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Neoantigen burden is regarded as a fundamental determinant of response to immunotherapy.

However, its predictive value remains in question because some tumours with high neoan-

tigen load show resistance. Here, we investigate our patient cohort together with a public

cohort by our algorithms for the modelling of peptide-MHC binding and inter-cohort genomic

prediction of therapeutic resistance. We first attempt to predict MHC-binding peptides at

high accuracy with convolutional neural networks. Our prediction outperforms previous

methods in > 70% of test cases. We then develop a classifier that can predict resistance from

functional mutations. The predictive genes are involved in immune response and EGFR sig-

nalling, whereas their mutation patterns reflect positive selection. When integrated with our

neoantigen profiling, these anti-immunogenic mutations reveal higher predictive power than

known resistance factors. Our results suggest that the clinical benefit of immunotherapy can

be determined by neoantigens that induce immunity and functional mutations that facilitate

immune evasion.
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Cancer immunotherapy has become remarkably effective in
a range of human cancers. In particular, checkpoint
blockade therapies, such as anti-CTLA-4 (ipilimumab)

and anti-PD-1 (nivolumab and pembrolizumab), are able to
reverse tumour-induced immunosuppression and induce durable
clinical responses1. Tumour cells produce neoantigens or antigens
that the immune system never encountered without cancer. The
epitopes of neoantigens, which are displayed with major histo-
compatibility complexes (MHCs) on the surface of cancer cells,
provoke immune response when recognised by T cells. Tumours
loaded with more neoantigens therefore are more likely to be
responsive to the anti-immunosuppressive strategies2. However, a
sizeable fraction of those tumours resist to checkpoint blockade3.

Tumour neoantigens are generated by somatic mutations
producing novel peptides that can be recognised as foreign,
thereby conferring immunogenicity to cancer cells. Neoantigen
burden is therefore regarded as a fundamental determinant of
response to immunotherapy including checkpoint blockade.
Neoantigen burden has been estimated by several computational
tools that predict peptide binding to MHC class I4. However, the
current tools fail to capture the nonlinear high-order features of
interactions among different amino acids5. In this regard, a recent
study has shown that amino acids distal to contact interfaces can
exert significant effects on the interactions between MHC-peptide
complexes and T cell receptors (TCRs)6. Therefore, we are in
need of a prediction method that captures the spatial features
amino acid interactions. Convolutional neural networks (CNNs)
have been applied successfully for the identification of local
sequence patterns in protein-nucleic acid interactions7 or func-
tional effects of noncoding variants8. Hence, in this work, we
attempted to develop a CNN-based algorithmic framework for
the prediction of peptide binding to MHC class I molecules.

There are additional putative biomarkers that have been
reported to predict response to checkpoint blockade together with
neoantigen burden. Tumour heterogeneity9, copy number
alteration10, aneuploidy11, and genetic alteration of specific
genes12 or pathways13 have been identified as resistance markers.
Pre-existing T cell infiltration also may impinge on response to
checkpoint blockade14,15. Since all of these markers or factors
differ greatly between individual cancer patients, a framework for
describing diverse predictive factors has been proposed to enable
personalised cancer immunotherapy16. However, resistance
mechanisms involving alterations of individual genes have not
been explored at the genomic level. Especially, tumours loaded
with neoantigens should carry a large number of functional
mutations due to high mutation rates. The functional mutations
that facilitate immune evasion may be subject to positive selec-
tion. In this work, we examine whether mutation profiles can
explain the therapeutic resistance of tumours loaded with
neoantigens. We first use our clinical data together with public
cohort data and then perform further tests using molecular
immune evasion markers in other tumour types.

Results
Accurate prediction of peptide-MHC class I binding. We
constructed a convolutional neural network (CNN) model to
predict the binding of MHC class I molecules and peptides.
About 50,000 binding data obtained from the immune epitope
database (IEDB) 3.0. (http://www.iedb.org/)17 were used for the
model training. The CNN architecture enables to capture specific
local properties of input data such as in images. To build an
amino acid interaction map for our CNN model, we inferred the
binding preference of each pair of amino acids using interaction
energy estimated from the frequency of neighbouring amino acids
in native protein structures18. The interaction map between

peptides and HLA sequences were scanned by a number of ker-
nels to detect particular binding motifs that are critical for
peptide-MHC I binding (Fig. 1a and Supplementary Fig. 1).
According to the receiver operating characteristic (ROC) curves,
the area under the curve (AUC) for the training data was 0.93 for
HLA-A and 0.94 for HLA-B, respectively. In the test data, the
AUC was 0.89 for HLA-A and 0.86 for HLA-B.

Comparison with an interaction map consisting of randomly
permuted or null values made it clear that the amino acid
interaction map we used for our model played a critical role in
predicting the MHC-peptide binding (Supplementary Fig. 2).
This implies that the amino acid interaction preferences derived
from native protein structures18 can serve as interaction
parameters for the modelling of the binding of MHCs and
peptides. We also tested whether the mere sum of the amino acid
binding preferences in the interaction map can be used as a
predictor. If this is the case, the sum of the preferences should be
lowest for true positives because the binding preferences were
encoded as the energy levels of interactions. However, we could
rule out this possibility (Supplementary Fig. 4), indicating that
our CNN model was trained on the pattern rather than the
aggregate of binding preferences.

Next, we tested the prediction accuracy of our CNN model
using the IEDB test datasets that are weekly updated along with
performance evaluations of current prediction tools including the
most widely used one named NetMHCpan19 (now updated to
NetMHCpan 4.020). Our model showed higher performance than
the compared prediction tools. In terms of AUC, our method was
superior to SMMPMBEC, ANN, NetMHCcon, and NetMHCpan
for 100%, 100%, 90%, and 70% of the test cases. With regards to
the F1 score, our CNN was superior to all the methods for 80% of
the test cases (Fig. 1b). Highest performance was achieved for
binding of HLA-As and 9-mer peptides. In general, the training
dataset was largest for this class of binding, implying that higher
prediction accuracy can be expected as in vitro binding data grow.
In contrast to the size of training data, prediction accuracy
was maintained irrespective of the size of test data (Supplemen-
tary Fig. 3).

Clinical and molecular relevance of neoantigen load estimated
by CNN. We applied our CNN model to predict MHC class I-
binding neoantigens for clinical samples that were used in four
cohorts of melanoma10,21–23 and three cohorts of lung
cancer24,25, including our clinical cohort referred to as SMC
(Samsung Medical Center) cohort (Table 1 and Supplementary
Data 1). The samples were divided by curated clinical response,
and the extent of neoantigen load was assessed on the basis of our
prediction model. Neoantigen load predicted by the CNN method
showed a significant correlation with clinical benefit in most
cohorts (Fig. 2a). In particular, the P values of our association
were significant except two cohorts, for which marginal or lower

Table 1 Information of cohorts used in this work.

Cohort name Tumour type Cohort size Target
checkpoint

Reference

SMC Lung cancer 122 PD-1/PD-L1 This work
Hellmann Lung cancer 75 PD-1 &

CTLA-4
Ref. 25

Rizvi Lung cancer 34 PD-1 Ref. 24
Van Allen Melanoma 110 CTLA-4 Ref. 21
Snyder Melanoma 64 CTLA-4 Ref. 22
Roh Melanoma 56 PD-1 &

CTLA-4
Ref. 10

Riaz Melanoma 68 PD-1 Ref. 12
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associations were observed when NetMHCpan was used for
neoantigen prediction. We compared patient survival between the
high- and low-neoantigen groups for the cohorts showing the
significant associations. Higher neoantigen burden was sig-
nificantly associated with longer disease free time consistently in
all cohorts (Fig. 2b). This correlation was not seen when
NetMHCpan was used (Supplementary Fig. 5).

We wanted to further validate the relevance of the CNN
predictions using samples from The Cancer Genome Atlas

(TCGA) although not in the setting of checkpoint blockade
therapy. To this end, we collected exome and transcriptome data
for skin cutaneous melanoma, performed HLA typing for MHC
class I, and then predicted neoantigens that were capable of
binding the relevant MHC I molecules by using our CNN. We
also computed the immune score and TCR diversity for the same
samples. The diversity of tumour-reactive T cell clonotypes
represented by TCR repertoire can reflect the load of immuno-
genic antigens that stimulate T cell infiltration26. Similarly, the
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Fig. 1 Prediction model for peptide-MHC class I binding and performance evaluation. a CNN architecture was used to predict binding between peptides
and MHC class I molecules. The two-dimensional map of interactions between amino acids in peptide-MHC class I complex was used as the input matrix.
A set of kernels, A1,…An, covering the entire HLA sequence were applied on the input matrix. The output convolution scores in the first layer were scanned
by the second set of kernels, B1,…, Bn. A fully connected layer attached to the second layer integrated the convoluted patterns for classification. b
Comparison of prediction performance with SMMPMBEC, artificial neural network (ANN), NetMHCcon, and NetMHCpan on the basis of weekly updated
test datasets of IEDB. In terms of AUC, our method was superior to SMMPMBEC, ANN, NetMHCcon, and NetMHCpan for 100%, 100%, 90%, and 70% of
the test cases. With regards to the F1 score, our CNN was superior to all the methods for 80% of the test cases. Source data are provided as a Source
Data file.
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immune score, defined as the geometric mean of the expression
levels of immunologically relevant genes, has been reported to
correlate with the clinical benefit of checkpoint blockade
immunotherapy10. According to our analyses, neoantigen load
estimated by the CNN model showed a significant association
with the immune score and TCR diversity (Fig. 2c). For these
samples, our estimate of neoantigen load (left of Fig. 2d) than
mutation burden (right of Fig. 2d) showed a better correlation
with patient survival. However, this should be interpreted with

caution given no statistically significance, which may be
attributed to the fact that we simply compared patient survival
but not in the setting of checkpoint therapy.

Functional immune mutations explain poor therapeutic
response. A large amount of neoantigens reflects a high mutation
frequency. If some of protein-changing mutations perturb
immune reaction, tumours carrying these mutations will not be
responsive to immunotherapy despite high neoantigen load.
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However, there was no statistical significance when we directly
compared the responsive and resistant groups in mutation bur-
den on genes involved in the immune system, immune response,
antigen presentation, or antigen processing (Supplementary
Fig. 6). Mutation burden was generally higher in the resistant
tumours for genes involved in antigen presentation or processing
but only marginally (Supplementary Fig. 6). This suggests a role

for genes that can affect immune response indirectly, for example,
by interacting with genes that are formally annotated as immune
related.

We therefore developed a classifier that uses the exomic
profiles of functional mutations to predict samples that will be
resistant to checkpoint blockade. Our MHC-binding prediction
was performed for all the cohorts (Table 1) to select samples with
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high neoantigen burden and define the resistant group according
to the clinical outcome (Supplementary Fig. 7). For each cohort,
we used the other cohorts of the same tumour type as training
data. For example, we trained random forests with Hellman and
Rizvi cohorts and tested performance on SMC cohort. As a
negative control, we trained the classifier on synonymous
mutations. As a result, only the models trained with functional
mutations achieved reasonable accuracies for all the test datasets
(Fig. 3a).

We next investigated which genes were critical for predicting
therapeutic response when mutated. For this, we retrieved genes
with a high ‘variable importance’ of random forests and their
interacting partners in the protein interactome27–29 (Supplemen-
tary Data 2 and 3). These genes were related to the adaptive
immune system, cytokine signalling, and epidermal growth factor
receptor (EGFR) signalling (Fig. 3b, c). Tumours produce
cytokines that alter tumour immunogenicity and the antitumour
immune response of the host. For example, interferon-γ pathway
inactivation in tumours was implicated in resistance to
immunotherapy13. The EGFR pathway was implicated in
immune escape and clinical response to immunotherapy30,31.

We then examined whether the predictive genes identified from
our classifier carry the signatures of positive selection. Recent
studies investigated selection patterns at the gene level based on
the ratio of nonsynonymous to synonymous mutations across a
large number of tumour samples32,33. Positive selection on
mutations will lead to the excess of nonsynonymous mutations
for given background mutation rates estimated by the frequency of
synonymous mutations. In other words, a gene under positive
selection will carry an extra complement of driver mutations in
addition to passenger mutations. We employed the scores that
were previously calculated for each gene by the Bayesian
inference32 and statistical model for covariates (dNdScv)33 based
on the mutation patterns observed in the TCGA data. Using these
scores, we compared the degree of positive selection on the
predictive genes with that on genes categorised as antigen-
presentation or immune-related pathway. The score distributions
for all genes were also considered. As a result, significantly higher
positive selection scores, in particular those from the Bayesian
inference32, were observed for the predictive genes than for the
other groups of genes (Fig. 3d), indicating that our prediction
model was based on functional mutations that are subject to
positive selection because of their contribution to immune
evasion.

Profiling functional mutations together with neoantigens
accurately predicts therapeutic response. Up to this point, we
sought to resolve the contradiction between clinical observations
and the “neoantigen roulette” theory3 by a more accurate esti-
mation of neoantigen load as a predictive marker of clinical
response and by the identification of functional mutations in
immune-related genes for prediction of therapeutic resistance.

We next wanted to evaluate the clinical utility of combining these
two approaches on the basis of the melanoma samples in Roh
cohort and lung cancer samples in SMC cohort that came with
information on therapeutic response to checkpoint inhibitor and
known resistance parameters such as copy number alteration
(gain or loss) and tumour heterogeneity9–11.

We performed regression of therapeutic resistance on the
exomic prediction score from our classifier (Fig. 4a, d), on
previously known resistance parameters (Fig. 4b, e), and on all
the variables together (Fig. 4c, f). Overall, our classifier performed
markedly better when tumours with high neoantigen load were
defined by using our CNN than NetMHCpan (Fig. 4a–c for SMC
cohort and Fig. 4d–f for Roh cohort). Most importantly, our
exomic prediction score was the most significant contributing
factor regardless of the regression methods in both cohorts
(Fig. 4c, f).

Functional immune mutations are associated with immune
evasion signatures. To test whether this approach is applicable to
other cancer types, we used exome and transcriptome data from
TCGA. For training of mutational patterns, we selected four
tumour types for which a sufficient number of samples were
available in the database: bladder cancer (BLCA, n= 152),
oesophagus cancer (ESCA, n= 36), head and neck cancer
(HNSC, n= 242), and lung cancer (LUSC, n= 78). We per-
formed HLA typing and our CNN prediction to obtain the esti-
mate of neoantigen load. Among the genes that are used for
calculating the immune score, we chose those that showed the
largest positive correlation with neoantigen load in each tumour
type. Then, we identified the samples with immune evasion by
looking for the cases that deviated from the correlation by
showing a low expression level of those genes despite high
neoantigen load. These samples can be regarded as the equivalent
of the resistant tumours in the melanoma cohorts.

Using these data, we repeated the same analyses as we did with
melanoma. For each tumour type, we trained random forest on
the samples showing the immune evasion signatures by using as
features the genes that harbour deleterious or damaging
mutations in > 5% of all samples. The performance of our
classifier was evaluated by comparing the functional mutation
model with the control model trained with synonymous
mutations (Fig. 5a). We next investigated which genes exerted
explanatory power in predicting immune escape when mutated.
In general, the functional mutation model resulted in genes with
high variable importance (Fig. 5b). We retrieved these genes in
each tumour type and collected their interacting partners in the
protein interactome27–29. Similar to the melanoma cases, these
genes tended to be involved in cytokine signalling pathway,
adaptive immune system, and EGFR signalling in cancer (Fig. 5c
and Supplementary Fig. 8).

We finally assessed the contribution of the mutation features in
explaining the molecular signatures of immune evasion across

Fig. 3 Exomic prediction of therapeutic resistance. a We trained random forests using genes that harbour deleterious or damaging mutations in > 5% of
the samples. For each cohort, we used the other cohorts of the same tumour type as training data. For example, we trained random forests with Hellman
and Rizvi cohorts and tested performance on SMC cohort. Shown here are the ROC curves comparing the original data (red curves) and negative controls
generated by training the classifier on synonymous mutations (blue curves). The same number of features and samples were used between the original
and negative control model. b, c Functional enrichment of genes with high explanatory power (variable importance > 3) and their interaction partners in b
melanoma and c lung cancer. The radar plots present the statistical significance of enrichment. The axis length scales with -log10(P value). d Selection
values based on the Bayesian inference32 and covariate model (dNdScv)33 for the genes with high variable importance from our random forest classifier.
Shown are the selection values obtained for skin cutaneous melanoma (SKCM) and lung squamous cell carcinoma (LUSC) samples from TCGA. dNdScvM
and dNdScvN are the normalised ratio of nonsynonymous to synonymous mutations (dN/dS) for missense and nonsense mutations, respectively. dNdScvI
indicates the observed to expected ratio for indels. The centre line and bottom/upper bounds indicate the median and 1st/3rd quartile, respectively. Source
data are provided as a Source Data file.
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different tumour types. There was a recent study that reported the
correlation of extensive somatic copy number alterations
(SCNAs) with the immune score11. While focal SCNAs mainly
correlated with proliferation markers, arm- and chromosome-
level SCNAs were negatively associated with the immune score.
Multiple regression of immune evasion status on tumour
heterogeneity, focal SCNA, arm/chromosome-level SCNA, and
mutation-based prediction revealed the mutation features as the
most significant contributor (Fig. 5d). Arm- and whole-

chromosome SCNAs generally stood out as the second important
parameter in predicting immune evasion (Fig. 5d).

Discussion
In this work, we first developed a prediction model for neoantigen
identification. This model was trained on two-dimensional
interaction patterns for peptide-MHC class I binding in con-
trast to one-dimensional sequential modelling of current
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prediction tools. We then examined potential determinants of
resistance to immunotherapy. While mutational patterns stood
out, tumour heterogeneity also showed considerable explanatory
power when our method was used for neoantigen prediction. A
recent study presented the relevance of neoantigen heterogeneity
to resistance of tumours with high mutation load9. Thus, tumour
heterogeneity may confer resistance especially when neoantigen
load is high.

Our methods focused on resistance of high-neoantigen
tumours. However, there are samples that show sensitivity to
checkpoint blockade despite a low estimate of neoantigen load.
Hypersensitivity to the immune response can be a harmful trait
for tumour growth. In contrast to mutations that promote
immune evasion, such somatic variations that increase immune
reaction will be eliminated by negative selection during tumour
evolution. Therefore, this trait can be explained more likely by the
genetic makeup of the donor rather than by somatic mutations.
For example, a genetic polymorphism in the CTLA-4 gene was
reported to alter the CTLA-4-driven regulation of T cell activa-
tion in the context of autoimmune disease34. A possible approach
thus is to use the genotypes of the hypersensitive samples as
predictive features for the classification of clinical response to
immunotherapy. In this manner, the cases that contradict the
neoantigen roulette3 by showing resistance despite high neoan-
tigen load or hypersensitivity despite low neoantigen levels could
be predicted only based on their somatic or germline genetic
profile. It needs to be emphasised that the success of this
approach will hinge on the accurate estimation of neoantigen
burden.

The recently proposed concept of “cancer immunogram”16

included seven parameters that could characterise aspects of

cancer-immune interactions to determine treatment options in a
more refined and personalised manner. Among those seven
parameters, our study conferred immediate clinical utility to
“tumour foreignness” and brought “tumour sensitivity to immune
effectors” up to the systems level where potentially all available
genes could be examined. There have been attempts to discover
individual factors such as a particular gene12 or pathway13.
However, this is the first attempt to profile mutations at the
whole-exome level. In doing so, we discovered that the EGFR
pathway could be a primary target of somatic disruption for
immune evasion. Our results indicate that a large fraction of
variation in the clinical benefit of immunotherapy can be
explained by contrasting effects of antigenic versus functional
mutations on tumour immunogenicity. This approach offers
practical advantage as well because calling single nucleotide var-
iants is straightforward and less technically challenging than
determining other parameters such as copy number alterations
and tumour heterogeneity.

Methods
IEDB peptide-MHC binding data sets. All training data for the prediction of
peptide-MHC class I binding were obtained from IEDB 3.0. (http://www.iedb.org/)17.
This database provided 57,173 data points consisting of binding affinity in terms of
IC50/EC50 nM for 14,234 true (binding) and 42,879 false (non-binding) experiments.
We used the affinity threshold that is commonly used to determine peptide-MHC
binding to classify binding (IC50/EC50 < 500 nM) and no binding (IC50/EC50 ≥ 500
nM). The major subset of the data, composed of two classes (HLA-A and HLA-B) of
MHC class I against 9-mer and 10-mer peptides, was used for the development of our
prediction method. To evaluate prediction performance, we employed weekly updated
test datasets used for an automated benchmarking of selected peptide-MHC class I
binding prediction tools4. This enabled us to compare the performance of our pre-
diction model with the reported performance of the tools used for the benchmarking.
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We used the weekly updated datasets that consisted of >10 binding affinity
experiments.

Peptide-MHC class I binding prediction. We used CNN architecture to perform
prediction of peptide-MHC class I binding. The schematic diagram of our model is
shown in Fig. 1a. First, two-dimensional interaction maps for amino acid sequence
pairs of peptides and MHC class I molecules were constructed as input matrices.
We employed amino-acid interaction preferences computed based on contacts
between Cα atoms or between any atoms in native protein structures18. For the
calculation of the interaction map, the dataset of 1,654 proteins from the PISCES
server35 was curated, and structural information from the PDB36 was obtained. The
connectivity matrix based on the Cα-Cα distance was generated for each protein
based on the distance cutoff of 6.5 Å between Cα-Cα atoms of amino acids with the
exclusion of nearest neighbours along the sequence. Atom-atom contacts between
two amino acid residues were also used such that residues i and j were considered
to be in contact if any atom of the residue i is within a distance of 4.5 Å with any
atom of the residue j. In this case, nearest neighbours (i ± 2) along the sequence are
not considered. We also prepared interaction maps consisting of randomly per-
muted or null values. The interaction parameters based on the Cα-Cα contacts
showed highest validation performance (Supplementary Fig. 2) and thus were used
as input. Our CNN model consists of sequential alternating convolution layers that
extract interaction features at different spatial scales, a fully connected layer that
integrates information from a full-length sequence, and a sigmoid output layer that
computes the probability for binding of the given peptide and MHC protein. Each
layer of the CNN model executes a linear transformation of the output from the
previous layer by multiplying a weight matrix, the output of which is subjected to a
nonlinear transformation by ReLU activation as described below. The weight
matrices are learned during training in the process of minimising predictive errors.

A variety of kernels were tested to achieve as high performance as possible. The
two convolution layers of our model performed 2D convolution operation after
optimisation of settings with 50 kernels for the first layer, 10 kernels for the second
layer, 1000 batches, the stride size of 1, and the kernel size of 5 × 183 for each layer.
All convolution outputs were transformed by a rectified linear activation function
(ReLU) lifting negative values to 0. The first convolution layer was designed to
detect binding patterns with a moving window with step size 1 on the interaction
parameters of amino acid pairs. In the higher-level convolution layer, each
convolution kernel served as a binding pattern detector over the output of the
previous layer. More formally, the convolution layer computed

convolutionðXÞik ¼ ReLU
XM�1

m¼0

XN�1

n¼0

Wk
mnXiþm;n

 !
ð1Þ

where X is the input, i is the index of the output position, and k is the index of
kernels. Each convolution kernel Wk is an M×N weight matrix with M being the
window size and N being the number of input channels. A pooling layer was not
used in our CNN model because all values of the output of the convolution layer
were informative in our prediction. In this regard, a recent genetics analysis
reported that amino acids distal to contact interfaces can exert significant effects on
the interactions between MHC-peptide complexes and TCRs6, implying that to
detect precise binding patterns, all values in the output of the convolution layer
should be taken into account in the pooling process.

To the second convolution layer we attached a fully connected layer in which all
neurons receive inputs from all outputs of the previous layer for integration of
information. This fully connected layer performed ReLU(WX), where X is the
input and W is the weight matrix for the fully connected layer. The last layer, the
sigmoid output layer, performed classification between binding and non-binding
with the prediction scaling in the range of 0 ~ 1 based on the sigmoid function. In
other words, the sigmoid output layer performed Sigmoid(WX), where X is the
input and W is the weight matrix for the sigmoid output layer.

We trained our model in the direction toward the minimisation of the objective
function, which was defined as the sum of negative log likelihood (NLL) and
regularisation terms intended for overfitting control. Specifically,

Objective ¼ NLLþ λ1j Wj jj22 þ λ2j H�1
�� ��j1; ð2Þ

where NLL ¼ �
X

s

X
t
logðYs

t ftðXsÞ þ ð1� Ys
t Þð1� ftðXsÞÞÞ;

and s indicates the index of training samples and t indicates the index of interaction
features. Ys

t is a 0 or 1 label for sample s and interaction feature t. ftðXsÞ represents
the predicted probability output of the model for interaction feature t given input
Xs. We used a combination of multiple regularisation techniques typically used for
training deep neural networks. L2 regularisation term j Wj jj22 was defined to be the
sum of the squares of all weight matrix entries. j H�1j jj1 was defined to be the L1
norm of all output values of the last layer (fully connected layer) preceding the
output layer. Additionally, the optimisation was subjected to regularisation
constraints that for any layer m and neuron n, j Wn

m

�� ��j2 ≤ λ3 or that the L2 norm of
weights for any neuron must not be larger than a specified value. Hyperparameters
we used in the model included the learning rate [0.001, 0.01, 0.1], number of
kernels for the first and second layer [10, 30, 50], L1 and L2 regularisation
parameter [0.0001, 0.001, 0.01], and momentum [0,1, 0.5, 0.9]. Especially, various

filter sizes (1~5 bp for peptides and 1/2, 2/3, and full length of HLAs) were used to
extract interaction features in the convolution layers.

Derivatives of the objective function with respect to the model parameters were
computed by the standard backpropagation algorithm. We optimised the objective
function by using stochastic gradient descent with momentum. We did not use
dropout training because it could cause a decrease in training performance. Our
model was implemented using the Theano library (https://github.com/Theano/
Theano/) on Tesla K40x GPU.

We ran HLAminer37 for the samples of SMC cohort. We used HLA allele
information provided by the authors for the published cohort samples. Amino acid
sequences flanking nonsynonymous mutations were retrieved from RefSeq
database38 by using the idfetch programme. The HLA sequences and mutant
peptide sequences were subjected to our CNN prediction model.

SMC cohort for checkpoint blockade in lung cancer. A total of 122 advanced
non-small cell lung carcinoma (NSCLC) patients who were treated with anti-PD-1/
PD-L1 from 2014 to 2017 at Samsung Medical Center were enroled for this study.
The clinical response was evaluated by the Response Evaluation Criteria in Solid
Tumours (RECIST) version 1.1 with a minimum 6-month follow-up. The response
to immunotherapy was classified into durable clinical benefit (DCB, responder) or
non-durable benefit (NDB, non-responder)24. Partial response (PR) or stable dis-
ease (SD) or that lasted more than 6 months was considered as DCB/responder.
Progressive disease (PD) or SD that lasted less than 6 months was considered as
NDB/non-responder. Progression-free survival (PFS) was calculated from the start
date of therapy to the date of progression or death, whichever is earlier. Patients
were censored at the date of the last follow-up for PFS if they were not progressed
and alive. This study was approved by the institutional review board of Samsung
Medical Center (2018-03-130 and 2013-10-112). Informed written consent was
obtained from all patients enroled in the study.

Tumour samples were obtained before anti-PD1/PD-L1 treatment, and then
were embedded in paraffin after formalin fixation or kept fresh. DNA was prepared
using AllPrep DNA/RNA Mini Kit (Qiagen, 80204), AllPrep DNA/RNA Micro Kit
(Qiagen, 80284), or QIAamp DNA FFPE Tissue Kit (Qiagen, 56404) for library
preparation for whole exome sequencing. Library preparation was performed by
using SureSelectXT Human All Exon V5 (Agilent, 5190–6209) according to the
instructions39. Briefly, 200–300 ng of tumour and normal genomic DNA was
sheared, and 150–200 bp of the sheared DNA fragments were further processed for
end-repairing, phosphorylation, and ligation to adaptors. Ligated DNA was
hybridised using whole-exome baits from SureSelectXT Human All Exon V5. The
libraries were quantified by Qubit and 2200 Tapestation, and sequenced on an
Illumina HiSeq 2500 platform with 2 × 100 bp paired ends. Target coverage for
normal samples was 50 x and tumour sample was 100×. The sequencing reads were
aligned to the hg19 reference genome by using Burrows-Wheeler Aligner (BWA)
(http://bio-bwa.sourceforge.net)40 version 0.7.5a. Genome Analysis Toolkit
(GATK) (https://software.broadinstitute.org/gatk)41 version 3.5 was applied for
base quality score recalibration, indel realignment, and duplicate removal. The
BAM files produced after these processes were subjected to MuTect (https://
software.broadinstitute.org/cancer/cga/mutect)42 version 1.1.4 for the calling of
single nucleotide variants (SNVs), and small insertions and deletions (indels). The
dbSNP and COSMIC databases were used as references. Data processing and
analysis were done with default parameters. The calling results for SNVs and indels
are provided in Supplementary Data 4. To estimate tumour purity, Clonal
Heterogeneity Analysis Tool (CHAT) was used43. CNVkit44, a copy number
detection tool specific for whole-exome and short-read sequencing platforms, was
used to detect copy number alterations between matched normal and tumour
samples. The log2 coverage depth was defined as copy number variation (CNV)
value. This indicates the ratio of the mean coverage depths, which is excluding
extreme outliers and is observed at the corresponding bin in each sample. The
CNV results for our cohort samples are provided in Supplementary Data 5. The
results of neoantigen calling for the SNVs and indels from our SMC cohort samples
are provided in Supplementary Data 6.

Other cohorts for checkpoint blockade in lung cancer and melanoma. Somatic
mutation calls for samples in three independent melanoma cohorts with anti-
CTLA-4, namely, Van allen et al.’s dataset21, Snyder et al.’s dataset22, and Roh
et al.’s dataset10, one melanoma cohort with anti-PD-1, namely, Riaz et al.’s
dataset23, two NSCLC cohorts with anti-PD-1, namely Rizvi et al.’s dataset24,
Hellmann et al.’s dataset25 were collected. For each cohort, we used the other
cohorts of the same tumour type as training data. For example, we trained random
forests with Hellman and Rizvi cohorts and tested performance on SMC cohort.
The AUCs were 0.81 ~ 0.97 for the training data and 0.76 ~ 0.95 for the test data.
We used HLA allele information provided for each sample. Amino acid sequences
flanking nonsynonymous mutations were retrieved from RefSeq database38 by
using the idfetch programme. The HLA sequences and mutant peptide sequences
were subjected to our CNN prediction model. Resistant samples were defined as
having >70 predicted neoantigens9 while no clinical benefit was reported from each
respective study. All remaining samples were defined as non-resistant samples and
trained along with the resistant samples.
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TCGA data processing. We downloaded TCGA RNA-Seq data from dbGaP
(https://www.ncbi.nlm.nih.gov/gap). HLA typing was performed by applying
Seq2HLA tool45 to the RNA-Seq data. Somatic mutation calls were obtained from
the UCSC Xena Browser (http://xena.ucsc.edu). Amino acid sequences flanking
nonsynonymous mutations were retrieved from RefSeq database38 by using the
idfetch programme. The HLA sequences and mutant peptide sequences were
subjected to our CNN prediction model. We also profiled the TCR repertoire and
calculated the immune score for each TCGA sample. The TCR repertoire was
obtained by applying the TRUST tool26 to the RNA-Seq data. The immune score
was calculated as the geometric mean of the expression level of cytolytic markers
(GZMA, GZMB, PRF1, and GNLY), HLA molecules (HLA-A, HLA-B, HLA-C,
HLA-E, HLA-F, HLA-G, HLA-H, HLA-DMA, HLA-DMB, HLA-DOA, HLA-
DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-
DRA, and HLA-DRB1), IFN-γ pathway genes (IFNG, IFNGR1, IFNGR2, IRF1,
STAT1, and PSMB9), chemokines (CCR5, CCL3, CCL4, CCL5, CXCL9, CXCL10,
and CXCL11), and adhesion molecules (ICAM1, ICAM2, ICAM3, ICAM4,
ICAM5, and VCAM1)10. We used log2-transformed the normalised RNA-seq read
counts. We also selected the molecular markers that were best correlated with
neoantigen load in each tumour type: CCL5 and IFNG for BLCA; CD247, ICAM2,
and IFNGR2 for ESCA; GZMB, GZMH, and PRF1 for HNSC; CCL4, CCR5,
CXCL11, CXCL9, and GZMH for LUSC. For samples with potential immune
evasion, we detected tumours with high (higher then 70th percentile) neoantigen
load and low (lower than 30th percentile) immune signature defined by the average
of the selected immune markers.

Patient survival analysis. We utilised the number of neoantigens or mutations as
a predictor to perform patient survival analysis. For the clinical trial data, the cases
in which the number of neoantigens or mutations was equal to or greater than 70
were classified to the high neoantigen or mutation group as suggested in a previous
study9. The melanoma samples of the two clinical trials of anti-CTLA-421,22 and
the lung cancer samples of three clinical trials anti-PD-1 or anti-CTLA-424,25 were
subjected to survival analysis. The patients who died for reasons other than tumour
were excluded from the analysis. The skin cutaneous melanoma samples from
TCGA were divided into two groups based on whether the number of neoantigens
or mutations was higher or lower than the median level. P values from the Wald
test were used to determine the significance of differences between two groups.

Mutational analysis of therapeutic resistance. For each of all cohorts used in
this study (Table 1), resistant samples were defined as having > 70 predicted
neoantigens9 while no clinical benefit was reported from each respective study. All
remaining samples were used as control. Functional mutations were called in each
sample. Mutation functionality was defined based on SIFT (http://sift.bii.a-star.edu.
sg)46 and PROVEAN (http://provean.jcvi.org)47. The mutations that were called
simultaneously as damaging by SIFT and as deleterious by PROVEAN were
defined as functional mutations. We then constructed a matrix for mutation status
of genes for which the mutation frequency was >5% in the given population of
samples. A random forest predictor consisting of 1000 decision trees was trained
for tumours with therapeutic resistance. We implemented random forests by
running the R package randomForest48 with ten-repeat 5-fold cross validation. We
used the status of synonymous mutations on the same set of genes as a negative
control training model. For each training, the number of features (mutated genes)
was set to identical between the original and negative control model. The threshold
of the mutation frequency was adjusted so that the same number of features
were used.

The ‘variable importance’ of each feature (mutated gene) was evaluated on the
basis of the mean decrease in accuracy as implemented in the randomForest R
package. Specifically, the importance of the kth feature was measured as the degree
of decrease in prediction accuracy upon random permutation of all values in the
kth feature of the training dataset. We then performed a pathway analysis for the
genes whose variable importance was greater than 3 and their interaction partners
in the protein interactome. We used an integrative interactome map encompassing
an integrated physical interaction network, referred to as Interactome, created by
merging yeast two-hybrid-based proteome-scale interacting pairs27, integrated
literature-based protein-protein interactions27, binary interactions identified from
Stitch-seq interactome mapping29, and interactions from the high-quality protein
interactome from the HINT database28. Enrichr49 was used to analyse the extended
gene on the basis of pathways and functional terms retrieved from Reactome50,
Panther51, and Gene Ontology52. Panther51 was performed with its original
pathway analysis algorithm. Additional gene ontology terms that were not found in
Enrichr49 were retrieved by using DAVID53 GOTERM_BP_DIRECT.

Regression analysis for resistance or immune evasion. We used SMC cohort
and Roh cohort for the quantitative analysis of the explanatory power of our
exomic prediction in comparison with previously known resistance parameters.
The resistance parameters reported in the literature were obtained from the data of
SMC cohort. Roh cohort was used because copy number alteration (gain or loss)
and tumour heterogeneity were available. For the TCGA samples set apart as
testing data, we employed the SCNA level calculated in a previous work11. We

performed regression analysis for resistance or immune evasion on these resistance
parameters together with our mutation based-prediction scores. The raw values of
the resistance parameters were scaled from 0 to 1 as

scaled eið Þ ¼ ei � Emin

Emax � Emin
ð3Þ

where ei indicates the ith value of variable E. Emin and Emax indicate the minimum
and maximum value for variable E, respectively. Our mutation based-prediction
score was given as the vote ratio ranging from 0 to 1 that was provided by the
random forest predictor. Therefore, this score was used without scaling. We then
performed multiple linear regression by the simple, lasso, elastic net, and ridge
regression method with 5-fold cross validation implemented in the glmnet R
package54. The ROCR55 R package was used to calculate the AUC to assess the
accuracy of each regression model. The variable importance of each feature in the
regression model was evaluated on the basis of generalised cross-validation (GCV)
implemented by the glmnet R package.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data including clinical information and mutation/neoantigen calls for our checkpoint
blockade cohort are provided as Supplementary Data. The source data underlying Fig. 1–
5 are provided as a Source Data file.

Code availability
Codes for implementing the CNN model to predict peptide-MHC class I binding were
made available at the authors’ webpage (http://omics.kaist.ac.kr/resources).
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