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Motivated by the recent study on the quasiparticle-induced friction of solitons in superfluids,
we theoretically study magnon-induced intrinsic friction of a domain wall in a one-dimensional
ferromagnet. To this end, we start by obtaining the hitherto overlooked dissipative interaction
of a domain wall and its quantum magnon bath to linear order in the domain-wall velocity and to
quadratic order in magnon fields. An exact expression for the pertinent scattering matrix is obtained
with the aid of supersymmetric quantum mechanics. We then derive the magnon-induced frictional
force on a domain wall in two different frameworks: time-dependent perturbation theory in quantum
mechanics and the Keldysh formalism, which yield identical results. The latter, in particular, allows
us to verify the fluctuation-dissipation theorem explicitly by providing both the frictional force and
the correlator of the associated stochastic Langevin force. The potential for magnons induced by
a domain wall is reflectionless, and thus the resultant frictional force is non-Markovian similarly to
the case of solitons in superfluids. They share an intriguing connection to the Abraham-Lorentz
force that is well-known for its causality paradox. The dynamical responses of a domain wall are
studied under a few simple circumstances, where the non-Markovian nature of the frictional force
can be probed experimentally. Our work, in conjunction with the previous study on solitons in
superfluids, shows that the macroscopic frictional force on solitons can serve as an effective probe
of the microscopic degrees of freedom of the system.

I. INTRODUCTION

Solitons, stable nonlinear solutions in continuous fields
theories, and their interactions with collective excitations
have attracted much attention in a broad range of fields
such as particle physics,1 optics,2 and condensed matter
physics3 because of fundamental interest as well as prac-
tical applications. Quasiparticles, elementary quanta of
collective excitations, experience effective forces induced
by the background solitons. The dynamics of solitons
are, in return, influenced by the quasiparticles scatter-
ing with them. In particular, at finite temperatures, the
thermal bath of quasiparticles can generate a determin-
istic frictional force and a stochastic Langevin force on a
soliton. These two forces are caused by the same micro-
scopic degrees of freedom, and, for that reason, are linked
by the general relationship, which is manifested through
the fluctuation-dissipation theorem.4,5

Recently, Efimkin et al. 6 , including one of us, have
studied the frictional force experienced by a bright soli-
ton in one-dimensional superfluids due to its interaction
with Bogoliubov quasiparticles. The Ohmic friction that
is linear in the velocity of the soliton is absent due to
the integrability of the considered system. Instead, the
frictional force is nonlocal in time and super-Ohmic in
the low-frequency regime, about which the authors made
an intriguing connection to the Abraham-Lorentz force
that has been known in the classical electrodynamics
for its causality paradox.7,8 In addition, by using the
Keldysh formalism,9 they obtained analytical expressions
for the quasiparticle-induced frictional force and stochas-
tic Langevin force on equal footing, which allows them
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FIG. 1. Schematic illustration of a ferromagnetic domain wall
and its thermal magnon bath, which induces a non-Markovian
frictional force and a colored stochastic Langevin force on the
domain wall. X(t) represents the position of the domain wall;
ξk parametrizes the amplitude of magnon fluctuations. See
the main text for details.

to explicitly verify the fluctuation-dissipation theorem.
Motivated by this study on solitons in superfluids, we

reinvestigate an analogous problem in magnetism: the
magnon-induced frictional force on a domain wall in one-
dimensional ferromagnets, which is a classical example
of topological solitons in magnets.10,11 See Fig. 1 for a
schematic illustration. The dynamics of magnetic do-
main walls and their interactions with magnons have
been extensively studied in magnetism and spintronics
because of fundamental interest as well as technolog-
ical applications exemplified by the magnetic domain-
wall racetrack memory12 and the magnonic domain-wall
waveguides.13 For example, the injection of the magnon
current has been shown both theoretically13 and experi-
mentally14 to be able to drive a domain wall via the reac-
tive spin-transfer torque, offering a non-electric knob to
control a domain wall that can be utilized in the recently
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developing field of insulator spintronics.15 The topic of
interest in this paper is the magnon-induced frictional
and stochastic force of a domain wall, which can give
rise to, e.g., the thermal diffusion of a domain wall that
can be utilized in spin caloritronics aiming at thermal in-
formation processing.16 It is a multifaceted phenomenon
that involves several mechanisms, some of which have
been identified previously as follows.17–21 Firstly, in 1990,
Bouzidi and Suhl 17 identified the frictional force on a
domain wall that is given rise to via the Cherenkov-type
magnon radiation which occurs only when the domain-
wall velocity V is above the radiation threshold velocity.
Secondly, in 1992, in the context of quantum diffusion of
domain walls, Stamp 18 identified a contribution of two-
magnon scattering processes to the domain-wall energy
dissipation that is of fourth order in the domain-wall ve-
locity ∝ V 4 by accounting for the temporal change of the
domain-wall-induced potential for magnons due to the
motion of the domain wall. Thirdly, Braun and Loss 20

in 1996 studied the damping force on a domain wall by
taking account of the elastic scattering of magnons off the
domain wall, which is originated in the kinetic part—the
spin Berry phase—of the Lagrangian unlike the previ-
ously investigated interaction terms rooted in the poten-
tial energy of the system. Due to the elastic nature of the
considered scattering, the resultant damping kernel van-
ishes below the critical frequency given by the spin-wave
gap. The associated energy dissipation is of second order
in the domain-wall velocity ∝ V 2. Fourthly, Le Maho
et al. 21 in 2009 studied the effects of spin waves on the
current-induced domain-wall dynamics in metallic ferro-
magnets. They identified another magnonic contribution
to the energy dissipation that is of fourth order in the
domain-wall velocity ∝ V 4 (in the absence of a charge
current), which is rooted in the magnon creation and an-
nihilation processes whose rates are proportional to the
domain-wall velocity squared.

In this paper, we study the magnon-induced friction
on a domain wall along the line of by Braun and Loss 20 ,
but extending it by including the effects of the inelas-
tic scattering of magnons off the domain wall that were
neglected therein. The resultant magnonic contribution
to the domain-wall dissipation kernel is gapless, differ-
ing from the gapped one obtained in Ref.20, and it is of
quadratic order in the domain-wall velocity ∝ V 2, sim-
ilar to the result in Ref.20 but differing from the oth-
ers.18,19,21 ∝ V 4. More detailed comparison of our work
with the previous ones is given in Sec. V. Since the dis-
sipation kernel identified in this work is gapless and of
second order in the domain-wall velocity, it is expected
to govern the sufficiently slow dissipative dynamics of
domain walls by dominating the other contributions that
are either of fourth order in the domain-wall velocity or
inoperative at low frequencies. To integrate out the ther-
mal magnon bath, Braun and Loss 20 employed the Mat-
subara formalism22 by working with the imaginary-time
Euclidean action. However, to recover the real-time dy-
namics from the imaginary-time results, one needs to per-

form the Matsubara analytical continuation, which can
be often cumbersome.9 For this reason, instead of the
Matsubara formalism which lacks physical transparency
as stated in Ref.23, we employ the following two methods
that keep the dynamics in real time: the Keldysh for-
malism9, which was used successfully for an analogous
problem in superfluids,6 and the time-dependent pertur-
bation theory in quantum mechanics24, which provides
an intuitive real-time picture of the microscopic processes
responsible for the magnon-induced frictional force as will
be shown below.

Specifically, we first identify a Berry-phase-induced
coupling between a domain wall and its thermal magnon
bath, with a focus on dissipative effects that have
been overlooked heretofore. Then, by integrating out
the magnon bath, we derive the following generalized
Langevin equation5,25,26 for the dynamics of a domain
wall:

MẌ(t) +

∫ t

−∞
dt′η(t− t′)Ẋ(t′) = F (t) + ζ(t) , (1)

where the frictional force, the second term on the left-
hand side, is induced by the aforementioned coupling.
Here, X(t) and M are the position and the effective
mass of a domain wall; η(t) is the retarded response ker-
nel;27 F (t) and ζ(t) are the external and the stochastic
(Langevin) forces on a domain wall. The deterministic
response kernel and the stochastic force are linked by the
quantum fluctuation-dissipation theorem via the spectral
function J(ω) as follows:4,5,25

η(t) =
2Θ(t)

π

∫ ∞
0

dω J(ω) cos(ωt) , (2)

〈ζ(t)ζ(0)〉 =
1

π

∫ ∞
0

dω
~ωJ(ω)

tanh(~ω/2T )
cos(ωt) , (3)

where Θ(t) is the Heavyside step function. Hereafter,
the Boltzmann constant is set to unity, kB = 1, and
the spectral function J(ω) is the real dissipative part
of the Fourier transform of the response kernel, J(ω) =
Re η[ω].28 In the classical limit, where the temperature
is much higher than the characteristic frequency of the
dynamics, T � ~ω, they satisfy the classical fluctuation-
dissipation theorem: 〈ζ(t)ζ(0)〉 = Tη (|t|).25,29

There is no reflection of magnons scattering off a
domain wall,30 and thus there is no Ohmic frictional
force.6,31 However, a finite viscous force is induced by
backreaction of thermal magnons that are perturbed by
the domain-wall acceleration (i.e., temporal variation of
the domain-wall velocity), analogous to the reactive ef-
fects of electromagnetic radiation on the motion of a
charged particle.8 The resultant viscous force is non-
Markovian and super-Ohmic in the low-frequency regime
similarly to the case of superfluid solitons.32 Although
the predicted phenomenon is similar, our theory is sim-
plified in comparison to the superfluid counterpart in the
appropriate limit, where the quasiparticle-soliton scatter-
ing process preserves the number of quasiparticles.
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The paper is organized as follows. In Sec. II, we obtain
exact solutions for a domain wall with spin waves on top
of it in a one-dimensional ferromagnet. We then derive
their interaction to linear order in the domain-wall veloc-
ity and quadratic order in spin-wave amplitudes, which
stems from the spin Berry-phase term in the Lagrangian.
The identification of this interaction, which can be found
in Eq. (19), is our first main result. In Sec. III, by treat-
ing a domain wall as a classical particle embedded in a
magnonic quantum bath, we derive the expression for the
magnon-induced response kernel η(t), which is our second
main result that can be found in Eq. (30), in two different
ways. First, we employ the time-dependent perturbation
theory in quantum mechanics24 to obtain the frictional
force. This approach helps us understand the force’s ori-
gin in that a domain wall loses its energy to thermal
magnons via inelastic scattering. Second, we derive the
Langevin equation within the Keldysh formalism,9 which
allows us to obtain explicit expressions for both the fric-
tional force and the stochastic Langevin force on equal
footing and thereby to verify the fluctuation-dissipation
theorem. Two independent approaches yield identical
results. In Sec. IV, we discuss dynamic responses to an
oscillating force and experimental prospects to probe it,
which can be performed by time-resolved magnetic imag-
ing techniques as done for observing the GHz domain-
wall oscillations33 and the GHz vortex-core oscillations34

in NiFe thin films. In Sec. V, we compare our results with
those of the existing literature17–21 in detail and discuss
key approximations made in our model. In Sec. VI, we
conclude the paper by discussing an outlook on future
work.

II. A DOMAIN WALL AND SPIN WAVES

Our model system is a one-dimensional ferromagnet,
which is described by the following Hamiltonian:

H =

∫
dx
[
An′2 +Ke(1− n2

z) +Khn
2
y

]
/2 , (4)

where the three-dimensional unit vector n represents the
direction of the local magnetization and ′ is the spa-
tial gradient in the x direction. Here, the positive co-
efficients A and Ke parametrize the exchange stiffness
and easy-axis anisotropy along the z axis, respectively,
and the nonnegative coefficient Kh parametrizes hard-
axis anisotropy along the y axis. The dynamics of the
magnet can be described by the following Lagrangian:

L = −s
∫
dxa(n) · ṅ−H , (5)

where s is the spin density per unit length and a is the
vector potential for a magnetic monopole, ∇n×a(n) = n.
The first term accounts for the effects of the spin Berry
phase, which governs the dynamics of the magnet.35

The ferromagnet has two ground states, n ≡ ±ẑ, which
are uniformly polarized along the easy axis. A domain

wall is a solution that minimizes the Hamiltonian H for
boundary conditions, n(x = ±∞) = ±ẑ, which is given
by

cos θ0 = tanh

(
x−X
λ

)
, φ0 ≡ Φ , (6)

where λ ≡
√
A/K is the width of the domain wall, θ and

φ are the polar and the azimuthal angles in the spheri-
cal representation of n = (sin θ cosφ, sin θ sinφ, cos θ).10

Here, X is the position of the domain wall, which
parametrizes the zero-energy mode associated with the
spontaneous breaking of the continuous translational
symmetry; Φ is the azimuthal angle of the domain wall,
which is either 0 or π in the presence of the hard-axis
anisotropy, Kh > 0. In the absence of the anisotropy,
Kh = 0, the Hamiltonian H is invariant under spin rota-
tions about the z axis, and Φ becomes the parameter for
the zero-energy mode associated with the spontaneous
breaking of this continuous spin-rotational symmetry.

To simplify the subsequent discussions, we use natural
units of length, time, and energy, which are given by

λ =
√
A/Ke , τ ≡ s/Ke , ε ≡

√
AKe , (7)

respectively. These parameters have natural interpre-
tations in terms of domain-wall characteristics: λ is
the domain-wall width, 2ε is the domain-wall rest en-
ergy; c ≡ λ/τ is the domain-wall velocity for Cherenkov
magnon radiation, which refers to the phenomenon of
magnon generation by sufficiently fast domain-wall mo-
tion.36 Also note that the product of the energy and the
time scales is given by ε · τ = sλ, which represents the
total spin contained within the domain-wall width. The
time scale τ also sets the energy scale of a magnon as will
be shown below. Using these scales amounts to setting
the parameters, A,Ke, and s to 1 and replacing the hard-
axis anisotropy coefficient Kh by a dimensionless number
κ ≡ Kh/Ke. In this paper, unless specified, we do not
consider the extrinsic damping of spin dynamics that can
arise due to the coupling to the nonmagnetic degrees of
freedom, such as phonons or electrons, in order to focus
on our main interest, i.e., the intrinsic damping due to
magnons.

A. Spin waves on a static domain wall

The exact solutions of spin-wave modes on a static do-
main wall are known,30,37 which we present below. To
simplify calculations, we set X = 0 and Φ = 0 in this
section without loss of generality. We start by expanding
the Lagrangian to the quadratic order in the deviations
from the domain-wall solution, which we describe by two
variables: δn1 = δθ represents the change of the magne-
tization in the plane of the domain-wall spin texture and
δn2 = sin θ0δφ represents the change out of the plane.
The first-order term is absent because the domain wall
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is a stationary solution to the equations of motion. The
second-order term is given by

L2 = −
∫
dx(δn1δṅ2+δn1H1δn1/2+δn2H2δn2/2) , (8)

where the first term is from the spin Berry phase and the
second and third terms are from the Hamiltonian. Here,
the Hamiltonian densities are given by

H1 = − d2

dx2
+ [1− 2sech2(x)] = a†a , (9)

H2 = − d2

dx2
+ [1 + κ− 2sech2(x)] = a†a+ κ , (10)

where a ≡ d/dx + tanhx, and a† ≡ −d/dx + tanhx.
The equation of motion for spin waves is given by the
following “Schrödinger equation”:

d

dt

(
δn1

δn2

)
=

(
0 H1

−H2 0

)(
δn1

δn2

)
. (11)

Note that the Hamiltonian densities include the spatially
varying potentials as a consequence of the translational
symmetry breaking due to a domain wall. The potential
U(x) = −2sech2(x), which is named after Pöschl and
Teller 38 , has a remarkable property: waves pass through
it without any reflection as shown below.

With the aid of the technique of supersymmetric quan-
tum mechanics,39 the above Hamiltonian densities can be
related to the following simpler ones:

H0
1 = − d2

dx2
+ 1 = aa† , (12)

H0
2 = − d2

dx2
+ 1 + κ = aa† + κ . (13)

These Hamiltonian densities are translationally invari-
ant and thus can be diagonalized by expanding the fields
in terms of plane waves ∝ exp(ikx). The correspond-
ing spin-wave modes are those of a uniform ground state
and they are elliptical in the presence of the hard-axis
anisotropy, κ > 0. Continuum solutions to the original
problem can be obtained by applying the operator a† to
these plane-wave solutions and it can be shown that they
share the same frequency.

The resultant continuum solutions to Eq. (11) can be
summarized as follows:

δn1(x, t) =

∫
dk

2π

√
2~ckRe

[
ξk(t)ψk(x)e−iωkt

]
, (14)

δn2(x, t) =

∫
dk

2π

√
2~c−1

k Im
[
ξk(t)ψk(x)e−iωkt

]
,(15)

where ck = [(1 + k2 + κ)/(1 + k2)]1/4 represents the el-
lipticity of a spin wave mode at momentum k,

ωk =
√

(1 + k2)(1 + k2 + κ) (16)

is the frequency at momentum k, and ξk(t) is the
complex-valued amplitude that varies slowly on the time

scale set by the spin-wave gap ω0. The complex-valued
function ψk(x) is given by

ψk(x) =
a†

1− ik e
ikx =

tanh(x)− ik
1− ik eikx , (17)

which satisfies the orthogonality condition,∫
dxψ∗k(x)ψk′(x) = 2πδ(k − k′). With the above

solutions, the second-order Lagrangian term L2 is given
by

L2 =

∫
dk

2π

(
i~ξ∗k ξ̇k − εkξ∗kξk

)
, (18)

where εk ≡ ~ωk is the magnon energy at momentum k.
Besides the continuum modes, there are also two lo-

calized modes, δn1 ∝ ∂xθ0(x) = −sech(x) and δn2 ∝
sin θ0(x) = sech(x), which correspond to the change of
the magnetization upon infinitesimal domain-wall dis-
placement, X 7→ X + δX, and rotation, Φ 7→ Φ + δΦ,
respectively. The dynamics of these modes will be treated
explicitly in the next section by promoting X and Φ to
dynamic variables.

B. Spin waves on a moving domain wall

In order to study the interaction between the domain-
wall motion and spin waves, we allow the domain-wall
position and angle variables to be time dependent, X(t)
and Φ(t). Since our primary interest is on the cou-
pling of the translational motion of the domain wall
and spin waves, we henceforth focus on the case of a
finite hard-axis anisotropy, κ > 0, in which the an-
gle variable Φ becomes a slave mode of the position
variable X as will be shown below. By using the ex-
pressions θ(x, t) = θ0 (x−X(t)) + δθ (x−X(t), t) and
φ(x, t) = Φ(t) + δφ (x−X(t), t) in the Lagrangian L

[Eq. (5)] and expanding it to the linear order in Ẋ and
the quadratic order in δn1, δn2, and Φ, we obtain the
following terms:

L =2ΦẊ − κΦ2

+

∫
dk

2π

[
i~ξ∗k ξ̇k − εkξ∗kξk

]
+ ẊPm ,

(19)

where Pm is the total momentum of spin waves given
by40

Pm =

∫
dkdk′

(2π)2
πkk′ξ

∗
kξk′e

i(ωk−ωk′ )t , (20)

with the momentum-space hopping amplitude

πkk′ =
1

2

(
ck
ck′

+
ck′

ck

)∫
dxψ∗k(−i~∂x)ψk′ . (21)

Here, we expanded δθ and δφ as the linear combinations
of the continuum spin-wave modes only by excluding the
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zero modes, and disregarded the rapidly oscillating terms
at frequencies higher than the spin-wave gap ω0 by focus-
ing on slow dynamics. There is no linear term in the spin-
wave field ξk due to the orthogonality of the spin-wave
eigenstates.

In Eq. (19), the right-hand side on the first line de-
scribes the dynamics of the two generalized coordinates
of the domain wall, X and Φ,41 from which we can obtain
the equation of motion for Φ: Φ = Ẋ/κ.10 As stated ear-
lier, Φ(t) is completely determined by X(t) and thus is

a slave mode of it. Replacing Φ by Ẋ/κ transforms the
right-hand side on the first line to the domain-wall ki-
netic energy Ẋ2/κ, which leads us to identify 2/κ as the
effective mass M of the domain wall. The second line
describes continuum spin-wave modes. The third line
represents the linear coupling between the velocity of the
domain wall and the total momentum of spin waves. This
coupling is our first main result and constitutes the im-
portant starting point for the subsequent development of
the theory of quantum friction of the domain wall. The
total momentum of the system is given by

P =
dL

dẊ
= MẊ + Pm , (22)

where the first and second terms are the contributions
from the domain wall and spin waves, respectively. Both
contributions are rooted in the spin Berry-phase term
in the Lagrangian, which has already been identified as
a source of the linear momentum of a ferromagnet.42,43

In Appendix A, we discuss an alternative way to derive
the total momentum P using the collective-coordinate
approach.44

By using the spin-wave solutions [Eq. (17)], we can ob-
tain the exact expression for the momentum-space hop-
ping amplitude πkk′ [Eq. (21)] whose last integral factor
is given by∫

dxψ∗k(−i~∂x)ψk′ = 2π~k δ(k − k′)

+
π~

2 sinh(π(k − k′)/2)

k2 − k′2
(1− ik′)(1 + ik)

.

(23)

Let us make a few remarks on the hopping amplitude
πkk′ . First, it is Hermitian, πkk′ = π∗k′k. Second, it has
off-diagonal components, reflecting the breaking of the
translational symmetry due to the domain wall. Third,
the backscattering is absent, πk,−k = 0, similarly to the
case of Bogoliubov quasiparticles on top of superfluid
solitons,6 which stems from the integrability of both sys-
tems.

III. MAGNON-INDUCED FRICTION

In this section, we derive the frictional force on the
domain wall, which is induced by its coupling to ther-
mally excited spin waves. The domain wall is treated as
a heavy semiclassical object, whereas thermal magnons,

quanta of spin waves, are considered to be light and form
a thermal bath for the domain wall, the justification of
which is given in Appendix B. To this end, we take two
different approaches: time-dependent perturbation the-
ory in quantum mechanics and Keldysh formalism. Two
approaches are complementary. The former allows us
to obtain the frictional force with a clear physical pic-
ture of its origin, but it does not provide the fluctuation
properties of the stochastic force directly. The latter ap-
proach is computationally more demanding and thus it
can be more difficult to understand the physical origin of
the friction within it. However, the Keldysh technique is
powerful: it yields the frictional force and the correlator
of the stochastic force on equal footing, which allows us to
check for internal consistency. We will see below that the
magnon-induced friction is induced by the backreaction
of the thermal magnon gas perturbed by the domain-wall
acceleration, which is analogous to the reactive effects of
electromagnetic radiation on the equations of motion of a
charged particle.8 We here focus on two-magnon scatter-
ing with a domain wall while neglecting other scattering
processes involving more magnons by assuming magnons
are sufficiently dilute.

A. Time-dependent perturbation theory

Let us first derive the frictional force by using the time-
dependent perturbation theory. Specifically, we seek the
expression for the response kernel η(t) in the Langevin
equation (1). To treat thermal magnons as the quantum
bath, we quantize spin waves by promoting the complex
scalar fields (ξk , ξ

∗
k), which is the pair of canonically con-

jugate variables, to the magnon annihilation and creation

operators, (ξ̂k , ξ̂
†
k). The term V (t)Pm in the Lagrangian

[Eq. (19)] that couples the domain wall velocity V (t) and
the magnon bath can be interpreted as a time-dependent
term in the Hamiltonian,

Ŵ (t) = −V (t)

∫
dkdk′

(2π)2
πkk′ ξ̂

†
k ξ̂k′e

i(εk−εk′ )t/~ . (24)

By treating this term as a domain-wall-induced pertur-
bation on the magnonic Hamiltonian within the time-
dependent perturbation theory,24 we can derive the prob-
ability that a magnon at the state k is found to be at the
state k′ after time t, which, in its leading order, is given
by

Pkk′(t) =
1

~2

∣∣∣∣∫ t

0

dt′ei(εk−εk′ )t′/~πkk′V (t′)

∣∣∣∣2 . (25)

The transition rate of one magnon from k to k′ is the
time derivative of Pkk′(t), which is given by

Rkk′(t) =
2|πkk′ |2V (t)

~2

×
∫ t

0

dt′ cos

[
(εk′ − εk)(t− t′)

~

]
V (t′) .

(26)
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The transition rate is symmetric with respect to the mo-
mentum exchange, Rkk′(t) = Rk′k(t). Note that the fore-
going history of the domain-wall motion influences the
transition rate of a magnon via the last integral factor.

To derive the frictional force on the domain wall, we
now consider the energy gain of magnons during their
scattering off the domain wall, which is, by the conserva-
tion of the total energy, identical to the energy loss of the
domain wall. Using the previous result on the magnon
transition rate, the energy-dissipation rate from the do-
main wall to the magnon bath is given by

P =

∫
dkdk′

(2π)2
Rkk′(t)(εk′ − εk)fk , (27)

=
1

2

∫
dkdk′

(2π)2
Rkk′(t)(εk′ − εk)(fk − fk′) , (28)

where fk ≡ 1/[exp(εk/T ) − 1] is the Bose-Einstein dis-
tribution function at momentum k. On the other hand,
from the Langevin equation (1) for the domain wall, the
energy dissipation rate is given by

P = V (t)

∫ t

0

dt′η(t− t′)V (t′) . (29)

By matching Eq. (29) to Eq. (27) in conjunction with
Eq. (26), we can obtain the expression for the response
kernel:

η (∆t) =
Θ(t)

~2

∫
dkdk′

(2π)2
|πkk′ |2(εk′ − εk)(fk − fk′)

× cos

[
(εk′ − εk)∆t

~

]
.

(30)

The corresponding spectral function J(ω) in Eq. (2) can
be obtained by the Fourier transformation:

J(ω) =
πω

2

∫
dkdk′

(2π)2
|πkk′ |2(fk − fk′)δ[~ω − (εk′ − εk)] ,

(31)
which can be considered as a manifestation of Fermi’s
golden rule.24 The time-dependent perturbation theory
allows us to obtain the response kernel, but not the au-
tocorrelation of the stochastic force ζ. We, however,
can invoke the fluctuation-dissipation theorem to obtain
it.5 The physical picture of the emergence of the fric-
tional force is the following: Via the interaction term W
[Eq. (24)], magnons absorb the part of the domain-wall
energy, which, in return, gives rise to the frictional force
on the domain wall. Instead of the conservation of the
total energy invoked above, we can alternatively use the
conservation of the total linear momentum to obtain the
same result, the details of which can be found in Ap-
pendix C.

Figure 2 shows the plots of the response kernel η(t)
[Eq. (30)] and the real part of its Fourier transform
J(ω) = Re η[ω] at the temperature T = ε0/10 and in
the vanishing hard-axis anisotropy limit κ = 0. The
dissipation is nonlocal in time and thus the associated
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FIG. 2. Plots of a response kernel in (a) the time domain,
η(t), and (b) the frequency domain, J(ω) = Re η[ω] at tem-
perature T = ε0/10. The solid blue lines show the numerical
evaluations of Eqs. (30) and (31). The dashed red line in
the inset show the analytical expression for the low-frequency
limit of J(ω) in Eq. (32).

stochastic force should have a colored noise. In the limit
of low frequency and low temperature, ~ω � T � ε0, the
response kernel can be approximated by a super-Ohmic
one as follows:

J(ω) ' ~(1 + κ)e−ε0/T

π(2 + κ)2λ2
(ωτ)2 ≡ η0(ωτ)2 , (32)

which is written in physical units instead of natural units
for transparent interpretation. Since the response kernel
is second order in time derivative, the corresponding fric-
tional force is third order in time derivative: FAL ∝

...
X.

This force FAL is known as the Abraham-Lorentz force,
which has been studied in the classical electrodynam-
ics of a charged particle coupled with its own radia-
tion.7 The Abraham-Lorentz force is famous for caus-
ing the causality paradox, invalidating the approximation
taken above. See Sec. IV B for more discussions on the
Abraham-Lorentz force, which includes its proper regu-
larization suggested by Jackson.8 In addition, note that
the response kernel J(ω) vanishes in the classical limit
~→ 0, which indicates the quantum nature of the origin
of the corresponding frictional force.

B. Keldysh formalism

In this section, we use the Keldysh technique9 to de-
rive both the frictional force and the stochastic Langevin
force. Let us first write down the action:

S =
M

2

∫
dtẊ2 +

∫
dt

∫
dk

2π

[
i~ξ∗k ξ̇k − εkξ∗kξk

]
+ Ẋ

∫
dt

∫
dkdk′

(2π)2
πkk′ξ

∗
kξk′e

i(εk−εk′ )t/~ ,

(33)

which is obtained from the Lagrangian L [Eq. (19)] after

replacing Φ with its classical solution Ẋ/κ = Ẋ/2M . By
closely following the approach taken by Efimkin et al. 6

for solitons in superfluids, we will obtain below the qua-
siclassical equations of motion for X as the saddle point
of a one-loop effective action in the Keldysh formalism,
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which corresponds to an expansion of the action to the
quadratic order in Ẋ � 1.

We start by duplicating the dynamic degrees of free-
dom, X → X+ , X− and ξk → ξ+,k , ξ−,k, where the
variables with subscripts + and − reside on the forward
and the backward parts of the Keldysh contour, respec-
tively. The classical degrees of freedom are given by the
average of the duplicated fields: Xc ≡ (X+ + X−)/2

and ξc,k ≡ (ξ+,k + ξ−,k)/
√

2. The quantum degrees
of freedom are given by the difference between them:
Xq ≡ (X+ − X−)/2 and ξq,k ≡ (ξ+,k − ξ−,k)/

√
2.45 In

terms of the classical and the quantum components, the
Keldysh action is given by

SK =2M

∫
dtẊcẊq

+

∫
dt

∫
dt′
∫

dk

2π
ξ†k(t)Ĝ−1

k (t, t′)ξk(t′)

+

∫
dt

∫
dkdk′

(2π)2
πkk′ξ

†
k(t) ˆ̇Xξk′(t)e

i(εk−εk′ )t/~ ,

(34)

where ξk ≡ (ξc,k, ξq,k), † stands for the Hermitian conju-
gation,

Ĝk(t, t′) ≡ −i〈ξk(t)ξ†k(t′)〉

≡
(
GKk (t, t′) GRk (t, t′)
GAk (t, t′) 0

)
= −ie−iεk(t−t′)/~

(
(1 + 2fk) Θ(t− t′)
−Θ(t′ − t) 0

)
,

(35)

and

ˆ̇X =

(
Ẋq Ẋc

Ẋc Ẋq

)
. (36)

Here, GR, GA, and GK are the retarded, advanced, and
Keldysh Green functions, respectively. In the frequency
domain, we have

Ĝk(ε) =

(
GKk (ε) GRk (ε)
GAk (ε) 0

)
=

(
−2πi(1 + 2fk)δ(ε− εk) (ε− εk + i0+)−1

(ε− εk − i0+)−1 0

)
,

(37)

where 0+ represents an infinitesimally small positive
number. By using fk = 1/[exp(εk/T ) − 1], we can
explicitly check that the Keldysh Green functions sat-
isfy GK(ε) = [GR(ε) − GA(ε)] coth(ε/2T ), which consti-
tutes the statement of the fluctuation-dissipation theo-
rem within the Keldysh formalism.

After integrating out the magnon modes, the details of
which is in Appendix E, we obtain the following effective

action for X:

SKeff =

∫
dt

{
2Xq(t)

[
−MẌc −

∫ t

0

dt′η(t− t′)Ẋc(t
′) + ζ(t)

]}
+
i~
2

∫
dt

∫
dt′ζ(t)C−1

s (t− t′)ζ(t′) ,

(38)

where η(t) and Cs(t − t′) = 〈ζ(t)ζ(t′)〉 are given by
Eqs. (2) and (3), respectively, with J(ω) in Eq. (31). The
results within the Keldysh formalism is identical to the
previous ones obtained within the time-dependent per-
turbation theory. Here, we would like to comment on
the origin of the stochastic force ζ(t). It is an auxiliary
field introduced by the Hubbard-Stratonovich transfor-
mation46 that is employed to remove the quadratic-order
term in the quantum component Xq. In this sense, the
stochastic Langevin force ζ(t) is rooted in the intrinsic
fluctuations of the system. The saddle-point solution of
the effective action with respect to the quantum variable
Xq gives the quasiclassical equation of motion for the
coordinate Xc:

MẌc(t) +

∫ t

−∞
dt′η(t− t′)Ẋc(t

′) = ζ(t) , (39)

which is identical to Eq. (1) in the absence of an external
force.

IV. NON-MARKOVIAN FRICTION

We now discuss effects of the non-Markovian frictional
force on the dynamical response of the domain wall.
In this section, we include the local-in-time extrinsic
frictional force and the associated white-noise stochas-
tic force as additional terms in the equations of mo-
tion, which we will contrast with the magnon-induced
non-Markovian friction in order to facilitate the theoret-
ical and experimental distinguishing of the two frictional
forces. In addition, we now return to the physical units
instead of the natural units [Eq. (7)]. The resultant equa-
tion of motion for X is given by

MẌ+

∫ t

0

dt′η(t−t′)Ẋ(t′)+γẊ = F (t)+ζ(t)+ν(t) . (40)

Here, F (t) is an external force on the domain wall,
γ = 2αs/λ parametrizes the Markovian frictional force
rooted in the local-in-time Gilbert damping,47 which is
usually attributed to dissipation to phonon bath, and
ν(t) is the associated stochastic Langevin force.48,49 The

Markovian frictional force γẊ can be derived from the
Rayleigh dissipation function, R = α

∫
dx ṅ2/2 within

the Lagrangian formalism, where α is the dimensionless
Gilbert damping coefficient.44,50 The stochastic force has
a zero average, 〈ν(t)〉 = 0, and a white noise correlation,

〈ν(ω)ν(ω′)〉 = 2πγ
~ω

tanh(~ω/2T )
δ(ω + ω′) , (41)
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as dictated by the quantum fluctuation-dissipation the-
orem.4,5 For high temperatures, T � ~ω, it is reduced
to the classical version: 〈ν(t)ν(t′)〉 = 2γTδ(t − t′). The

Gilbert damping term γẊ and the associated stochas-
tic force ν(t) could be absorbed into the other terms by
the following transformations: η(∆t) 7→ η(∆t) + 2γδ(∆t)
and ζ(t) 7→ ζ(t) + ν(t), but they are retained to be dis-
tinguished from the magnon-induced effects.

A. Periodic force

Let us first consider a simple situation, where the do-
main wall is subjected to a periodic external force:

F (t) = F0 cos(ωt) . (42)

Application of a periodic magnetic field along the easy
axis, H(t) = H0 cos(ωt)ẑ, gives rise to this force with
the magnitude F0 = 2MsH0, where Ms is the saturation
magnetization per unit length. Then, the equation of
motion gives the response of the velocity

〈V (t)〉 = Re
[
µ(ω)F0e

−iωt] , (43)

where the complex mobility µ(ω) is given by

µ(ω) =
1

−iMω + η[ω] + γ
, (44)

and η[ω] is the Fourier transform of η(t). Therefore, by
observing the response of the domain-wall velocity V (t)
to an oscillating magnetic field, we can infer the non-
Markovian part of the frictional force ∝ η[ω], which can
be compared with our results in Eq. (30).

B. Harmonic potential well

Let us now consider the dynamics of the domain wall
trapped in a harmonic potential well, which is described
by an external force F = −kX with a positive constant k.
The consideration of this case is motivated by an exper-
imental work by Saitoh et al. 51 , in which the mass of a
domain wall trapped in an engineered potential well has
been obtained from its dynamic response to an oscillat-
ing electric current. The dynamics of the domain wall at
macroscopic time scales, t � τ , is governed by the low-
frequency part of the response kernel, η[ω] with ωτ � 1.
In the limit of zero frequency, ωτ → 0, the equation of
motion (40) becomes local in time after replacing η[ω] by
its approximation [Eq. (32)]:

MẌ −MτAL

...
X + γẊ = −kX + f(t) , (45)

where τAL ≡ η0τ
2/M and f(t) ≡ ζ(t) + ν(t) repre-

sents the sum of the two stochastic Langevin forces. The
second term, which is third order in time derivative, is
known as the Abraham-Lorentz force,7 which gives rise to

the causality paradox as follows. The response function
χ(ω) in X(ω) = χ(ω)f(ω) is given by

χ(ω) =
1

M(ω2
t − ω2 − iτALω3)− iγω , (46)

where ωt ≡
√
k/M is the undamped frequency of the

domain-wall oscillation. This response function has a
pole in the upper half-part of the complex plane of ω.
For example, the pole is at ωAL ≈ iτ−1

AL for sufficiently

small ωt � τ−1
AL and γ � Mτ−1

AL . The pole in the up-
per half-plane implies the existence of exponentially di-
verging solutions, thereby causing the famous paradox
of the Abraham-Lorentz force. This paradox is an ar-
tifact of the approximation taking the zero-frequency
limit, ωτ → 0. Indeed, the location of the pole is
where the zero-frequency limit is not valid, |ωALτ | =
(8π/κ)(sλ/~) exp(ε0/T )� 1.

This problem can be regularized by treating the non-
Markovian friction as a perturbation to the zeroth-order
equation of motion, MẌ = F , by following Jackson.8

The regularization is executed by modifying the force
term as follows:

MẌ = F + τAL
dF

dt
= F + τAL

[
∂F

∂t
+ Ẋ

dF

dX

]
, (47)

which does not yield runaway solutions or acausal behav-
ior. According to Jackson 8 , it is a sensible alternative to
the Abraham-Lorentz equation for small radiative effects.
Then, the equations of motion for F = −kX is given by

MẌ + (τALk + γ)Ẋ + kX = f(t) . (48)

The corresponding response function is

χ(ω) =
1

M(ω2
t − ω2)− i(τALMω2

t + γ)ω
, (49)

whose poles are in the lower half-plane. Note that the
effective frictional force is sensitive to the trap frequency
ωt, and, for that reason, can be distinguished from the
extrinsic Ohmic friction force∝ γ. See Efimkin et al. 6 for
an analogous discussion on the friction of bright solitons
in superfluids.

C. Experimental considerations

The magnon-induced effects can be inferred via the
complex mobility µ(ω) [Eq. (44)] of a domain wall sub-
jected to an oscillating magnetic field. The magnon-
induced non-Markovian friction is comparable to the
Markovian friction stemming from the Gilbert damping
when J(ω) ∼ γ = 2αs/λ. From the analytical expres-
sion of J(ω) in Eq. (32) and its numerical calculation in
Fig. 2(b), this criteria can be cast as

(ωτ)2e−ε0/T ∼ αsλ

~
. (50)
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Note that the right-hand side includes the factor sλ/~,
which is the total spin contained within the domain-wall
width in units of ~.

To obtain numerical estimates for the temperature T
and the driving frequency ω that are suitable for probing
the non-Markovian friction, let us take the parameters of
a long strip of yttrium iron garnet (YIG) with thickness
t = 5 nm and width w = 20 nm: α = 10−4, s = 10−22

J·s/m, A = 5 × 10−28 J·m, Ke = 9 × 10−13 J/m, and
Kh = 3× 10−12 J/m,52 where the shape anisotropy53 in-
duced by the dipolar interaction is taken into account.54

Note that the coefficients A,Kh, and Ke have units for
the one-dimensional Hamiltonian [Eq. (4)], which are
multiplied from their three-dimensional bulk values by
the thickness t and the width w. This set of parameters
yield the domain-wall width λ ∼ 20 nm, the spin-wave
gap ε0 ∼ 80 mK, the characteristic time scale τ ∼ 100
ps, and the aspect ratio κ = 4. The domain wall contains
enough spin, sλ/~ ∼ 2 × 104, to justify the assumption
that the domain wall is much heavier than magnons (see
Appendix B for the relevant discussion). Based on these
estimates, the magnon-induced non-Markovian friction
and the Gilbert-damping-induced Markovian friction will
be comparable when the temperature and the driving fre-
quency are of the order of the spin-wave gap, T ∼ 50
mK and ω ∼ 1 GHz. For temperatures higher than the
spin-wave gap, the magnon-induced friction may domi-
nate the Gilbert-damping-induced Markovian friction. In
addition, in the high-T regime, where the equilibrium dis-
tribution of magnons can be described by the Rayleigh-
Jeans, the magnon-induced friction would exhibit the al-
gebraic rather than exponential scaling with T . The in-
vestigation of the frequency and temperature dependence
of the complex mobility µ(ω) [Eq. (44)] on an oscillating
magnetic field, which can be conducted by time-resolved
magnetic imaging techniques such as time-resolved scan-
ning transmission X-ray microscopy that were success-
fully employed to observe the GHz domain-wall oscil-
lations in NiFe thin films,33 will allow us to probe the
magnon-induced friction.

V. SUMMARY AND DISCUSSION

We have derived the deterministic frictional force and
the stochastic Langevin force on a domain wall in a one-
dimensional ferromagnet, which is induced by its cou-
pling to the quantum magnon bath, within the two differ-
ent approaches: the time-dependent perturbation theory
in quantum mechanics and the Keldysh formalism. The
derivation has been facilitated by the availability of the
exact solutions of spin waves on top of a domain wall.
We have studied the effects of the non-Markovian fric-
tion on the dynamic response of a domain wall and have
discussed a possible experimental setup to probe it.

Next, let us compare our works with those of the ex-
isting literature. Firstly, in 1990, Bouzidi and Suhl 17

studied how a ferromagnetic domain wall driven by an

external field can lose its energy to magnons for a suf-
ficiently strong magnetic field, thereby self-limiting its
velocity. This frictional force arises only for fast-moving
domain walls since it is rooted in the Cherenkov-type
magnon radiation that occurs when the domain-wall ve-
locity is equal to the common phase and group veloc-
ities of a particular magnon. On the other hand, in
this paper, we have focused on the small domain-wall
velocity regime, where the frictional force is rooted in
the scattering of thermal magnons off the domain wall,
and thus occurs for any domain wall regardless of its
velocity. We would like to mention that spin-wave emis-
sions by domain-wall motion have been recently studied
numerically by solving the Landau-Lifshitz-Gilbert equa-
tion by several groups.55 In addition, the Cherenkov-type
phonon radiation by a moving domain wall,56 which is a
phenomenon analogous to the Cherenkov-type magnon
radiation, has been observed experimentally in the weak
ferromagnet YFeO3 in 1991.57

Secondly, Stamp 18 in 1991 and Chudnovsky et al. 19

in 1992 have studied the problem of the magnon-induced
diffusion of a ferromagnetic domain wall. Their interac-
tion term between magnons and the domain wall comes
from the Hamiltonian H [Eq. (4)], in which magnons ex-
perience the velocity of the domain wall via the effective
potential well, i.e., ∝ sech2(x− V t). The resultant dissi-
pation kernel associated with two-magnon scattering58 is
of fourth order in the domain-wall velocity, ∝ V 4.19 On
the other hand, our interaction term [Eq. (19)] is from
the spin Berry phase and the corresponding energy dissi-
pation is of quadratic order in the domain-wall velocity,
which should dominate the aforementioned force for low-
energy dynamics.

Thirdly, Braun and Loss 20 studied a similar problem
within the Matsubara formalism22 by mapping the model
for a ferromagnet to the sine-Gordon model in the limit
of strong hard-axis anisotropy, Kh � Ke. Note that this
assumption is not made in our work. See Appendix D
for a brief discussion on the limit of strong hard-axis
anisotropy. In addition, they focused on elastic scatter-
ing of magnons off the domain wall by disregarding the
off-diagonal components in the scattering matrix πkk′ ,
and, for this reason, the obtained spectral function is
finite at frequencies above the spin-wave gap. In our
work, we have included the effects of inelastic scatter-
ing of magnons off the domain wall and have thereby
obtained a gapless spectral function, which can be ex-
pected to govern the low-energy dynamics of the domain
wall.

Fourthly, in 2009, Le Maho et al. 21 theoretically in-
vestigated the magnon contributions to current-induced
domain-wall dynamics, which include the magnon-
induced frictional force on the domain wall. They have
focused on the interaction term, Eq. (45) of Ref.21, that
is linear in the magnon operators and quadratic in the
domain-wall velocity. As a result, the energy-dissipation
rate is proportional to the fourth power of the domain-
wall velocity as can be seen in Eq. (53) of Ref.21 in the
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absence of the current. On the other hand, we have fo-
cused on the interaction term [Eq. (19)] that is quadratic
in the magnon operators and linear in the domain-wall
velocity, which yields the energy-dissipation rate propor-
tional to the second power of the domain-wall velocity.
The latter frictional force is expected to dominate the
former for the low-energy dynamics of domain walls, and
vice versa for the high-energy dynamics of domain walls.
In addition, Le Maho et al. 21 studied the renormalization
of the domain-wall mass and width by magnon contribu-
tions, which are not addressed in this paper. At high
temperatures, all the aforementioned magnonic contri-
butions to the domain-wall friction including ours will be
operative. The detailed quantitative comparison of all
the contributions in high-temperature regime is beyond
the scope of our work. Here, we would like to mention
that the generation of the frictional force on a domain
wall by other particles rather than magnons have been
also studied in the past. For example, electron contribu-
tion to the frictional force on a domain wall in a metallic
ferromagnet has been studied in Refs.59.

We have made a few approximations in the paper.
First, we have treated a ferromagnetic wire as a strictly
one-dimensional system by assuming uniform spin config-
urations across the cross section, which is valid for suf-
ficiently thin wires or low temperatures. Secondly, we
have assumed that the domain-wall mass is much larger
than the magnon mass, which is valid for sufficiently long
domain walls, i.e., λ� ~/s. Thirdly, we have focused on
only two-magnon scattering process with a domain wall
by assuming dilute magnon densities, which are valid for
temperatures much smaller than the ordering tempera-
ture, T � Tc. Fourthly, the Gilbert damping, which is
induced by the coupling between the magnetization and
the other external degrees of freedom such as lattice, has
been assumed to form a featureless background for the
magnetization dynamics by being local in space and time
in this paper, although it can be nonlocal in both.60

VI. OUTLOOK

The structure of our theory for the magnon-induced
friction of a domain wall in magnets is analogous to that
for the quasiparticle-induced friction of a soliton in su-
perfluids,6 which allows us to connect two different states
of matter: magnets and superfluids. The two states are
represented by distinct order parameters: the former by
the three-dimensional vector field n associated with the
spontaneous rotational-symmetry breaking and the latter
by the complex-valued field ψ associated with the sponta-
neous phase-symmetry breaking. The link between them
is the shared two-component description of their dynam-
ics, which consists of the coherent order-parameter dy-
namics and the incoherent small-amplitude fluctuations.
For both a magnetic domain wall and a superfluid soliton,
the induced frictional force is a macroscopic manifesta-
tion of the interaction between the two components. This

link between magnets and superfluids can be also found
in the two-fluid theory for spin superfluids in easy-plane
magnets,61 which has been recently developed motivated
by the two-fluid theory for superfluid helium-4.62 We en-
vision that multi-component description of the dynamics
of ordered media may serve as a versatile link between
different subfields of physics for nonequilibrium phenom-
ena.

We have developed the theory of the domain-wall fric-
tion induced by the magnon bath in equilibrium based on
the Keldysh formalism. Since the Keldysh technique is
applicable to systems away from equilibrium, our theory
can be a good starting point to study similar problems
further out of equilibrium, e.g., the dynamics of a do-
main wall in the presence of a temperature gradient.13,63

In addition, from the generalized Langevin equation that
we obtained in this work, the generalized Fokker-Planck
equation can be derived to study the Brownian motion of
domain walls, which would exhibit anomalous behavior
associated with the non-Markovian nature of the viscous
and stochastic forces.64

The approach taken in this paper to study the magnon-
induced friction of a ferromagnetic domain wall can be
also applied to the following problems. First, it has
been recently shown that a magnetic domain wall in
an elastic magnetic wire can be driven by the phonon
current.65 In that work, the scattering of phonons off
of a domain wall has been already worked out analyt-
ically, starting from which one may develop a phonon
version of our magnonic theory of the friction of a do-
main wall. Secondly, an analogous theory can be devel-
oped for the quantum friction of an antiferromagnetic
domain wall within the Keldysh formalism staring from
our earlier work on magnon-induced antiferromagnetic
domain-wall motion.37 This study can complement the
previous results obtained by Ivanov et al. 49 within the
time-dependent perturbation theory. The Lagrangian
of antiferromagnets is invariant under the Lorentz-like
transformations,66 which may facilitate the development
of the theory. Similarly to the case of ferromagnets,
magnons pass through a domain wall without any reflec-
tion in antiferromagnets,49 and thus the magnon-induced
friction is expected to be non-Markovian despite the ex-
istence of the Lorentz-like invariance. Lastly, a system
considered in this work is a one-dimensional ferromagnet
with easy-axis anisotropy, Ke > 0, which has two dif-
ferent ground states and thus can harbor a topological
soliton—domain wall—interpolating them. However, in
the case of an easy-plane ferromagnet without easy-axis
anisotropy, Ke = 0, ground states are continuously de-
generate and thus there is no domain wall. Instead, the
system is known to support the other types of solitonic
nonlinear excitations,11 whose magnon-induced friction
can be investigated within the same formalism used in
this work. In addition, the analogy between easy-plane
magnets and superfluids67 may allow us to identify the
magnetic counterparts of the known results for the fric-
tion of superfluid solitons.6,68
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Appendix A: The total momentum of a domain wall
with spin waves

We derive the total momentum of a domain wall with
spin waves on top of it by using the collective-coordinate
approach,44 which allows us to obtain the conserved mo-
mentum that is independent of a gauge choice for the
spin Berry phase.43 The conserved momentum of a do-
main wall can be obtained by the following expression:

P [q(t)] = −
∫ q(t)

q0

dq′iGXq′i , (A1)

where X is the collective coordinate for the domain-wall
position, {qi} represents the all the other collective co-

ordinates including the azimuthal angle Φ and spin-wave
modes, q0 is an arbitrary initial value of the collective
coordinates, GXqi is the gyrotropic tensor given by

GXqi = −
∫
dxn ·

(
∂n

∂X
× ∂n

∂qi

)
(A2)

=

∫
dxn ·

(
∂n

∂x
× ∂n

∂qi

)
. (A3)

The resultant conserved momentum is given by

P [Φ(t), q̃(t)] =−
[∫

dxn ·
(
∂n

∂x
× ∂n

∂Φ

)]
Φ(t)

−
∫
dxdq̃′i n ·

(
∂n

∂x
× ∂n

∂q̃′i

)
,

(A4)

where {q̃i} are the collective coordinates for the contin-
uum modes besides the two localized modes described by
X and Φ. Here, the first term is the contribution from
a domain wall, whereas the second term that we denote
by Pm is the contribution from spin waves. By using the
linear expansion, n(x, t) ≈ n0(x) + δθ[x, q̃(t)]∂θn0(x) +
δφ[x, q̃(t)]∂φn0(x) and performing an integration over q̃,
we obtain the first term, 2Φ, and the second term as
follows:

Pm[q̃] =

∫
dx

∫ q̃

q̃0

dq̃′i sin θ0(x)

(
∂δθ[x, q̃′]

∂q̃′i
∂xδφ[x, q̃′]− ∂δφ[x, q̃′]

∂q̃′i
∂xδθ[x, q̃

′]

)
, (A5)

=

∫
dx sin θ0(x)

∫ q̃

q̃0

dq̃′i

(
∂δθ[x, q̃′]

∂q̃′i
∂xδφ[x, q̃′] +

∂{∂xδφ[x, q̃′]}
∂q̃′i

δθ[x, q̃′]

)
, (A6)

=

∫
dx sin θ0 δθ[x, q̃]∂xδφ[x, q̃] , (A7)

to quadratic order in Φ, δθ, and δφ. Here, we drop
the contribution from the integrand (∂x sin θ0(x)) δθδφ
that vanishes on the timescale longer than the inverse
of the gap frequency ω−1

0 , and the boundary term (∝
δθ[x, q̃0]∂xδφ[x, q̃0]) from the arbitrary initial collective-
coordinate value q̃0. In conjunction with the spin-wave
solutions in Eqs. (14, 15), this conserved momentum
leads to our results in the main text, Pm (20), πkk′ (21),
and P (22).

Appendix B: Mass of a domain wall versus mass of a
magnon

We compare the mass of a domain wall and that of a
magnon. For more transparent discussions, we use the
physical units instead of the natural units [Eq. (7)] in

this section. The mass of a domain wall is given by

M =
2ε

κc2
, (B1)

where 2ε and c = λ/τ are its rest energy and character-
istic velocity, respectively. From the low-energy limit of
the dispersion of a magnon [Eq. (16)],

εk =
~
τ

[
1 + κ+

(2 + κ)(λk)2

2

]
+ O(k3) , (B2)

we can obtain the mass of a magnon:

m =
~τ
√

1 + κ

λ2(2 + κ)
. (B3)

Their ratio is given by

M

m
=

4 + 2κ

κ
√

1 + κ

sλ

~
. (B4)
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Note that sλ is the total spin inside the domain wall.
When this domain-wall spin is much larger than the spin
~ of a magnon, the mass of a domain wall is much heavier
than the mass of a magnon.

Appendix C: The derivation of the frictional force
based on momentum conservation

Here, we invoke the conservation of the total linear
momentum to obtain the magnon-induced frictional force
on a domain wall within the time dependent perturbation
theory, instead of the conservation of the total energy
used in the main text. The force on the domain wall
is the rate of the momentum transfer from the magnon
bath to the domain wall, and it is given by

F (t) =

∫
dkdk′

(2π)2
Rkk′(t)~(k − k′)fk (C1)

=
1

2

∫
dkdk′

(2π)2
Rkk′(t)~(k − k′)(fk − fk′) . (C2)

By using Eq. (26) for Rkk′ , we obtain

F (t) =
1

~2

∫ t

0

dt′
∫
dkdk′

(2π)2
|πkk′ |2(fk − fk′)V (t′)

× cos

[
(εk′ − εk)(t− t′)

~

]
~(k − k′)V (t) .

(C3)

Here, the last factor ~(k − k′)V is the opposite of the
change of the domain-wall energy by assuming instant
interaction:

∆Edw = (∆Pdw)V . (C4)

From the energy conservation, this should be equivalent
to the change of the magnon energy: ~(k−k′)V = εk′−εk.
Then, the above Eq. (C3) yields the same result for η(t)
[Eq. (30)] that has been obtained by invoking the energy
conservation alone in the main text.

Appendix D: The limit of strong hard-axis
anisotropy

Here, we discuss the limit of strong hard-axis
anisotropy, κ � 1, in order to compare our results with
those obtained by Braun and Loss.20 First, let us begin
with analysis of spin-wave modes on a static domain wall.
In this limit, the Hamiltonian density for H2 [Eq. (10)]
for δn2 can be approximated by the hard-axis anisotropy
constant, H2 ≈ κ, which allows us to treat δn2 as a slave
variable of δn1 and integrate it out. By using the equa-
tions of motion, δn2 ≈ δṅ1/κ, and representing δn1 by
the small-angle field ϕ by following Braun and Loss,20 we
can obtain the Lagrangian in terms of ϕ only:

L2 ≈
∫
dx
[
ϕ̇2/2κ− ϕH1ϕ/2

]
. (D1)

This Lagrangian corresponds to Eq. (5.11) of Braun and
Loss.20 The solutions are given by Eq. (14) with the el-
lipticity factor omitted and the dispersion is given by
ωk ≈

√
κ(1 + k2).

Let us now consider a moving domain wall. To linear
order in Ẋ and the quadratic order in δn1, δn2, and Φ, the
interaction term between a domain wall and spin waves
is given by

Lint =Ẋ

∫
dx(δn1∂xδn2)

≈Ẋ
∫
dx(ϕ∂x∂tϕ)/κ ,

(D2)

where δn2 is replaced by δṅ1/κ by using the equations
of motion on the second line. The right-hand side on the
first line gives rise to our interaction term in Eq. (19),
which is valid for an arbitrary value of κ. The approxi-
mated one on the second line, which pertains to the limit
κ� 1, is the first term in Eq. (5.12) of Braun and Loss.20

Appendix E: Details of the Keldysh calculation

In this section, we provide the details of the Keldysh
calculation, for which we closely follow the approach
taken by Efimkin et al. 6 . After integrating out the
magnon fields ξ from the Keldysh action [Eq. (34)] in
the one-loop approximation, we obtain the following ef-
fective action:

SKeff = 2M

∫
dtẊcẊq +

∫
dtdt′

[
Ẋc(t)Πcq(t, t

′)Ẋq(t
′) + Ẋq(t)Πqc(t, t

′)Ẋc(t
′) + Ẋq(t)Πqq(t, t

′)Ẋq(t
′)
]
, (E1)
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where

Πcq(t, t
′) = Πqc(t

′, t) = − i
~

∫
dkdk′

(2π)2
|πkk′ |2

[
GAk′(t, t

′)GKk (t′, t) +GKk′(t, t
′)GRk (t′, t)

]
, (E2)

Πqc(t, t
′) = Πcq(t

′, t) = − i
~

∫
dkdk′

(2π)2
|πkk′ |2

[
GKk′(t, t

′)GAk (t′, t) +GRk′(t, t
′)GKk (t′, t)

]
, (E3)

Πqq(t, t
′) = − i

~

∫
dkdk′

(2π)2
|πkk′ |2

[
GKk′(t, t

′)GKk (t′, t) +GRk′(t, t
′)GAk (t′, t) +GAk′(t, t

′)GRk (t′, t)
]
. (E4)

The absence of Πcc is required by the causality. Note that, Πqc(t, t
′) = Πqc(t− t′) and Πqq(t, t

′) = Πqq(t− t′). Using
the explicit forms of Green functions [Eq. (35)], we obtain

Πqc(∆t) = −2Θ(∆t)

~

∫
dkdk′

(2π)2
|πkk′ |2 sin

[
(εk′ − εk)∆t

~

]
(fk′ − fk) , (E5)

Πqq(∆t) =
2i

~

∫
dkdk′

(2π)2
|πkk′ |2 cos

[
(εk′ − εk)∆t

~

]
(fk′ + fk + 2fk′fk) . (E6)

By performing the integration by parts on the action above, we get

SKeff =

∫
dt

[
2Xq(t)(−MẌc)−

∫
dt′ 2Xq(t)η(t− t′)Ẋc(t

′)

]
+
i

~

∫
dtdt′2Xq(t)Cs(t− t′)Xq(t

′) , (E7)

where η(t − t′) = ∂tΠqc(t − t′)/2 ∝ Θ(t − t′) and Cs(t − t′) = ~∂t∂t′Πqq(t − t′)/4i. By performing the Hubbard-
Stratonovich transformation for the last term by introducing an auxiliary field ζ, we obtain

SKeff =

∫
dt

{
2Xq(t)

[
−MẌc −

∫ t

0

dt′η(t− t′)Ẋc(t
′) + ξ(t)

]}
+
i~
2

∫
dt

∫
dt′ξ(t)C−1

s (t− t′)ξ(t′) . (E8)

The saddle-point solution to this action gives the quasiclassical equation of motion for the coordinate X:

MẌ +

∫ t

0

dt′η(t− t′)Ẋ(t′) = F + ξ(t) (E9)

where ξ satisfies

〈ξ(t)ξ(t′)〉 = Cs(t− t′) . (E10)

The explicit expressions for η(t− t′) and Cs(t− t′) are given by

η(t− t′) = η(∆t) =
Θ(∆t)

~2

∫
dkdk′

(2π)2
|πkk′ |2(εk′ − εk)(fk − fk′) cos

[
(εk′ − εk)∆t

~

]
, (E11)

Cs(t− t′) = Cs(∆t) =
1

2~2

∫
dkdk′

(2π)2
|πkk′ |2(εk′ − εk)2 cos

[
(εk′ − εk)∆t

~

]
coth

[
~(εk′ − εk)

2T

]
. (E12)

In the classical limit, where the temperature is much higher than all the energy scales of the system, T → ∞, we
obtain

Cs(t) = Tη (|t|) , (E13)

which is a manifestation of the classical fluctuation-dissipation theorem.29

1 N. S. Manton and P. Sutcliffe, Topological Solitons (Cam-
bridge University Press, Cambridge, 2002), and references
therein.

2 J. R. Taylor, ed., Optical solitons: theory and experiment

(Cambridge University Press, Cambridge, 1992), and ref-
erences therein.

3 P. M. Chaikin and T. C. Lubensky, Principles of Con-
densed Matter Physics (Cambridge University Press, Cam-



14

bridge, 2000), and references therein.
4 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
5 R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
6 D. K. Efimkin, J. Hofmann, and V. Galitski, Phys. Rev.

Lett. 116, 225301 (2016).
7 M. Abraham, Ann. Phys. (Berlin) 315, 105 (1903); H. A.

Lorentz, Proc. Kon. Ned. Akad. Wetensch. 6, 809831
(1904).

8 J. D. Jackson, Classical Eletrodynamics, 3rd ed. (Wiley,
1998).

9 L. Keldysh, Zh. Eksp. Teor. Fiz 47, 1515 (1964);
A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).

10 N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406
(1974).

11 A. M. Kosevich, V. P. Voronov, and I. V. Manzhos, Sov.
Phys. JETP 57, 86 (1983); A. Kosevich, B. Ivanov, and
A. Kovalev, Phys. Rep. 194, 117 (1990).

12 S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320,
190 (2008).

13 F. Garcia-Sanchez, P. Borys, R. Soucaille, J.-P. Adam,
R. L. Stamps, and J.-V. Kim, Phys. Rev. Lett. 114,
247206 (2015); P. Yan, X. S. Wang, and X. R. Wang,
Phys. Rev. Lett. 107, 177207 (2011); A. A. Kovalev
and Y. Tserkovnyak, Europhys. Lett. 97, 67002 (2012);
G. Tatara, Phys. Rev. B 92, 064405 (2015); S. K. Kim
and Y. Tserkovnyak, Phys. Rev. B 92, 020410(R) (2015).

14 J. Torrejon, G. Malinowski, M. Pelloux, R. Weil, A. Thi-
aville, J. Curiale, D. Lacour, F. Montaigne, and M. Hehn,
Phys. Rev. Lett. 109, 106601 (2012); W. Jiang, P. Upad-
hyaya, Y. Fan, J. Zhao, M. Wang, L.-T. Chang, M. Lang,
K. L. Wong, M. Lewis, Y.-T. Lin, J. Tang, S. Cherepov,
X. Zhou, Y. Tserkovnyak, R. N. Schwartz, and K. L.
Wang, Phys. Rev. Lett. 110, 177202 (2013); J. Chico,
C. Etz, L. Bergqvist, O. Eriksson, J. Fransson, A. Delin,
and A. Bergman, Phys. Rev. B 90, 014434 (2014).

15 A. Brataas, Physics 6, 56 (2013).
16 G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat.

Mater. 11, 391 (2012), and references therein.
17 D. Bouzidi and H. Suhl, Phys. Rev. Lett. 65, 2587 (1990).
18 P. C. E. Stamp, Phys. Rev. Lett. 66, 2802 (1991).
19 E. M. Chudnovsky, O. Iglesias, and P. C. E. Stamp, Phys.

Rev. B 46, 5392 (1992).
20 H.-B. Braun and D. Loss, Phys. Rev. B 53, 3237 (1996).
21 Y. Le Maho, J.-V. Kim, and G. Tatara, Phys. Rev. B 79,

174404 (2009), and references therein.
22 T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
23 J. Rammer, Quantum Field Theory of Non-Equilibrium

States (Cambridge University Press, New York, 2007).
24 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd

ed. (Butterworth-Heinemann, Oxford, 1976).
25 P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.

62, 251 (1990); P. Hänggi and G.-L. Ingold, Chaos 15,
026105 (2005).

26 B. Peters, Reaction Rate Theory and Rare Events (Else-
vier: Amsterdam, The Netherlands, 2017).

27 Since the response kernel η(t) is used only with positive
argument t > 0 in the generalized Langevin equation, we
can assume, without loss of generality, that it is even in
time, η(t) = η(−t), or that it is positive η(t) > 0 only for
t > 0. Although we use the latter, one can use the former,
e.g., as in Efimkin et al. 6 .

28 The real part of η[ω] is even in frequency and thus describes
dissipative effects. Its imaginary part Im η[ω] is, on the
other hand, odd in frequency and therefore give rise to

non-dissipative effects such as mass renormalization.
29 R. L. S. Farias, R. O. Ramos, and L. A. da Silva, Phys.

Rev. E 80, 031143 (2009); A. Rückriegel and P. Kopietz,
Phys. Rev. Lett. 115, 157203 (2015).

30 J. M. Winter, Phys. Rev. 124, 452 (1961); A. A. Thiele,
Phys. Rev. B 7, 391 (1973); X. S. Wang and X. R. Wang,
Phys. Rev. B 90, 014414 (2014).

31 P. O. Fedichev, A. E. Muryshev, and G. V. Shlyapnikov,
Phys. Rev. A 60, 3220 (1999).

32 We call a friction Markovian subjected to the approxima-
tion γẊ ≈
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