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We propose thermally-populated domain walls (DWs) in an easy-plane ferromagnetic insulator as
robust spin carriers between two metals. The chirality of a DW, which serves as a topological charge,
couples to the metal spin accumulation via spin-transfer torque and results in the chirality-dependent
thermal nucleation rates of DWs at the interface. After overpopulated DWs of a particular (net)
chirality diffuse and leave the ferromagnet at the other interface, they reemit the spin current by spin
pumping. The conservation of the topological charge supports an algebraic decay of spin transport
as the length of the ferromagnet increases; this is analogous to the decaying behavior of superfluid
spin transport but contrasts with the exponential decay of magnon spin transport. We envision that
similar spin transport with algebraic decay may be implemented in materials with exotic spin phases,
such as spin ices, by exploiting topological characteristics and the associated conserved quantities
of their excitations, as in the case of, e.g., spin-ice monopoles.

PACS numbers: 75.76.+j, 75.78.-n, 66.30.Lw, 75.10.Hk

Introduction.—Spintronics, or spin-transport electron-
ics, exploits spin degrees of freedom in condensed mat-
ter systems to improve information processing technology
that is traditionally based on electric charge [1]. Con-
ducting materials have been used to transport spin by
polarizing itinerant electrons, which is associated with
undesired energy dissipation due to the electronic con-
tinuum. Magnetic insulators, which are immune to Joule
heating, provide alternative platforms to seek an efficient
spin transport channel. Superfluid spin transport [2–
5] has been proposed for long-ranged spin transmission
in magnetic insulators with easy-plane anisotropy. The
spin superfluidity, however, can be destroyed by U(1)-
symmetry-breaking anisotropy within the easy plane.

Topological solitons in magnetic materials are non-
linear excitations that are protected by their nontriv-
ial topology [6]. A domain wall (DW) in an easy-axis
magnet is a prototypical topological soliton, which can
store and deliver information as demonstrated in the
racetrack memory [7]. DWs can be driven by various
means, e.g., an external magnetic field [8], an electric
current (in conducting systems) [9], or heat flux [10–16].
At a finite temperature, DWs with damped dynamics un-
dergo Brownian motion due to a random force dictated
by the fluctuation-dissipation theorem [17–21]; under a
temperature gradient, Brownian motion leads to a diffu-
sive transport (thermophoresis) of DWs [22].

In this Rapid Communication, we show that
superfluid-like spin transport can be achieved by utilizing
thermally-populated DWs in an easy-plane ferromagnetic
insulator with an additional easy-axis anisotropy within
the easy plane. Long thin ferromagnetic strips, for ex-
ample, are naturally endowed with such anisotropies due
to magnetostatic interactions [8, 23]. See Fig. 1 for illus-
tration. A DW is characterized by its chirality q = ±1,
associated with the sense of circulation of the magne-
tization within the easy plane [6]. The chirality of a
DW is protected in the XY ferromagnet by topology,
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FIG. 1. (color online). An easy-xy-plane ferromagnetic in-
sulator with an additional easy-axis anisotropy in the x di-
rection is sandwiched between two metals. The spin-transfer
torque caused by the out-of-equilibrium spin accumulation
µ in the positive z direction prefers injection of DWs with
the clockwise-rotating magnetization. The annihilation of
these DWs generates the spin current into the right metal
via spin pumping. In the diffusive limit of DW motion, the
spin current decays algebraically as the ferromagnet’s length
increases.

and we thus refer to it as the topological “charge.” Sup-
pose the ferromagnet is driven out of equilibrium by the
spin accumulation in the positive z direction in the left
metal. The induced spin-transfer torque nucleates DWs
with the clockwise-rotating magnetization. When these
DWs leave the ferromagnet toward the right metal, the
magnetization at the interface rotates counterclockwise,
which, in turn, generates the spin current into the metal
via spin pumping. In the diffusive regime of DW mo-
tion, the spin current transported by DWs decays alge-
braically as in superfluid spin transport [5] owing to the
conservation of the topological charge. This topological
spin transport can be inferred by measuring the drag co-
efficient in a magnetoelectric circuit that was proposed
in Ref. [5] for detecting superfluid spin transport.

Main results.—The model system consists of a quasi
one-dimensional easy-xy-plane ferromagnetic insulator
with an additional easy-x-axis anisotropy attached on
both sides by nonmagnetic metals. In equilibrium, the
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FIG. 2. (color online). (a), (b) The DWs with the topological
charge q = 1. (c), (d) The walls with q = −1.

anisotropy lays the local spin density s ≡ sn in the xy
plane, which allows us to parametrize its direction as
n = (cosφ, sinφ, 0). A DW is a topologically stable equi-
librium texture that interpolates the two uniform ground
states, φ ≡ 0 or π. Its associated winding is characterized
by the topological charge:

q ≡ − 1

π

∫
dx ∂xφ , (1)

where the integral is over the DW along the longitudi-
nal x axis of the ferromagnet. Figure 2 illustrates four
possible DW types.

A finite temperature causes spontaneous nucleation
and annihilation of DWs. In the bulk, DWs are created
and destroyed always in pairs with opposite charges as
shown in Fig. 3(a) [24]. The topological charge density,
ρ ≡ ρ+ − ρ− is, thus, preserved in the bulk [Fig. 3(b)
and (c)], where ρ± are the linear densities of DWs with
q = ±1, respectively. A topological charge can be
injected or ejected through the boundaries of the fer-
romagnet. In equilibrium, the DW density is charge-
independent; ρ± → ρ0 ∝ exp(−E0/T ), where E0 is the
DW energy.

A DW should generally behave as a particle immersed
in a viscous medium due to its coupling to, e.g., lattice vi-
brations [19] or other microscopic degrees of freedom. As
such, it must exhibit Brownian motion at a finite temper-
ature due to random forces, whose existence is dictated
by the fluctuation-dissipation theorem [17]. For a con-
glomerate of DWs that diffuse by Brownian motion, the
dynamics of the topological charge density is described
by the Fokker-Planck equation [22]:

∂tρ+ ∂xI = 0, I ≡ −D∂xρ , (2)

in the absence of an external force, where I is the topo-
logical charge current. In equilibrium, the density and
the current of the topological charge are zero; ρ = 0 = I
according to the reflection symmetry in the xz plane and
the time reversal symmetry.

The topological charge density can be injected by per-
turbing the ferromagnet by the nonequilibrium z axis
spin accumulation in the left metal, µ ≡ µẑ, which
we assume positive, µ > 0, for concreteness. The
spin-transfer torque caused by the spin accumulation is
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FIG. 3. (color online). Schematic for the conservation of
the total topological charge. (a) A pair of DWs with oppo-
site charges, so that the direction of the magnetization does
not wind the circle as shown in the right. The magnetiza-
tion texture is, therefore, topologically trivial and can be cre-
ated or destroyed spontaneously. (b), (c) A pair of DWs with
the same charge. The direction of the magnetization winds
around the circle once, which makes the textured configura-
tion topologically stable from thermal annihilation. The total
topological charge, i.e., the net winding number, is conserved
during interactions between DWs.

τ = (g′L+gLn×)(µ×n)/4π, where g↑↓i ≡ gi+ıg′i is the ef-
fective complex spin mixing conductance associated with
the ferromagnet/metal-i interface [25]. The torque does
work on the ferromagnet favoring the nucleation of DWs
with the positive charge: W q = qgLµS/4, where q is
the charge of the wall and S is the cross-sectional area
of the ferromagnet. The resultant nucleation rate of the
topological charge is ΓLδW/T to linear order in the bias,
where ΓL is the equilibrium-nucleation rate of DWs at
the left interface and δW ≡ W+ −W− = gLµS/2 is the
difference between the two works.

The injected topological charges diffuse by Brownian
motion and can leave the ferromagnet through the right
boundary. The conservation of the topological charge
leads to the steady-state current (as derived below):

I =
gLµ

RL +RR +RB
, (3)

where

RL ≡
2T

ΓLS
, RR ≡

2T

ΓRS
, RB ≡

2TL

ρ0DS
, (4)

and L is the length of the ferromagnet. We may in-
terpret the topological charge current I as the applied
“voltage” gLµ (with units of J/m2) divided by the total
“resistance” RL + RR + RB (with units of J · s/m2) of
the series circuit, which is made of the interface resis-
tances, RL and RR, and the bulk resistance RB . Note
that the bulk resistance RB is proportional to the ratio
of the length to the cross-sectional area, L/S, which is
analogous to the electrical resistance.

The dynamics of the local spin density at the bound-
aries injects spin current into the metals via spin pump-
ing, which is the Onsager reciprocal effect [17] to spin-
transfer torque. The spin current density associated with
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spin pumping at the right interface is JsR = ~(g′R +
gRn×)ṅ/4π. The annihilation of the topological charge
pumps spin current polarized in the z direction to the
right metal:

JsR =
~gR

4
I =

~gRgLµ
4(RL +RR +RB)

. (5)

This is a central result of our work. Note that the spin
current decays algebraically as a function of the ferro-
magnet’s length L, which is similar to superfluid spin
transport in an easy-plane ferromagnet [5], but contrasts
with the exponential decay of the spin transport by ther-
mal magnons [26]. The formalism that we have developed
is general enough to be readily extended to other easy-
plane magnets, e.g., the case of an antiferromagnet with
an additional easy-axis anisotropy within the easy-plane
is closely analogous [5].

Brownian motion.—Let us provide an explicit model
for Brownian motion of DWs following Ref. [22]. We
assume the following free energy for the ferromagnet:
U [n] =

∫
dV (A|∂xn|2 + Kn2

z − κn2x)/2, where A repre-
sents the exchange stiffness, and the positive coefficients
κ and K parameterize the anisotropy magnitudes. In
equilibrium, the local spin density s = sn lies in the xy
plane, which can be parametrized by its azimuthal angle
φ. A static DW solution centered at X is given by

cos[φ0(x−X)] = ± tanh[(x−X)/∆] , (6)

with the chirality of the DW given by sgn(cosφ0 ·
sinφ0)|x>X , the energy E0 = 2S

√
Aκ, and the width

∆ =
√
A/κ [8]. We assume here and hereafter that

the ambient temperature is much lower than the order-
ing temperature, T � Tc, for which thermally-induced
changes of DW properties can be ignored. Figure 2 de-
picts possible types of DWs.

The dynamics of n at a finite temperature is described
by the stochastic Landau-Lifshitz-Gilbert (LLG) equa-
tion,

s(1 + αn×)ṅ = n× (h + hth) , (7)

where h ≡ −∂U/∂n is the effective field conjugate to
n and hth is the stochastic Langevin field [19]. The
fluctuation-dissipation theorem relates the Gilbert damp-
ing constant to the correlator of the Langevin fields;
〈hthi (r, t)hthj (r′, t′)〉 = 2αsTδ(r − r′)δ(t − t′). The
Langevin equation for the overdamped dynamics of X
can be obtained from the stochastic LLG equation by
the collective coordinate approach [27]:

Ẋ = η−1F + vth , (8)

where η ≡ αs
∫
dV (∂xφ0)2 = 2αsS/∆ is the viscous coef-

ficient, F ≡ −∂U/∂X is the conservative force conjugate
to X, and vth ≡ −η−1

∫
dV (hth · ∂xn) is the stochastic

velocity [28]. The diffusion coefficient D in the corre-
lator of the stochastic velocity, 〈vth(X, t)vth(X ′, t′)〉 =

2Dδ(X − X ′)δ(t − t′), is related to the viscous coeffi-
cient η according to the Einstein-Smoluchowski relation:
D = T/η = ∆T/2αsS (we set kB = 1).
Nucleation and annihilation.—In the bulk of the fer-

romagnet, DWs are nucleated and annihilated always in
pairs with opposite charges [Fig. 3(a)], which preserves
the topological charge density [24]. The source and the
drain of the topological charge, therefore, can be located
only at the boundaries of the ferromagnet. Following
the reaction-rate theory [29], the injection rate of DWs
through each boundary is given by

I± = Γ±(T, µ)− γ±(T )ρ± , (9)

where Γq(T, µ) is the nucleation rate, γq(T ) is the an-
nihilation rate per unit density, and ρq is the density of
q-charged DWs.

The annihilation rate per unit density γq(T ) is the
characteristic velocity parametrizing the escape of DWs,
which, we expect, does not depend on the charge of
DWs: γq(T ) = γ(T ). Interpreting the width ∆ as the
mean free path of DWs yields the mean thermal speed
γ(T ) ∼ D(T )/∆.

The nucleation rate of DWs at each interface is
Γq(T, µ) = ν(T ) exp[−Eq(µ)/T ], where Eq(µ) is the en-
ergy barrier for the entering of a q-charged DW and ν(T )
is the characteristic frequency that depends on details of
the system [30]. We assume that ν(T ) is independent of
the spin accumulation µ, as has been done for the at-
tempt frequency in the Néel-Brown theory [31].
Topological spin transport.—In the presence of a finite

spin accumulation µ = µẑ in the left metal, the energy
barrier necessary for the injection of a q-charged DW is
given by

Eq = E0 + S

∫
dx τ · (δφ ẑ) , (10a)

= E0 − qSgLµ/4 (10b)

to linear order in µ, from which we obtain the charge-
dependent work W q = qSgLµ/4 done by spin-transfer
torque.

When the spin accumulation is in the positive z direc-
tion, µ > 0, the entering of DWs with the positive charge
q = 1 is favored over q = −1. The nucleation rates are
Γ±(T, µ) = Γ(T )(1 +W±/T ) to linear order in µ, where
Γ(T ) ≡ Γ(T, µ = 0) is the equilibrium nucleation rate.
The injection rate of the topological charge through the
left interface is given by

IL ≡ I+L − I−L = ΓL(T )δW/T − γL(T )ρL . (11)

In the bulk, the topological charge current is I = −D∂xρ
from the Fokker-Planck equation (2).

At the right interface, in the absence of the nonequi-
librium spin accumulation, the nucleation rate of a DW
is independent of the charge; the topological charge does
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not enter the ferromagnet, but only leaves it. The topo-
logical charge current is, therefore, given by

IR = γR(T )ρR . (12)

The conservation of the topological charge density,
I = IL = IR, leads to the steady-state solution with
the uniform topological charge current,

I =
ρ0

γ−1L + γ−1R + L/D

δW

T
, (13)

which can be recast as Eq. (3). γL and γR are the average
velocity of a topological charge to cross the left and right
interface, respectively; D/L is the average velocity of a
topological charge traversing the ferromagnet, which can
be seen from D/L = L/δt, where δt is the average time
for a DW to travel the distance L.

The spin current density by spin pumping through the
right interface is JsR = ~(g′R + gRn×)ṅ/4π. Its z com-

ponent is JsR ≡ ẑ · JsR = ~gRφ̇/4π to linear order in the
bias. In the steady state with the current I of the charge
density −∂xφ/π, time evolution of the azimuthal angle φ
is given by

φ̇/π = I . (14)

The resultant spin current is JsR = ~gRI/4 in Eq. (5).
Quantitative estimates.—For quantitative estimates,

let us take following parameters of YIG [5, 32]: the spin
angular momentum density s = 10 ~/nm3, the Gilbert
damping constant α = 10−4, and the stiffness coefficient
A = 5 × 10−12 J/m. Long thin YIG strips with thick-
ness t = 2 nm and width w = 50 nm are given (by
the dipolar energy) the shape anisotropy parametrized
by K = 4× 104 J/m3 and κ = 2× 103 J/m3 [33].

The algebraical decaying of topological spin transport
manifests clearly when the ferromagnet’s length L is
much larger than the crossover length L∗ ≡ D/γ, for
which the bulk resistance dominates the interface ones,
RB � RL, RR. The annihilation rate is estimated as
γ ∼ D/∆, which yields the crossover length L∗ ∼ ∆ =
60 nm. The Boltzmann factor is exp(−E0/T ) ∼ 10−2 at
room temperature T = 300 K.
Discussion.—The topological spin transport by diffu-

sion of DWs can be experimentally detected in a hy-
brid structure consisting of a ferromagnetic insulator and
two identical strong spin-orbit coupled metals, such as
Pt|YIG|Pt (see Fig. 4), as proposed for superfluid spin
transport [5]. Given the applied electric-current density
JcL in the left metal, the spin-current injection into the
right metal induces the electric-current density JcR via
the inverse spin Hall effect, which defines the (negative)
drag coefficient, D ≡ −JcR/JcL.

Figure 4 schematically depicts the drag coefficient as
a function of a temperature in two cases: the presence
and absence of an easy-axis anisotropy within the easy
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FIG. 4. (color online). Schematic plot of the drag coefficient
D = −JcR/JcL normalized by D0(Lα/L) as a function of the
ambient temperature T/E0, where E0 is the DW energy. The
red straight line is for the absence of anisotropy within the
easy plane, κ = 0. The blue solid curve is for the presence
of an easy-axis anisotropy, κ > 0 at low temperatures T <
3E0/4. The blue dotted line shows speculative extrapolation
of the solid curve to higher temperatures T ∼ E0.

plane, κ = 0 and κ > 0. We focus on sufficiently long
magnetic wires, for which algebraic decaying is promi-
nent: L � Lα for κ = 0 and L � L∗ for κ > 0, where
Lα ≡ ~g/2παs (∼ 1 µm for YIG) and g is the real part
of the effective mixing conductance of the metal [5]. For
κ = 0, superfluid spin transport is sustained by a planar
spiraling texture of the magnetization. The drag coef-
ficient is independent of a temperature; D = D0(Lα/L)
with D0 ∼ 0.1 for 1 nm thick platinum [5]. For κ > 0,
superfluid-like spin transport is realized by Brownian dif-
fusion of DWs. UsingD = T∆/2αsS, the drag coefficient
is D(T ) = π2∆ρ0(T )D0(Lα/L) for dilute DWs, T � E0.
The density of DWs is given by ρ0(T ) = ∆−1

√
8E0/πT

[34], which yields the blue solid line in Fig. 4. When
E0 → 0, D → D0(Lα/L); the algebraic decay is retained,
provided that the temperature is well below the order-
ing temperature T � Tc so that the conservation of the
topological charge is maintained [24].

Thermal magnons, which have been disregarded in our
treatment, can influence the diffusive motion of DWs and
the associated spin transfer. Thermal magnons interact
with DWs and can affect the diffusion coefficient D at
temperatures higher than the magnon’s energy gap [21].
This could be captured by modifying the diffusion coef-
ficient D, which enters in our main result, Eq. (5). In
addition, thermal magnons injected at the biased inter-
face would exert a chirality-independent drag force on
DWs within the spin-diffusion length [10–15, 26]. The
associated change in the proposed DW spin transport is
quadratic order in the bias, and, therefore, the algebraic
superfluid-like behavior of spin transport is not modified
at the linear order in the bias.

There exist other materials with exotic spin phases
supporting localized excitations with conserved
“charges,” e.g., monopoles in spin ices with mag-
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netic charges [35]. These deconfined monopoles diffuse
by Brownian motion as experimentally demonstrated
[36], which leads us to envision that spin transport
decaying algebraically may be implemented in a broader
class of materials.
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Gèophys. 5, 99 (1949).

[39] S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista,
M. Bode, E. Y. Vedmedenko, and R. Wiesendanger,

Phys. Rev. Lett. 103, 127202 (2009); M. Eltschka,
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T. Kasama, R. E. Dunin-Borkowski, L. J. Heyderman,
H. J. van Driel, and R. A. Duine, 105, 056601 (2010).


