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Interaction between a domain wall and spin supercurrent in easy-cone magnets
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A domain wall and spin supercurrent can coexist in magnets with easy-cone anisotropy owing to
simultaneous spontaneous breaking of Zs and U(1) symmetries. Their interaction is theoretically
investigated in quasi one-dimensional ferromagnets within the Landau-Lifshitz-Gilbert phenomenol-
ogy. Specifically, we show that spin supercurrent can exert the torque on a domain wall and thereby
drive it. We also show, as a reciprocal phenomenon, a field-induced motion of a domain wall can

generate spin supercurrent.

PACS numbers: 75.78.-n, 75.60.Ch, 75.76.4j, 75.30.Gw

Introduction.—Spins in magnets see the crystal lat-
tice through overlap of electron orbitals, which engen-
ders anisotropy energy. In particular, crystal lattices
with a single axis of high symmetry, e.g., hexagonal crys-
tals with the axis of sixfold rotational symmetry, endow
magnets with uniaxial anisotropy!. Uniaxial anisotropy
energy is invariant under two operations on spins: the
time reversal and the rotations of spins around the axis,
which can be characterized by discrete Zs and continuous
U(1) symmetries, respectively.

When the symmetry axis is easy axis, there are two
ground states, in which all the spins are either parallel
or antiparallel to the axis. The ground states break the
Zy symmetry, but respect the U(1) symmetry. Sponta-
neous breaking of the discrete symmetry in a continuous
field theory entails a domain wall, which is a topological
soliton that smoothly interpolates two distinct ground
states?. Such domain walls in easy-axis magnets have
been extensively investigated® due to a fundamental in-
terest as well as practical motivations exemplified by the
racetrack memory*. One of the main results of these
studies is a collection of various means to drive a do-
main wall, which includes a magnetic field® and a spin-
polarized electric current®.

When the symmetry axis is hard direction for spins,
there are continuously degenerate ground states: uniform
spin states in the easy plane perpendicular to the sym-
metry axis. The ground states break the U(1) symmetry
while maintaining the Z, symmetry. In a classical field
theory, a continuous symmetry of the system implies the
existence of a conserved quantity according to Noether’s
theorem?. For easy-plane magnets, the conserved quan-
tity is the spin angular momentum projected onto the
symmetry axis. In particular, when the broken symmetry
is U(1), the conserved quantity can be transported in the
form of superfluid. Easy-plane magnets thus can support
superfluid spin transport, which is realized by spiraling
spin texture within the easy plane”. Spin superfluidity
has been gaining attention in spintronics as an efficient
spin-transport channel owing to its slower decaying than
spin transport by quasiparticles such as magnons® 19,

Some magnetic systems have uniaxial anisotropy that
is neither easy-axis nor easy-plane anisotropy. Exam-
ples of such systems include bilayer Co/Pt!!, multi-
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FIG. 1. (color online) (a) Two arrows represent two ground
states of easy-axis magnets. (b) The unit circle in the zy
plane represents continuously degenerate ground states of
easy-plane magnets; one exemplary spin direction is shown
as an arrow. (c¢) Two cones represent the ground-state man-
ifold of easy-cone magnets; two example spin directions are
depicted as arrows.
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FIG. 2. (color online) Schematic illustrations of (a) a domain
wall and (b) spiraling spin texture within the upper cone,
which carries finite spin supercurrent.

layer Ta/CogoFeagBag/MgO!?, and hexagonal compound
HoMngSnsGes '3 under their favorable conditions, some
of which have been theoretically and experimentally
investigated for a memory unit owing to the ease of
switching'?14. The ground states of those magnets are
uniform spin states that tilt away from the symmetry
axis. The ground states thereby form two disconnected
cones on the unit sphere, which are referred to as easy
cones. See Fig. 1 for schematic illustrations of the ground
states in uniaxial magnets for comparison of easy-axis,
easy-plane, and easy-cone anisotropy. The ground states
in easy-cone magnets break both the Z, and U(1) symme-
tries, whereby a domain wall and spin superfluidity can
coexist. See Fig. 2 for schematic illustrations of a do-
main wall and spiraling spin texture carrying finite spin
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FIG. 3. (color online) A schematic geometrical setup for a
domain-wall motion driven by spin supercurrent. Blue and
red colors represent positive and negative spin component pro-
jected onto z axis, respectively. The black arrow is the spin
direction at the center of the domain wall. The charge cur-
rents through two adjacent heavy metals inject spin current
into the magnet via spin Hall effect. The polarization direc-
tions of injected spin are depicted as circles in the metals. The
spin is transported to the domain wall by spin supercurrent
in the form of spiraling spin texture. The domain wall moves
by absorbing the transported spin.

supercurrent. In this Rapid Communication, we theoret-
ically study the interaction of a domain wall and spin su-
perfluidity in these systems within the Landau-Lifshitz-
Gilbert treatment. Specifically, we show that a domain
wall can be driven by spin supercurrent by identifying a
spin-transfer torque from the spin supercurrent to the do-
main wall. We also study its reciprocal phenomenon that
spin supercurrent can be generated by the field-induced
motion of a domain wall. We conclude the Rapid Com-
munication by discussing other possible consequences of
the coexistence of a domain wall and spin superfluidity.
Let us present here one of our main findings, a domain-
wall motion driven by spin supercurrent. See Fig. 3 for
the schematic geometrical setup. The source and drain
of spin are realized at the left and right boundaries by
sandwiching the magnet with heavy metals such as Pt
or Ta. Via spin Hall effect'®, the 2D charge current den-
sity j; in the left metal injects the spin current (polarized
along the z axis) j; = ¥ji sin? f, into the ferromagnet'®,
where the coefficient ¥ parametrizes the efficiency of con-
version from the charge current to the spin current!” and
0. is the angle that the easy cones make with the sym-
metry axis. Likewise, the charge current density j,. in
the right metal injects the spin current j$ = —97, sin” 6,
into the magnet. We shall show below that the domain
wall absorbs the injected spin current transported by spin
supercurrent, and thereby moves at the velocity
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Here, g = 2scosf, is the gyrotropic coupling constant
between the translational motion of the domain wall and
the global spin precession about the z axis'®, where s is
the scalar spin density per unit volume; « is the Gilbert
damping constant; 7, and 7, are the coefficients that
characterize energy dissipation associated with the lin-

ear dynamics of the domain wall and the global preces-
sional dynamics of spins, respectively, whose explicit def-
initions will be given later. In the absence of damping,
all of the spin current is transported by spin superfluid
to the domain wall, which in turn moves at the velocity
v = sin? 6, 9(j; — j,)/2scosf, as a consequence of the
conservation of spin angular momentum. Finite damp-
ing causes partial loss of spin due to the spin precession
(x n,) and the domain-wall motion (x 7,), which de-
creases the domain-wall speed.

Upadhyaya et al.'° including us recently showed that
spin supercurrent flowing through an easy-plane magnet
can drive a domain wall in an easy-axis magnet, when
two magnets are exchange-coupled. In the proposal, the
domain-wall speed increases as the spin current increases
in the linear regime. There is, however, a critical spin
current that is proportional to the exchange-coupling
strength, above which the domain-wall speed decreases
significantly by entering the nonlinear regime. Differing
from that, in easy-cone magnets, the domain-wall speed
keeps increasing linearly as spin current increases with-
out any breakdown as long as superfluid spin transport
is stable?".

Easy-cone magnets.—Our model system is a quasi
one-dimensional ferromagnet with easy-cone anisotropy.
When the ambient temperature is much below than the
magnetic ordering temperature, the state of the sys-
tem is described by the unit vector n along the local
spin density s = sn. It is convenient to parametrize
n in spherical coordinates # and ¢ for our discussions:
n = (sinfcos ¢,sinfsin @, cosd). The potential energy
of the system is given by

U:/dV [A{(V6)? +sin® 0(V$)?} /2 + K£O)] . (2)

where A and K parametrize the spin-direction stiffness
and the easy-cone anisotropy, respectively, and the high
symmetry axis is defined as the z axis. Here, a dimen-
sionless function f(6) is arbitrary except for the follow-
ing conditions: it is invariant under n, — —n,, i.e.,
flm—0) = f(0), and it attains the local minimum only
at two points 0 < 0. < w/2 and m — .. Without loss of
generality, it is assumed that the anisotropy energy van-
ishes at the minimum points, e.g., f(6.) = 0. A class of
the functions given by f(6) = (sin?6 — sin?#6,)? will be
used when providing a concrete example. The character-
istic length and energy-density scales of the problem are
A/K and VvV AK, respectively, in which we shall work
henceforth. When the ferromagnet is narrow compared
to the characteristic length scale, variations of the or-
der parameter across the ferromagnet can be neglected:
O(r,t) = 0(z,t) and ¢(r,1) = ¢(,1).

The system has two symmetries: the spin-reflection
symmetry through the zy plane, 6(z,t) — 7—6(z,t), and
the spin-rotational symmetry about the z axis, ¢(z,t) —
o(x,t) + d¢p, which we shall refer to as Zs and U(1) sym-
metries, respectively. The ground-state manifolds are
two cones in the unit sphere that make the angle 6, with



the z axis [see Fig. 1(c)]. A ground state lies in one of
the two cones, whereby breaks the Zs symmetry; it takes
an arbitrary azimuthal angle ¢, whereby breaks the U(1)
symmetry.

Our system has two disconnected ground-state mani-
folds, and thus can harbor a domain wall interpolating
the two ground states?. It is an extremum of the poten-
tial energy, which satisfies

SU/60 = —0" 4+ sinfcos¢™ + 0y f =0,  (3a)
§U/5¢p = —(sin?0¢')' = 0, (3b)

with the boundary condition §(z = —c0) = 6, and O(x =
o0) = 7 — .. The equilibrium domain-wall solution is
implicitly given by

bolx)  qp
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where z is the center of the domain wall and ¢ is an ar-
bitrary reference angle. The solution 0y (z) can be explic-
itly obtained for certain cases. For example, when f(6) =
(sin?@ — 1/2)?, we have 6y(z) = 7 — arctan[coth(z/2)].
The explicit solution for fy(z) is not necessary for our
main discussion on the interaction between a domain wall
and spin supercurrent, which shall be shown later, and
thus we content ourselves with the implicit solution here.
Next, our system has the ground-state manifold with
U(1) spin-rotational symmetry, and thus can support
spin supercurrent. To discuss the dynamic steady-state
that carries finite spin supercurrent, let us employ the
Landau-Lifhistz-Gilbert (LLG) equations:

¢(z) = ¢o, (4)

r—To—=

—ssinf¢ —ash = —0" +sinfcosf %+ 8yf, (5a)
ssinff — assin®0¢ = —(sin®0 ¢')’ . (5b)

The latter equation in the absence of damping a = 0
can be interpreted as the continuity equation of the spin
angular momentum projected onto the z axis: the time
evolution of the spin density, sn, = —ssinf6, and the
divergence of the spin current density, j* = —sin®6 ¢/,
add up to zero. We shall set s = 1 hereafter by using s/K
as the unit time. We are interested in the nonequilibrium
steady state close to the ground state with the constant
polar and azimuthal angles 6(z) = 0. and ¢’ = 0, and
thus we expand the LLG equations to the linear order in
do = 0(x,t) — 0., ¢', and ¢, which results in

— siné, ¢5 — ady = Ky, (6a)
siné. 8y — asin®6, ¢ = —sin? 6, ¢, (6b)
where K = 03 f(.) parametrizes the curvature of the

anisotropy at the local minimum point § = 6.. The spin
current can be injected by sandwiching the magnet with
heavy metals (see Fig. 2 for the schematic geometrical
setup), the effects of which can be captured by the fol-
lowing boundary conditions for the spin current density

(projected onto the z axis):

3°(0) = sin (0) [0 — y6(0)] , (7a)
§°(L) = sin® §(L)[9j, + 19 (L)], (7b)

within the linear response®. Here, ¥ is the coefficient
parametrizing the dampinglike torque on the magnet
due to the charge current at the interfaces, which is re-
lated to the effective interfacial spin Hall angle © via
¥ = htan ©/2et with ¢t the thickness of the metals and
—e the charge of electrons; v = hg'¥/4m parametrizes
the spin pumping at the interfaces with g™ the effective
interfacial spin-mixing conductance'”. The steady-state
solution to the linearized LLG equations (6) with the
above boundary conditions is given by

] ﬂ(]l — ]7’)
Hh=w=——-—"=

bat) =w =PI, (s0)

3% (x,t) = sin? 0, [07; — (v + ax)w] , (8b)

with the uniform polar angle dg(x,t) = —sinf.w/k.

Note that, by taking the limit 6, — 7/2, we can recover
the result for the global spin-precession frequency in the
case of easy-plane ferromagnets®.

Domain-wall motion.—With the understanding of the
physical manifestation of the broken Z, symmetry—a do-
main wall—and that of the broken U(1) symmetry—spin
superfluidity—mnow let us turn to our main interest: the
interaction between a domain wall and spin supercurrent.
First, we study the motion of a domain wall driven by
spin supercurrent. See Fig. 3 for illustration. Specif-
ically, we look for a steady-state solution to the LLG
equations (5) that contains a domain wall moving at the
velocity v within the linear response regime. To that end,
we go to the frame moving at the velocity v, which can be
implemented by replacing d; by 0, —vJ, in the lab-frame
LLG equations (5). To the linear order in v, ¢(z,t) = w,
and ¢’, the resultant LLG equations are

—sinfw+asinfdv=—0"+0yf, (9a)
—(sin?0 ¢')". (9b)

—sinffv—asin?fw =

To obtain the equations for v and w, we multiply the
former equation by #’ and integrate both equations over
the spatial dimension, which results in

(10a)
(10Db)

—gw + an,v =0,
=L

z=0 "’

gu + an,w = [sin2 0c ']

to the linear order in dy(0) = 0(0)—0,. and §p(L) = 6(L)—
(m — 0.) (which turned out to not appear in the result).
Here, ¢ = 2cosf,. is the gyrotropic coupling constant
between v and w!®, and

T—0.
m=[ Ve, (11a)
00
T—0. 020 2
nwzsiHQGCL—i—/ dp S0 S0 gy
0. 2£(0)



parametrize energy dissipation associated with v and w,
respectively. In deriving these results, we used 6 (z) =
/2f[00(x)] to change the integration over the spatial
variable x to the one over the angle variable 6. The
latter equation (10b) represents the conservation of the
spin angular momentum. The right-hand side is the net
injection of the spin angular momentum into the mag-
net, 5°(0) — j°(L). The addition of the spin angular mo-
mentum translates into the motion of the domain wall,
gv. The Gilbert damping causes partial loss of the spin,
an,w, which is proportional to the global precession fre-
quency. The former equation represents the absence of a
force on the domain wall. By solving Egs. (10) subjected
to the boundary conditions (7), which is invariant under
the transformation x — = — vt within the linear response,
we obtain the self-consistent solution for v and w:

g L o
v=——"———sin“0.9%(j; — jr), 12a
g2+a277'u77w (jl J ) ( )
Yo Gn20,90, —j,).  (12b)

W= ——7
g% + a?nyn,

This is our first main result. See Fig. 3 for the schematic
plot for the spatial profile of the spin current j®, whose
rapid drop in the domain wall represents the spin-transfer
torque from the spin current j° to the domain wall.

Spin-current generation.—Next, as a reciprocal phe-
nomenon, we study spin-current generation by the field-
induced domain-wall motion. An external magnetic field
in the z direction engenders a Zeeman term in the poten-
tial energy, —h [ dz cos, which creates an extra term,
hsin, in the right-hand side of the LLG equation (5a).
The modified equations for v and w are given by

(13a)
(13b)

— gw + an,v = 2h cos b, ,
gv+an,w =0,
in the absence of the charge current in the attached met-
als. Here, 2h cos @, is the force on the domain wall. Solv-

ing the above equations with the boundary conditions
(7), we obtain

Ay,

v=-———-——2hcosl,, 14a
9% + 2N (142)

g
w=————"-—2hcosfl,.. 14b
92 + a2 i (14b)

The dynamics of spins at the interface injects spin cur-
rent into the adjacent metals via spin pumping!'®. The
amount of spin injected into the left and right metals are
equal and given by

—5°(0) = j*(L) = ysin® few, (15)

which can be inferred by measuring induced charge cur-
rent in the metals via inverse spin Hall effect'®. This is
our second main result.

Discussion.—Let us discuss how easy-cone anisotropy
can arise with an example of bilayer Co/Pt'!. The
anisotropy energy of the system can be effectively written
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FIG. 4. (color online) Schematic illustrations of two types of
vortices. Spins are in the upper cone away from the vortex
centers. () is the Skyrmion charge of a vortex. See the main
text for discussions.

as k1 sin’ 6 + ko sin*@. The coefficient of the first term
is positive, k1 > 0, when the cobalt film is so thin (e.g.,
0.5nm thick) that the term is dominated by the interfacial
easy-axis anisotropy. It becomes negative, k1 < 0, due to
the easy-plane shape anisotropy, when the cobalt film is
thick enough to have negligible interface effect. The sec-
ond term comes from the bulk crystalline anisotropy and
its coefficient remains positive, ko > 0, independently of
the cobalt thickness. When the thickness is tuned to sat-
isfy —2k9 < k1 < 0, the cobalt has easy-cone anisotropy
with the canting angle 8, = arcsin /|k1|/2k2. For ex-
ample, when the Co and Pt thicknesses are 0.7nm and
1.5nm, respectively, the coefficients are x; = —30 kJ/m?
and kg = 120 kJ/m?, which yields the equilibrium cone
angle 0, = 20°11.

To make a simple quantitative estimate for the domain-
wall speed induced by spin supercurrent, let us take the
following parameters: the saturation magnetization den-
sity My ~ 10A/m and the equilibrium cone angle 6, ~
20° measured in bilayer Cog 7nm/Pt1sam' 2!, and the
spin Hall angle © ~ 0.1 measured in YIG /Pt interfaces®?.
Then, the 2D charge current densities j; = 10°A/m and
jr = 0 through the 5nm-thick platinums will yield the
domain-wall speed of v ~ 7m/s, when neglecting the
Gilbert damping.

We have studied the interaction between a domain wall
and spin supercurrent in quasi-one-dimensional easy-cone
ferromagnets. Coexistence of spin superfluidity and a do-
main wall can lead to other possibly interesting phenom-
ena. For example, two-dimensional magnets with easy-
cone anisotropy support vortices, topological defects as-
sociated with U(1) symmetry, which can interact with
a domain wall. Since vortices cause phase slips dis-
turbing spin supercurrent?, their interaction may have
an interesting effect on phase-slip-induced resistances of
spin supercurrent®3. In addition, easy-cone magnets sup-
port two types of magnetic vortices, which have differ-
ent Skyrmion-charge magnitudes due to the broken Zo
symmetry. See Fig. 4 for illustrations. These Skyrmion
charges have important effects on the dynamics of vor-
tices by determining the gyrotropic coupling between two
spatial coordinates!'®. Vortices in easy-cone magnets will
thus show the two distinct gyrotropic dynamics, which
cannot be observed in easy-plane magnets that can only



support vortices with the Skyrmion charges of the same
magnitude, Q = +1/2.

Some geometrically frustrated magnets such as the
Heisenberg antiferromagnets on the Kagome lattice also
have the ground states characterized by Zy x U(1)?425,
which are associated with two possible chiralities of spin
configuration and spin rotations about the global symme-
try axis. We envision that, if the chirality can be coupled
to the net spin density by, e.g., engineering a certain spin-
orbit coupling, it would be possible to drive a domain
wall connecting two chiralities by spin supercurrent via

the mechanism discussed in this Rapid Communication.
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