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We theoretically study the dynamics of skyrmion crystals in electrically-insulating chiral magnets
subjected to current-induced spin torques by adjacent metallic layers. We develop an elasticity the-
ory that accounts for the gyrotropic force engendered by the non-trivial topology of the spin texture,
tensions at the boundaries due to the exchange of linear and spin angular momentum with the metal-
lic reservoirs, and dissipation in the bulk of the film. A steady translation of the skyrmion crystal is
triggered by the current-induced tensions and subsequently sustained by dissipative forces, generat-
ing an electromotive force on itinerant spins in the metals. This phenomenon should be revealed as
a negative drag in an open two-terminal geometry, or equivalently, as a positive magnetoresistance
when the terminals are connected in parallel. We propose non-local transport measurements with
these salient features as a tool to characterize the phase diagram of insulating chiral magnets.

Introduction.—Topological solitons in magnetic mate-
rials are non-linear excitations with a well-defined energy
that behave as particles. Their dynamics can be manipu-
lated by different means, like spin-polarized currents1 or
thermal gradients.2 One example of these excitations are
magnetic skyrmions, continuous spin textures character-
ized by an integer charge3

Q ≡ 1

4π

∫
d2~x n · (∂xn× ∂yn) , (1)

where n is a unit vector along the local spin density,
s (~x). This topological charge labels the number of times
that the local order parameter wraps the unit sphere in
a planar ferromagnet. In the simplest approximation, a
rigid skyrmion behaves as a massless particle subjected
to a Magnus or gyrotropic force proportional to Q.4 This
force deflects the trajectory with respect to the direction
of the driving force, leading to the so-called skyrmion
Hall effect.5

Bogdanov and others6–8 predicted the existence of
a crystalline phase in which the skyrmions are spon-
taneously arranged in a two-dimensional lattice. This
phase, stabilized by relativistic interactions in the pres-
ence of a magnetic field perpendicular to the magnet, can
be visualized as the close packing of individual skyrmions
forming a triangular lattice. The skyrmion crystal has
been observed in various systems, ranging from itinerant
chiral magnets like MnSi9,10 or FeGe11,12 to multiferroic
insulating materials like Cu2OSeO3.13,14

In this Letter, we study the dynamics of skyrmion
crystals in the steady-flow-motion regime. We focus on
electrically-insulating thin films, in which the forces are
induced by spin-transfer torques15,16 at the interface with
diffusive metals. To that end, we develop a general-
ized elasticity theory describing the collective dynam-
ics of skyrmions, where the internal stress arises from
the exchange interaction between localized spins. The
formalism relies on general symmetry arguments and re-
lated conservation laws, so it can be extended to different
systems, from magnetic bubbles17 to vortices in layered
superconductors.18 Our theory provides the basic ingre-
dients for a full-electrical measurement of the skyrmion
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FIG. 1: Two-terminal geometry considered in the text. A
current supplied by an external source in one of the metal
contacts exerts a tension ~Fs-t over the skyrmion crystal (the
blue points represent the center of mass of the skyrmions).
In the absence of dissipation, the crystal moves collectively
parallel to the electrical current. Dissipative forces deflect
the trajectory, pushing the skyrmions from one contact to the
other and generating an electromotive force in the second ter-
minal. The red arrows represent the viscous force ~Fdis due to
the enhanced (effective) Gilbert damping near the interface.

dynamics that can be used as an alternative to neutron
scattering19 and transmission electron microscopy.20

Main results.—We disclose first the general expres-
sions of the elasticity theory that will be applied to the
two-terminal geometry depicted in Fig. 1. The equa-
tion of motion for the displacements of the skyrmions
~u = (ux, uy) within the plane of the magnet reads(

αs

Ω
− 4πsQ

Ω
ẑ×
)
~̇u = µ∇2~u+ (λ+ µ) ~∇

(
~∇ · ~u

)
, (2)

where s ≡ |s (~x)| is the saturated spin density and Ω is
the area of the skyrmion lattice unit-cell. The left-hand
side of Eq. (2) contains a dissipative force proportional to
α, accounting for Gilbert damping,21 and the gyrotropic
force arising from the non-trivial topology of the spin
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texture. The right-hand side corresponds to the internal
stress engendered by the displacements of the skyrmions
with respect to their equilibrium position. This response
(shear and compression) is characterized by two elastic
constants, µ, λ, owing to the hexagonal symmetry of the
skyrmion lattice. The order of magnitude is set by D2/A
in both cases,22–24 where D and A are the strength of the
Dzyaloshinskii-Moriya coupling and the magnetic stiff-
ness of the film, respectively.

Equation (2) must be supplemented by boundary con-
ditions reflecting the exchange of energy and linear mo-
mentum with the metallic reservoirs, as depicted by the
arrows in Fig. 1. The current-induced torques at the
interface with a metal, provided a strong exchange inter-
action by proximity with the magnet, work in favor of
the nucleation of skyrmions,25 applying then a tension of
the form

~Fs-t =
2π~PQξ
eΩ

ẑ ×~j, (3)

where ~j is the current density in the adjacent metal. The
dimensionless parameter P and the length ξ measure the
strength and spatial extension of the proximity effect.
Reciprocally, the annihilation of skyrmions at the bound-
aries generates an electromotive force

~Epump =
2π~PQ
eΩ

ẑ × ~̇u |b , (4)

where ~̇u |b denotes the velocity of skyrmions perpendic-
ular to the interface. The generation of a spin current
in the metal dissipates energy and angular momentum
from the magnet,26 giving rise to a viscous tension at the
interface,

~Fdis = −
(

2π~
eΩ

)2
ξ ~̇u |b
%

, (5)

where % is the resistivity of the metal. Equa-
tions (3) and (5) define the boundary conditions in the
steady state, corresponding to the balance between the
applied tensions and the internal stress.

These equations along with Ohm’s law in the met-
als constitute the basic elements of the self-consistent
magneto-electric dynamics. Equipped with this formal-
ism, we study the response of two metallic layers con-
nected by an electrically-insulating chiral magnet in the
skyrmion-crystal phase. In the open geometry of Fig. 1,
the electrical current supplied by an external source ap-
plies a spin-transfer tension in one of the terminals. In
the absence of dissipation, the skyrmion crystal moves
perpendicularly to the tension due to the gyrotropic
force, parallel to the current. There is no pumped cur-
rent in the second terminal in that case. In the presence
of dissipation, however, viscous forces generate a longi-
tudinal motion, which pumps an electrical current in the
right terminal. The effect is characterized by a dimen-
sionless drag coefficient of the form

Cd = − P2 gR
gα + gL + gR

. (6)

Here gL,R = ξ (%L,R)
−1

are the effective interfacial con-
ductances, whereas gα parametrizes the dissipation of en-
ergy by the skyrmion dynamics,

gα =
s e2 ΩL

(
α2 + 16π2

)
4π2α ~2

. (7)

Notice that
(
α2 + 16π2

)
/α is the medium viscosity for

skyrmions with Q = ±1. The drag signal decays alge-
braically with the distance between contacts, L, reflect-
ing the conservation of the skyrmion charge.25 Taking
s/~ ∼ 1021 cm−3, α = 0.1 and a separation of L = 100
nm, and assuming P ∼ 1 over a distance ξ = 1 nm in Co
terminals, we obtain drag signals of 10−5 in Cu2OSeO3

thin films13 with Ω ∼ 100 nm2, comparable to recent
magnon-drag experiments in yttrium iron garnet.27 No-
tice that the signal can be further enhanced by increasing
the value of α (the signal grows when α increases up to
4π) or Ω, e.g., by introducing appropriate dopants or a
heavy-metal substrate. This drag effect and related non-
local transport signatures can be used to characterize the
phase diagram of insulating chiral magnets.
Elasticity theory.— The starting point of our discus-

sion is the Landau-Lifshitz equations28 describing the
classical dynamics of the spin-density field, s (~x). We
neglect dissipation for the moment. At temperatures
well below the ordering temperature, T � Tc, the dy-
namics is generated by the Poisson-brackets algebra,29

{si (~x) , sj (~y)} = εijk sk (~x) δ (~x− ~y), with the Hamilto-
nian U corresponding to the free energy functional of the
magnet; the equation of motion is ṡ (~x) = {s (~x) ,U} =
s (~x) × h (~x), where h ≡ −δs U is the force conjugate
to s (~x). The dynamics of stable magnetic textures can
be described in terms of a set of collective coordinates
parametrizing the slow modes of the system.30 In our
case, these soft modes correspond to the center of mass
of the skyrmions regarded as rigid textures, provided that
the system is translationally invariant, ∂i U = 0; we can
write in general s (~x, t) −→ s (~x− ~ri (t)) ≡ s [~ri (t)]. In a
continuum description, the collective coordinates ~ri are
promoted to a field ~u (~x) describing the displacements of
the skyrmions with respect to their equilibrium positions
in the lattice. These fields verify the relations

{ui (~x) , uj (~y)} =
Ω

4πsQ
εij δ (~x− ~y) , (8)

as it is deduced from the Poisson-brackets algebra.31 No-
tice that Eq. (8) resembles the Poisson bracket relations
between the guiding centers of particles subjected to a
magnetic field B ∝ 4πQ.32 The equation of motion reads

~̇u (~x) = {~u (~x) ,U} =
Ω

4πsQ
ẑ × ~f (~x) , (9)

with ~f ≡ −δ~u U .

In this approximation, we are neglecting the effect of hard
modes of the magnetization dynamics, which can be in-
troduced as an inertial term in the equation of motion.
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This mass accounts for the deformation of the moving
skyrmion compared with the static solution and alters
the lattice dynamics at high frequencies,24 but it is in-
consequential for the steady-state motion30 and will be
ignored for the rest of the discussion.

The field conjugate to ui (~x) in this approximation
is πi (~x) = 4πsQ εij uj (~x) /Ω; indeed, these field vari-
ables obey the canonical relation {ui (~x) , πj (~y)} =
δij δ (~x− ~y). Thus, the total linear momentum of the
crystal reads Pi ≡

∫
d~x πi (~x). This is a proper mo-

mentum functional since Pi is the generator of spatial
translations; in particular, for the free energy we have
Ṗi = {Pi,U} = ∂i U , and we obtain the canonical con-
servation law for translational invariance. The latter has
consequences in the form of the conservative forces in
Eq. (9). The condition Ṗi = 0 implies that the force den-
sity must be written as the divergence of a tensor of rank
two, fi (~x) = ∂jσij (~x); σij (~x) is the stress tensor field.
Invariance under rotations about the ẑ-axis –normal to
the plane of the film– implies that the stress tensor is
symmetric, σij = σji. Hence, the work density carried
out by the internal forces of the magnet due to a change
in the position of the skyrmions can be evaluated as
δW̄ = −σij δuij , where uij ≡ 1

2 (∂iuj + ∂jui) is the strain
tensor field within the plane of the film. At constant tem-
perature we have δ Ū = σij δuij , and we deduce the the
usual thermodynamic relation σij =

(
∂ Ū/∂ uij

)
T

.33 The
free energy can be written then as a functional of uij ; to
the lowest order,34 we have

U =
1

2

∫
d~x
[
λ (uii)

2
+ 2µuijuij

]
, (10)

and hence the stress tensor reads

σij = λukk δij + 2µuij . (11)

Equation (10) describes an isotropic crystal, which ap-
plies in particular to the hexagonal skyrmion lattice. For
Cu2OSeO3 films we estimate λ, µ ∼ µeV/nm3.13,14

Dissipation can be introduced phenomenologically in
the same spirit as Gilbert damping21 by means of a
Rayleigh functional of the formR = αs

∫
d~x ~̇u 2/ 2Ω. The

dimensionless coefficient α corresponds to the Gilbert
damping constant multiplied by a geometric factor de-
pending on the profile of the texture. Both conservative,
∂jσij , and dissipative forces −δ~̇uR = −α s ~̇u/Ω enter in
Eq. (9), leading to the final result in Eq. (2)

Driving forces and pumping.—We assume a strong ex-
change interaction between the itinerant spins in the
metal and the localized spins in the magnet. This prox-
imity effect extends over a certain length ξ in the metal.
In the magnet, the Landau-Lifshitz equation at the in-
terface must be supplemented with the non-equilibrium
torque exerted by a spin-polarized electrical current,

ṡ (~x) = {s (~x) ,U} + τs-t, with τs-t = ~
2eP ~j · ~∇n in

the adiabatic limit,35 i.e., to the lowest order in spatial
gradients of the magnetization and neglecting spin re-
laxation. Here P measures the spin polarization of the
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FIG. 2: Closed circuit in series (a) and parallel (b) configura-
tions. In the former case the skyrmion crystal is compressed
but remains static, whereas in the parallel circuit the dynam-
ics of the skyrmions enhances the resistivity of the external
circuit, reflecting the negative drag in the open geometry.

current in the adjacent metal. This torque arises form
the exchange of linear momentum between the metal and
the magnet and therefore applies a force on the skyrmion
crystal. This tension can be computed from the work-
power exerted by the spin-transfer torque, ṅ · (τs-t × n),
integrated over the length ξ. In our collective field ap-

proach we have ṅ ≈ − ~̇u · ~∇n, and the resulting expres-
sion can be related to the skyrmion charge density since
n · (∂in× ∂jn) ≈ 4πQεij/Ω. We obtain the expression

in Eq. (3) by identifying the power-work with ~̇u · ~Fs-t.
Reciprocally, the skyrmion dynamics at the interface

induces an electromotive force in the metal of the form35

~Epump =
~
2e
P n ·

(
~∇n× ṅ

)
. (12)

Eq. (4) is directly derived from this equation in the collec-
tive field approximation. This pumped force results from
the spin-dependent electric field generated in the metal
due to the accumulation of Berry phases36 by itinerant
spins adiabatically following the exchange field. Thus, as
long as the adiabatic approximation holds a spin current
is also generated in the metal,26

~js =
~2

4 e2%
~∇n× ṅ ≈ π ~2Q

e2%Ω

(
ẑ × ~̇u

)
n. (13)

The depletion of spin angular momentum exerts a dis-
sipative torque on the magnetization. In the absence of

spin relaxation we have τdis = ~∇ · ~js,26 leading to the
viscous tension in Eq. (5).37 Notice that this expression
breaks explicitly the macroscopic time-reversal symmetry
of the skyrmion dynamics. The force is perpendicular to
the electron flow and therefore normal to the boundaries
of the magnet. A correction to the spin-motive force

(∝ β ṅ · ~∇n) due to spin relaxation may generate an ad-
ditional shear viscosity, tilting the skyrmion crystal with
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FIG. 3: Drag coefficient as a function of applied magnetic
field H at temperatures well below Tc. The inset shows the
schematic magnetic phase diagram in thin films of Cu2OSeO3

as deduced from transmission electron microscopy and mag-
netic susceptibility measurements.13

respect to its equilibrium configuration.16 We neglect this
contribution provided a strong exchange coupling at the
interface (β � 1).

Spin-transfer drag.— We address now the magneto-
electric dynamics in the open geometry depicted in
Fig. 1. We assume that the magnetic field stabiliz-
ing the skyrmion-crystal phase points in the positive ẑ-
axis, therefore Q = −1; we also assume translational
invariance along the interface. Above certain current-
density threshold determined by pinning forces, the spin-
transfer tension translates the skyrmion lattice with ve-
locity ~v = (vx, vy). In the steady state the internal stress
does not depend on time, so the skyrmion displacements
with respect to the co-moving frame with the lattice
are stationary, ~u (x). The bulk dynamics expressed in
Eq. (2) relates the skyrmion-lattice velocity with the in-
ternal stress. The latter is determined by the boundary

conditions ~Fs-t + ~Fdis = ±σxx x̂, where the + (−) sign
applies to the right (left) terminal. The velocity in linear
response38 reads

vx = − α

4π
vy =

eΩ ξ P jL
2π~ (gα + gL + gR)

. (14)

Notice that in the absence of dissipation the skyrmion
crystal moves parallel to the current and there is no
pumping in the second terminal. From this solution and
Eq. (4) we determine the current density pumped in the

second terminal, ~jR = %−1R
~Epump; we obtain then the di-

mensionless drag coefficient Cd ≡ jR/jL in Eq. (6).

Non-local magnetoresistance.— When the two termi-
nals are connected as in Fig. 2, the drag effect results in
a non-local magnetoresistance depending on the configu-
ration of the external circuit. We assume that both ter-
minals are identical for simplicity, % ≡ %L = %R. Solving
the magneto-electric dynamics in this case, taking into
account now the additional spin-transfer tension in the

right contact, leads to the pumping electromotive force

~Epump = − P2ξ

gα + 2gi

(
~jL +~jR

)
. (15)

In the series configuration, Fig. 2 a), we have ~jL = −~jR
and therefore no pumping; the spin-transfer tensions
are applied in opposite direction at each terminal, the
skyrmion crystal is then compressed but remains static.
In the parallel circuit, Fig. 2 b), we have ~jL = ~jR ≡ ~j

and therefore ~Epump = 2 % Cd~j. This modifies Ohm’s law

in the metals as %~j = ~E + ~Epump, where ~E is the electro-
motive force supplied by the external source. Thus, the

effective resistivity %′ of the circuit, %′~j = ~E , acquires an
additional non-local correction, %′ = %+ %m; the magne-
toresistance reads

%m = −2 Cd % =
P2ξ

gα/2 + gi
. (16)

Discussion.— It is worth comparing Eq. (6) with
the drag coefficient obtained for a gas of metastable
skyrmions.25 For a large separation between contacts,
gα � gL,R, the drag coefficient adopts the following gen-
eral expression, valid in both phases:

Cd ≈ −
µsky ξ ρsky

%

(
2π~P
e

)2
d

L
. (17)

Here d is the thickness of the film, ρsky is the density
of skyrmions at equilibrium, and µsky = α

s d (16π2+α2) is

their mobility. The expected behavior of the drag co-
efficient as a function of the applied magnetic field is
shown in Fig. 3 for thin films of Cu2OSeO3, whose phe-
nomenological phase diagram is depicted in the inset. At
large magnetic fields the ground state is uniformly or-
dered. The drag signal is driven by the Brownian motion
of thermally activated skyrmions, ρsky ∝ e−E(H)/kBT ,
decaying exponentially with H. The distance between
isolated skyrmions decreases as the magnetic field ap-
proches Hc2, the critical field at which the skyrmions
forms a regular lattice, ρsky ≈ Ω−1. The unit-cell area
remains approximately unchanged at lower fields. No-
tice that this transition from the skyrmion-crystal side
is likely to be anticipated by the lattice melting due to
thermal fluctuations, similarly to the mixed state of lay-
ered type II superconductors;39 in that regard, the crit-
ical line Hc2 (T ) should be taken merely as a crossover.
The core of the skyrmions increases monotonically as H
decreases40 and the system enters into the helically or-
dered phase at Hc1. The proposed non-local transport
measurements can provide some insights about the na-
ture of this phase transition, in particular the role of
topological defects such as disclinations41 and meron-like
excitations42 that couple to the electrical currents as ex-
pected from our theory. Finally, the spin-transfer drag
effect should be detected only within a current-density
threshold jc1 < j < jc2. The lower critical current is
determined by pinning forces, of the order of jc1 ∼ 106
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A/m2,19 whereas the upper critical current is related to
the breakdown tension above which the skyrmions at
the left terminal overlap, jc2 ≈ eΩ (λ+ 2µ) / (2π~Pξ) ∼
1010 A/m2.

In summary, we have constructed the elasticity the-
ory and irreversible thermodynamics of skyrmion crystals
coupled to electrical currents in adjacent metals. The
theory has been employed to study the long-range drag
signal and related magnetoresistance signatures induced
by a steady-state skyrmion motion between two metal-

lic terminals. These ideas can be tested in thin films of
Cu2OSeO3, provided that the crystal phase extends in a
wide range of temperatures and magnetic fields.
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