPP image set is
299 × 299. Comparing results from these two datasets, we
showed that the proposed model is able to deal with various
image sizes better than the CNN-based models including the
previous state-of-the-art, MarsNet [4]. For the various-size
DSPP image set, we used the dataset used in [4]. For the
fixed-size DSPP image set, we obtained all the DSPP images
from an on-site SPI machine manufactured by Koh Young
Technology, KY8030-2. As shown in Fig. 8(a), there are five
types of defects in the solder paste printer that can be detected
from DSPP images: squeegee blade defect (SBD), support
defect (SD), removed area of the solder paste (RA), solder
no kneading (SNK), and clamp defect (CD).

SBD is a phenomenon in which a solder paste is exces-
sively deposited on a cracked portion of a squeegee blade
when the squeegee blade rolls over a stencil. SD occurs when
a part of the supports, which hold the PCBs and keep them
horizontal during the solder paste printing, are broken. The
solder paste is excessively deposited at the region where the
supports are broken. RA is a defect caused by the difference
in density in the solder paste. In the process of solder paste
printing, if the density of a specific part of the solder paste
is high, the solder paste of that part is consumed faster than
the other parts. At this time, the part with the high solder
paste density is insufficiently deposited. SNK is a defect that
occurs since the solder paste is not sufficiently kneaded. If the
solder paste is not sufficiently kneaded, the solder paste will
become hard, and the solder paste will not spread properly
when the squeegee blade rolls. Therefore, the solder paste
is deposited insufficiently on the hardened part of the solder
paste. CD is a phenomenon in which the PCB is so tightly
clamped that strain occurs on the PCB, causing solder paste
to be deposited excessively or insufficiently near the clamped
area, which usually happens at the top or bottom edge of the
PCB. As shown in Fig. 8(b), there are 10 cases in which two
of the five defects can appear together. In the datasets, each
DSPP image is labeled in both pixel-level and image-level
for segmentation and multi-label classification, respectively.

A. EVALUATION METRICS
To evaluate the segmentation performance, we measured the
per-point accuracy and the mean intersection over union
(mIoU), following the conventional settings in the point
cloud segmentation field [12], [25], [26]. Per-point accuracy
is an average of per-point classification accuracy over whole
points. Also, mIoU is an average of IoUs, where an IoU
is a per-class metric, which is equal to the number of true
positives divided by the number of sum of true positives, false
positives, and false negatives.
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TABLE 1: Ablation Study on Multi-task Learning Architectures.

Model #
of

Parameters

Segmentation Metric Multi-label Classification Metric
Input

concat.
Score

concat.
Seg.
dec.

Cls.
dec.

Per Point Acc. mIoU Exact Match F1 mAP
Fixed Various Fixed Various Fixed Various Fixed Various Fixed Various

X 1.8 M N/A N/A N/A N/A 91.86 90.01 96.16 95.35 99.07 98.77
X 3.0 M 87.26 87.47 73.41 73.68 N/A N/A N/A N/A N/A N/A
X X 3.8 M 87.29 86.77 73.37 72.83 91.60 90.38 95.99 95.46 99.13 98.79

X X X 4.2 M 87.22 87.82 73.33 74.26 91.76 90.48 96.12 95.55 99.12 98.85
X X X 4.2 M 86.88 87.36 72.60 73.67 92.07 91.71 96.30 96.00 99.15 99.00
X X X X 4.2 M 87.27 88.61 73.19 75.90 92.25 92.36 96.38 96.27 99.16 99.07

To evaluate the multi-label classification performance, we
mainly measured exact match (EM), and in some experi-
ments we additionally measured F1, accuracy, mean average
precision (mAP), precision and recall, following the conven-
tional settings in the multi-label classification field [28]. EM
and F1 are threshold dependent measures, whereas mAP is
not. To get the EM and the F1, probabilities of model output
were classified by a predefined confidence threshold of 0.7.
Then, the EM was obtained by measuring the percentage of
predictions that exactly match their corresponding ground-
truths as follows:

EM =
1

n

n∑
i=1

I(Si = Ti), (13)

where n is the number of DSPP images, Si and Ti denotes
model outputs for i-th sample and its corresponding labels,
respectively, and I(·) equals 1 when its input equation is true,
otherwise 0.

Note that given a sample, EM allows a score only if
every label matches, whereas metrics such as mAP, F1,
and accuracy allow partial scores even if only a subset of
labels matches. Thus, EM is the most suitable metric for
evaluating the multi-label classification of defects because
when multiple defects occur, it is highly required to detect
all of them. Therefore, we selected EM as the primary metric
in all multi-label classification experiments.

To get F1, for each prediction, F1i was computed, which
is the harmonic mean of the precision and the recall, where
i = 1, ..., O, and O is the number of predictions. Then, they
were averaged to get the F1. Here, F1 measures the average
overlap between the ground truths and the predictions, which
is more generous than EM. The mAP is the mean of the
average precisions (APs), where an AP is the area under the
precision-recall curve of a class. The APs were approximated
by taking an average of the 11-point interpolated AP follow-
ing the conventional approximation methods [29].

In addition, we measured accuracy for the comparison with
MarsNet. The accuracy is defined as (1−Lham), whereLham

denotes Hamming loss defined as follows:

Lham =
1

nm

n∑
i=1

m∑
j=1

⊕(Si,j , Ti,j), (14)

where n is the number of DSPP images, m is the number
of defect classes, ⊕ denotes exclusive-or, and Si,j and Ti,j

TABLE 2: Impact of EF and PF on Segmentation.

Features Per Point Acc. mIoU
PF EF Fixed Various Fixed Various

79.38 77.58 62.75 60.76
X 81.03 83.79 64.08 68.51

X 86.33 87.26 72.15 73.92
X X 87.26 87.47 73.41 73.68

TABLE 3: Impact of the EF and PF on Multi-label Classifica-
tion.

Features Exact Match F1 mAP
PF EF Fixed Various Fixed Various Fixed Various

89.16 85.09 94.67 92.76 98.32 97.10
X 89.90 85.58 95.28 93.46 98.82 98.03

X 91.52 86.86 95.81 93.26 98.59 97.69
X X 91.86 90.01 96.16 95.35 99.07 98.77
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FIGURE 9: Cross-validation for hyper-parameter tuning.

are the individual model output and its corresponding label
for the j-th class of i-th sample, respectively. Here, accuracy
means the average ratio of the correctly determined labels
among the total number of labels for each prediction.

B. IMPLEMENTATION DETAILS
For all experiments, we used the Adam optimizer [30] where
the number of epochs, batch size, and learning rate were set
to 150, 32, and 10−4, respectively. The learning rate was
multiplied by 0.1 after 80 and 120 epochs. In position feature
extraction, we kept the aspect ratio for all experiments except
Table 4. For the hyper-parameter setting of the point cloud
feature encoder and the segmentation decoder, we applied
the same setting as in the PointNet2 paper [26]. In each MLP
layer, we used a 512-dim hidden layer with ReLU activation
and a dropout layer with the probability of 0.5. Without early
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TABLE 4: Impact of the Normalization Methods.

Normalization
method

Segmentation Metric Multi-label Classification Metric
Per Point Acc. mIoU Exact Match F1 mAP

Fixed Various Fixed Various Fixed Various Fixed Various Fixed Various
Fix aspect ratio 87.27 87.75 73.19 74.80 92.25 90.30 96.38 95.26 99.16 98.89

Keep aspect ratio 87.27 88.61 73.19 75.90 92.25 92.36 96.38 96.27 99.16 99.07

TABLE 5: Comparison of Model Sizes (Number of Param.
and Feature Map Sizes) of the Proposed Model with CNN-
based Models.

Model # of
Param.

Feature Map Size
Before MLP

ResNet50 + SPP(1) + MLP 1.8 M 1× 1× 1024
ResNet50 + SPP(3) + MLP 3.8 M 3× 3× 1024
ResNet50 + SPP(1, 3) + MLP 4.0 M (3× 3 + 1× 1)× 1024
InceptionV4 + SPP(1) + MLP 25.2 M 1× 1× 512
InceptionV4 + SPP(3) + MLP 29.4 M 3× 3× 512
InceptionV4 + SPP(1, 3) + MLP 30.0 M (3× 3 + 1× 1)× 512
MarsNet [4] 18.0 M (4 + 4 + 8 + 8)× 512

D3PointNet (w/o EF, PF, seg.) 1.8M 1× 512
D3PointNet (w/o seg. ) 1.8M 1× 512
D3PointNet 4.2M 1× 512

stopping, we measured the performance of each model after
training ends.

For the hyper-parameter tuning of the z-axis coordinate
and MLP depth, we performed a 4-fold cross-validation on
the various-size training set, as shown in Fig. 9. We split the
training set by their PCB type, so that each fold contains
one type of PCB. In the experiment, we evaluated nine
models varying the z-axis coordinate value from 0.25 to 1
and increasing the number of MLP layers from 1 to 3. As a
result, the optimal hyper-parameters, z-axis coordinate value
of 0.5 and the number of MLP layers of 2, were used in the
subsequent experiments. All experiments were conducted on
a workstation with a Intel Core i7 8700K, 64 GB of RAM
and an Nvidia GTX2080Ti GPU. It took approximately 15
hours to train our model to convergence.

C. ABLATION EXPERIMENTS
1) Multi-task Learning Architecture
Table 1 reports the impact of multi-task learning architec-
tures. We compared several cases for multi-task learning:
when only one of the two tasks, segmentation and multi-label
classification, was performed using one decoder (rows 1-2),
when both tasks were performed using two decoders (row
3), and when the proposed input and score concatenations
were used with two decoders (rows 4-6). The number of
parameters of the model is reported for each case. Compared
to using separate models for each task, the multi-task learning
baseline, which shares the encoder and uses two decoders,
saved approximately 1.0 M parameters. The performance,
however, was similar or slightly lower. The performance
improved using the proposed architectures, input and scores
concatenations, at the expense of extra 0.4 M parameters. The
improvement was greater in multi-label classification than in

segmentation, and as well as for the various-size dataset than
the fixed-size dataset.

2) Impact of the Hand-crafted Features
Tables 2 and 3 show the impact of EF and PF. In this
experiment, we excluded the influence of multi-task learning
and measured the effects of the EF and PF by using only
the segmentation decoder in Table 2, and using only the
multi-label classification decoder in Table 3. Both proposed
EF and PF improved performances of the segmentation and
the multi-label classification. When PF was used alone, the
performance enhanced more than when only EF was used.
The performance was at the peak when EF and PF were
used together. Similar to the first experiment, when the
proposed features were used, the performance improvement
was greater for the various-size dataset than for the fixed-size
dataset. This proves the utility of the proposed features in
handling the inputs of various sizes.

3) Impact of the Normalization Methods
We compared the two options for normalizing the input point
clouds: keeping the aspect ratio and fixing aspect ratio to 1:1.
As seen in Table 4, keeping aspect ratio showed superior
performance to that of fixing aspect ratio to 1:1, in both
segmentation and multi-label classification of various-size
dataset. Meanwhile, for the fixed-size dataset, there was no
difference between the two normalization methods because
the aspect ratio had been already 1:1 from the beginning.

D. COMPARISON WITH CNN-BASED MULTI-LABEL
CLASSIFICATION MODELS
In Tables 6 and 7, we compared the multi-label classifica-
tion performance4 of the proposed model with CNN-based
models, including the state-of-the-art in DSPP image dataset,
MarsNet [4]. The CNN models have a structure of a CNN
+ a pooling layer + an MLP, which is a typical structure
in the defect classification fields [2], [11], [12], [21], [22].
CNNs extract feature maps, pooling layer transforms the
feature maps into a fixed-size feature vector, and MLPs act
as a classifier. In this experimental analysis, we used either
ResNet50 [6] or InceptionV4 [5] as the backbone CNN pre-
trained on the ImageNet-1k image classification dataset [31].
For the pooling layer, we used the spatial pyramid pooling
(SPP) [32] with max pooling sizes of either 1 × 1 or 3 × 3,
or both. For the MLP, we used a 512-dim hidden layer with

4We conducted five trainings and tests for each model for reporting the
average performance and standard deviation in the test set.
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TABLE 6: Comparison of Classification Results (AP in %) of the Proposed Model with CNN-based Models.

Model SBD SD RA SNK CD mAP
Fixed Various Fixed Various Fixed Various Fixed Various Fixed Various Fixed Various

ResNet50 + SPP(1) + MLP 99.84 97.84 93.51 84.74 99.79 98.84 95.82 80.09 92.90 95.08 96.37±0.21 91.32±0.79
ResNet50 + SPP(3) + MLP 99.68 98.08 96.87 90.02 99.84 99.62 96.18 92.75 96.85 92.32 97.88±0.14 94.56±0.68
ResNet50 + SPP(1, 3) + MLP 99.84 98.98 97.91 88.27 99.88 99.64 96.53 91.38 96.39 94.35 98.11±0.10 94.52±0.59
InceptionV4 + SPP(1) + MLP 99.88 98.01 97.44 90.10 99.92 98.44 97.67 92.50 97.92 91.17 98.57±0.20 94.04±0.40
InceptionV4 + SPP(3) + MLP 99.90 97.97 97.02 94.09 99.93 99.03 97.89 92.68 97.83 94.67 98.51±0.18 95.69±0.45
InceptionV4 + SPP(1, 3) + MLP 99.89 98.75 98.22 93.83 99.92 99.18 97.76 92.10 98.79 94.54 98.91±0.15 95.68±0.32
MarsNet** 99.80 98.84 98.31 94.78 99.77 99.19 97.70 93.42 98.98 95.24 98.91±0.13 96.29±0.23
D3PointNet (w/o EF, PF, seg.) 99.89 99.75 98.11 97.80 99.88 99.79 98.18 96.42 98.96 96.29 99.00±0.10 98.01±0.16
D3PointNet (w/o seg. ) 99.96 99.94 98.17 97.72 99.96 99.95 98.26 97.72 99.02 98.51 99.07±0.08 98.77±0.09
D3PointNet 99.97 99.96 98.55 98.40 99.97 99.95 98.30 98.10 99.04 98.95 99.16±0.08 99.07±0.08
** Our re-implementation.

TABLE 7: Comparison of Classification Results (Exact Match, F1, Accuracy, Precision, Recall in %) of the Proposed Model with
CNN-based Models.

Model Exact Match F1 Accuracy Precision Recall
Fixed Various Fixed Various Fixed Various Fixed Various Fixed Various

ResNet50 + SPP(1) + MLP 81.48±0.91 71.11±0.83 91.29±0.68 84.94±0.33 93.51±0.43 88.54±0.33 94.07±0.60 89.19±0.30 88.67±0.70 81.08±0.36
ResNet50 + SPP(3) + MLP 84.74±0.89 75.55±0.71 93.18±0.63 88.66±0.27 93.12±0.37 91.09±0.27 95.56±0.59 92.43±0.24 90.92±0.67 85.19±0.29
ResNet50 + SPP(1, 3) + MLP 86.06±0.82 74.35±0.61 93.72±0.58 87.72±0.24 93.87±0.32 91.92±0.24 95.97±0.51 91.80±0.21 91.58±0.60 84.00±0.24
InceptionV4 + SPP(1) + MLP 88.67±0.78 72.22±0.70 94.32±0.44 86.12±0.34 94.12±0.18 93.84±0.17 96.21±0.40 90.38±0.31 92.51±0.46 82.24±0.37
InceptionV4 + SPP(3) + MLP 88.32±0.65 79.24±0.55 94.43±0.36 89.96±0.30 94.51±0.16 94.19±0.15 96.37±0.32 93.33±0.28 92.57±0.39 86.82±0.28
InceptionV4 + SPP(1, 3) + MLP 89.26±0.63 78.89±0.54 94.79±0.36 89.42±0.27 94.78±0.15 94.55±0.14 96.45±0.31 92.86±0.24 93.19±0.38 86.22±0.27
MarsNet* 95.11*

MarsNet** 89.11±0.41 81.40±0.60 94.78±0.27 91.10±0.32 94.72±0.13 95.20±0.18 96.49±0.24 93.83±0.29 93.13±0.29 88.52±0.34
D3PointNet (w/o EF, PF, seg.) 89.16±0.35 85.09±0.47 94.67±0.22 92.76±0.22 94.80±0.13 95.91±0.11 96.51±0.20 95.03±0.22 92.89±0.21 90.59±0.28
D3PointNet (w/o seg.) 91.86±0.31 90.01±0.27 96.16±0.18 95.35±0.14 96.84±0.07 97.41±0.09 97.56±0.16 96.88±0.13 94.73±0.20 93.87±0.17
D3PointNet 92.25±0.27 92.36±0.21 96.38±0.14 96.27±0.14 97.17±0.09 97.87±0.08 97.58±0.12 97.28±0.13 95.20±0.16 95.28±0.16
* As reported in [4]. ** Our re-implementation.

ReLU activation and a dropout layer with the probability of
0.5, which is the same structure used in D3PointNet.

We re-implemented MarsNet, employing a modified di-
lated residual network with 22 layers (mDRN-D-22) as a
backbone, hierarchical vertical pooling (HVP) with pooling
sizes of 8×1, 1×8, 4×1 and 1×4, and two MLPs as a multi-
label scoring module and a threshold estimation module,
respectively, as proposed in [4]. The structure of MLPs in
MarsNet equals to that of other models. All the training
strategies for CNN-based models, including the optimizer,
were the same as those of the proposed model as mentioned
in V-B.

Note that the MLP structures of all the models used in the
experiments are the same, but the size of the MLP’s input
feature (the output feature of the pooling layers) is different
for each model. Table 5 lists the size of the MLP input feature
and the overall size of the models in terms of the number of
parameters.

We compare the CNN-based models with our proposed
model, D3PointNet, in which all the proposed techniques are
applied (row 10). For a fair comparison, we also report the
result of our proposed model without EF, PF, and segmenta-
tion decoder (rows 8-9), which eliminates the benefits from
the hand-crated features and the multi-task learning.

Table 6 shows the comparison on AP for each defect class
and mAP for an overall evaluation. For CNN-based models
except MarsNet, the performance tends to increase as the
number of parameters increases. However, even when they
used approximately 15 times the parameters of the proposed

model, they showed lower performance than the proposed
model. MarsNet showed the best performance among CNN-
based models. However, unlike the proposed model which
shows high AP for all classes, CNN-based models including
MarsNet show low AP for the CD class and the SNK class.

Table 7 shows the comparison on EM, F1, accuracy, pre-
cision, and recall. We also report the accuracy of MarsNet
on the various-size dataset, 95.11%, reported in [4]. CNN-
based models have significant performance differences in
the various-size dataset and the fixed-size dataset. MarsNet,
which had the smallest difference among CNN-based mod-
els, showed 91.1% performance in the various-size dataset
compared to the fixed-size dataset in terms of EM. On the
other hand, the proposed D3PointNet showed little differ-
ence in performance between the two datasets. The EM of
MarsNet, which showed high scores when evaluated with
other metrics, is 81.40% in the various-size dataset, implying
that it misclassifies roughly 19 out of 100 defect-containing
samples. On the other hand, the proposed D3PointNet
achieved the EM of 92.3%, a level that can be applied to
on-site SMT defect detection. Furthermore, D3PointNet has
3.45 point greater precision and 6.76 points greater recall
than MarsNet in the various-size dataset, which implies that
D3PointNet makes less false positives than MarsNet.

E. TOLERANCE TO SPARSENESS
We verified that the proposed D3PointNet is robust to sparse
data by adjusting the sparsity of the input data. As presented
in Fig. 10, we artificially generated more sparse data by
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FIGURE 10: Generation of sparse DSPP images using input data dropout. Defective pixels were removed from the DSPP images
with the dropout probability, up to 95%.
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FIGURE 11: Tolerance to input sparsity. The performance
changes of the models are shown while increasing input data
sparsity by applying dropout to the DSPP image dataset.
The degree of sparsity, according to the increase in dropout
probabilities, was expressed as a defective pixel ratio (DPR),
where a DPR represents the ratio of defective pixels to all
pixels in DSPP images.

applying dropout up to 95% to the excessive/insufficient
channel of the DSPP image. Fig. 11 shows the performance
of the models by increasing the dropout probability in the
dataset. In addition, sparsity for each dropout probability was
measured and indicated by a defective pixel ratio (DPR).
Here, a DPR is the average ratio of defective pixels to the
total number of pixels in a DSPP image.

As the dropout probability increased from 0% to 95%, the
DPR of the dataset decreased from 0.91% to 0.045%. The
EM of MarsNet, which showed the best among the CNN-
based models, decreased by 69.9%. The EM of the proposed
D3PointNet, without EF and PF, decreased by 43.6%, which
implies that the network structure of PointNet2 [26] with the
proposed position feature extraction is robust to sparse data
in DSPP image dataset. Moreover, in the case of D3PointNet
using the devised EF and PF, EM only decreased by 25.4%.
This indicates that the proposed feature extraction methods,
EF and PF, help the proposed network to become more robust
to sparse data in DSPP image dataset.

F. GENERALIZATION TO VARIOUS SIZES
We confirmed the generalization ability of D3PointNet
through performance evaluation on images with a larger scale

(a) 400% area, defect class: SNK + CD.

(b) 200% area, de-
fect class: RA +
SNK.

(c) 400% area, defect class: SD + SNK.

FIGURE 12: Examples of augmented DSPP images. We
generated 105 images and and annotated them for verifying
generalization ability of the proposed D3PointNet.

than the DSPP images in the training dataset. As displayed
in Fig. 12, we created the three augmented test sets from
test splits of various-size datasets. Each test set consists of
105 augmented DSPP images, where an augmented DSPP
image was created by attaching n source DSPP images with
the same PCB but different defect classes (n = 2, 4, 8 for
each test set). The attachments between the images were
made such that the resulting image is rectangular, such as
1×2, 2×2, and 2×4. When the attached source DSPP images
belong to different defect classes, the combined DSPP image
belongs to all of the defect classes of the source DSPP
images. For example, in Fig. 12 (c), a DSPP image of the SD
class, a DSPP image of the SNK class, and two DSPP images
of the normal class are combined to create a new DSPP image
of 400% area, belonging to both the SD and SNK classes. The
augmentation was only applied when creating a test set, not
when training, to measure the generalization ability of each
model.

In the case of CNN-based models, including MarsNet,
their performance drastically decreased by merely doubling
the area of the test set. In particular, EM of MarsNet de-
creased by 69.4% in the 800% area dataset. On the other
hand, EM of D3PointNet, without EF and PF, fell 19.8% in
the 800% area dataset. Moreover, the decrease of EM was
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FIGURE 13: Generalization to various sizes. The EMs of
D3PointNet and CNN-based models were measured for the
datasets augmented to increase the area of the image by
200%, 400%, and 800% compared to the original. The hor-
izontal axis represents the area of the DSPP images gener-
ated after augmentation, compared to their original images.
Augmented area = 100% indicates that the original test set
was used without augmentation.

only 9.2% using D3PointNet with the devised EF and PF,
which implies that the proposed feature extraction methods
help to improve the generalization ability for various image
sizes.

G. QUALITATIVE RESULTS IN SEGMENTATION

We visualized the segmentation results to verify the segmen-
tation performance of our proposed D3PointNet, as shown in
Fig. 14. From the leftmost, each column represents the mask
channels, defective solder paste pattern channels, ground-
truths, and segmentation outputs. The proposed model took
the left two columns as inputs and generated the rightmost
column as output.

The outputs are almost identical to the ground-truths ex-
cept for a few failure cases. In the second sample in the
figure (row 2), the model incorrectly segmented some of
the support defects (SDs) as clamp defects (CDs). However,
considering that the SDs appeared near the bottom edge,
there are possibilities of both SDs and CDs. Therefore even
a human expert cannot distinguish between them. In the
fifth sample (row 5), the model incorrectly segmented the
insufficient solder paste near the solder no kneading (SNK)
area as SNK. This was a reasonable prediction considering
the characteristics of the SNK appearing insufficient solder
paste patterns in a wide area, but it was actually noise
independent of the printer defect. Regardless of whether the
input data is relatively dense (rows 1-5) or sparse (rows 6-
10), the proposed D3PointNet performed segmentation task
successfully.

Clamp defect
No kneading

Support defect
Removal area

Squeegee blade

Solder defectMask OutputGround-truth

Insufficient
ExcessiveMask (contains 

all solder paste)

CD
SNK

SD
RA

SBD

Solder defectMask OutputGround-truth

Insufficient
ExcessiveMask (contains 

all solder paste)

FIGURE 14: Visualization of the segmentation result. From
left to right, each column represents masks, defective solder
patterns, ground-truths, and segmentation outputs, respec-
tively.

VI. CONCLUSION
In this paper, the problem of defect detection for solder paste
printer using DSPP images was addressed. It was pointed
out that conventional CNNs are not suitable for the DSPP
images due to their sparseness, various sizes, and limited
number of data. As a solution, a dual-level defect detection
PointNet, D3PointNet, was proposed, where a DSPP image
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is first converted into a set of feature points, then the defect
detection is performed in two semantic levels: the micro-
level and the macro-level. Compared to CNN-based models
including MarsNet, which is a state-of-the-art model, the
proposed D3PointNet showed more robustness to changes in
sparsity and size of input data. Moreover, since D3PointNet
provides segmentation as an intermediate result in multi-
label classification, it is more useful than the existing method
performing only the multi-label classification of DSPP im-
ages, in that the segmentation of the D3PointNet indicates
the location of the defects.
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