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A domain wall in a magnet with easy-axis anisotropy is shown to harbor spin superfluid associated
with its spontaneous breaking of the U(1) spin-rotational symmetry. The spin superfluid is shown
to have several topological properties, which are absent in conventional superfluids. First, the
associated phase slips create and destroy skyrmions to obey the conservation of the total skyrmion
charge, which allows us to use a domain wall as a generator and detector of skyrmions. Secondly,
the domain wall engenders the emergent magnetic flux for magnons along its length, which are
proportional to the spin supercurrent flowing through it, and thereby provides a way to manipulate
magnons. Thirdly, the spin supercurrent can be driven by the magnon current traveling across
it owing to the spin transfer between the domain wall and magnons, leading to the magnonic
manipulation of the spin superfluid. The theory for superfluid spin transport within the domain
wall is confirmed by numerical simulations.

PACS numbers: 75.78.-n, 75.60.Ch, 75.76.+j, 74.20.-z

Introduction.—Under normal conditions, particles in a
fluid move against the friction force caused by, e.g., scat-
tering with the vessel. In some extreme circumstances,
certain fluids become superfluids that support particle
flow with no resistance, which is exemplified by liquid 4He
at temperatures below 2K [1]. Conventional superfluidity
is characterized by the spontaneously broken U(1) sym-
metry associated with the phase of the macroscopic quan-
tum wave function. A conserved quantity corresponding
to the U(1) symmetry is the particle number, or equiva-
lently mass, and it is this mass supercurrent that is car-
ried by the gradient of the phase.

Analogously, materials with the U(1) spin-rotational
symmetry can support superfluid spin transport if
the symmetry is spontaneously broken by the ground
states [2, 3]. Easy-plane magnets thus can realize spin
superfluid by choosing an arbitrary direction in the easy
plane and thereby breaking the U(1) symmetry in their
ground states. The in-plane angle of the spin density is
analogous to the phase of the wave function in mass su-
perfluid, and, accordingly, the supercurrent of spin (pro-
jected onto the symmetry axis) is proportional to the gra-
dient of the in-plane angle. On the other hand, easy-axis
magnets, which have the U(1) spin-rotational symme-
try like the easy-plane ones, do not break the symmetry
spontaneously because spins order along the symmetry
axis in their two ground states. Easy-axis magnets, there-
fore, do not support spin superfluidity as a metastable
state. Instead, they support a domain wall (DW) [4],
which is a topological soliton smoothly connecting the
two ground states. Since the two directions along the
symmetry axis are the only directions that are invariant
under spin rotations, a DW connecting those two states
necessarily breaks the U(1) symmetry, which signals the
possible existence of spin superfluidity in it.

Pursuing the idea, we study spin transport through a
DW in a two-dimensional easy-axis magnet, the main re-
sults of which can be summarized as follows. First, we
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FIG. 1. (a) An illustration of a DW stretched along the x
direction, which is carrying a spin supercurrent. (b) Mapping
of the spin texture in (a) onto the unit sphere, characterized
by its skyrmion charge Q = 1. (c) An illustration for the
simplified description of the DW using its vertical position
Y (x, t) and in-plane angle Φ(x, t). (d) Mapping of the DW
state in (c) onto the unit circle, characterized by its winding
number w = 1.

show that a DW indeed can serve as a conduit for spin su-
perfluid. The spin supercurrent flowing through the DW
is realized as a spiraling spin texture lying within the
plane perpendicular to the easy axis. Secondly, we find
the associated phase slips disturbing the spin supercur-
rent [5] are peculiar in that they accompany creation or
destruction of skyrmions [6], swirling spin textures wrap-
ping the unit sphere once, as a result of the conservation
of the total skyrmion charge [7]. See Fig. 1 for schematic
illustrations. The DW thus can provide a good tool for
generating and detecting skyrmions. Thirdly, we show
that the DW harbors the emergent magnetic flux for
magnons along its length [8], whose density is propor-
tional to the spin supercurrent flowing through it. By
engineering a periodic array of DWs, we can therefore
create an emergent magnetic superlattice for magnons,
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which can be useful for utilizing magnons in spintron-
ics analogously to the electronic counterparts [9]. Lastly,
magnons traveling across the DW can trigger the spin su-
percurrent by transferring their spin angular momentum
to the DW, providing the magnonic control of the spin
superfluid.

Spin superfluid in a DW.—Our model system is
a quasi-two-dimensional ferromagnet with easy-axis
anisotropy [10]. For temperatures much below the Curie
temperature, the low-energy dynamics of the magnet can
be described by the direction of the local spin density,
n ≡ s/s. The Hamiltonian is given by

H =

∫
dxdy

[
A(∇n)2 +K(1− n2z)

]
/2 , (1)

where the positive coefficients A and K parametrize the
stiffness of the order parameter and the strength of easy-
axis anisotropy, respectively. The system respects the
time-reversal symmetry and the U(1) symmetry with re-
spect to the global spin rotations about the z axis. In
the two ground states, spins order along the z direction,
n ≡ ±ẑ, by breaking the time reversal symmetry, but
not the U(1) symmetry. In a continuous field theory, the
discrete degeneracy of the ground states entails a DW
interpolating them [11]. The north and south poles on
the unit sphere, which constitute the ground states, are
the only points that are fixed under rotations about the
z axis. A DW connecting them, therefore, breaks the
U(1) symmetry spontaneously, which can be exploited to
realize spin superfluid [2]. See Fig. 1(a) for a schematic
of the system with a DW carrying a spin supercurrent.

We consider a DW that is pinned around the straight
line defined by y = 0. The pinning potential, which is
omitted in Eq. (1), can be engineered by, e.g., locally
decreasing the magnitude of easy-axis anisotropy [12].
Without loss of generality, we assume that the spins point
at the north pole in the top and the south pole in the
bottom, n → ±ẑ as y → ±∞. The vertical position
of the DW is represented by Y (x, t), at which the spin
is in the xy plane. The in-plane angle at the position
(x, Y ) is denoted by Φ(x, t). The contribution from an
infinitesimal segment of the DW to the total spin is given
by dSz = −2sY (x, t)dx; Y thus represents the local spin
density. Within the collective-coordinate approach [13],
the low-energy dynamics of the DW can be described by
the two fields Y and Φ with the Hamiltonian [14]

H =

∫
dx(κY 2 + ηΦ′2)/2 , (2)

where κ represents the magnitude of the pinning poten-
tial, η ≡ 2

√
A3/K parametrizes the stiffness of the field

Φ, and ′ is the spatial derivative.
As we learn from quantum mechanics, the total spin

projected onto the z axis is the generator of the spin
rotations about the same axis [15], which yields the fol-
lowing Poisson bracket [16]: {φ(r, t), snz(r

′, t)} = δ(r −

r′), where φ is the azimuthal angle of n. Within the
collective-coordinate approach for the DW dynamics, this
translates into

{Y (x, t),Φ(x′, t)} = δ(x− x′)/2s , (3)

which shows that the two fields are canonically conjugate.
The equations of motion for them can be obtained from
the Hamiltonian and the Poisson bracket:

2sΦ̇ = −κY , (4a)

−2sẎ = ηΦ′′ . (4b)

The first equation is analogous to the Josephson relation
in a one-dimensional mass superfluid between the phase
Φ of the wave function and the mass density ∝ Y ; the
second equation is the coarse-grained continuity equation
of the spin [17], in which the left-hand side is the time
evolution of the spin density integrated over the y axis
and the right-hand side is the (negative) divergence of
the spin current along the DW, Is ≡ −ηΦ′. The analogy
between the dynamics of the DW and that of a mass
superfluid leads us to conclude that the DW supports
superfluid spin transport flowing through it [2]. Unlike
the ideal dissipationless situation that we have considered
heretofore, generic spin systems are subject to dissipation
caused by, e.g., spin-lattice coupling. It can be effectively
captured by adding the Gilbert damping terms to the
equations of motion [14]:

2sΦ̇ = −κY − 2αsẎ /λ , (5a)

−2sẎ = ηΦ′′ − 2αsλΦ̇ , (5b)

where α is the Gilbert damping constant and λ ≡
√
A/K

parametrizes the DW width.
Spin can be injected into or ejected from the magnet

by sandwiching it with two metals that exhibit spin Hall
effects [18] as shown in Fig. 1(a). In the presence of
charge currents Il and Ir flowing in the y direction in
the left and right metals, respectively, matching the spin
current across the interface and that of the bulk leads to
the following boundary conditions:

2λ
[
ϑIl − γΦ̇(x = 0, t)

]
= −ηΦ′(x = 0, t) , (6a)

2λ
[
ϑIr + γΦ̇(x = L, t)

]
= −ηΦ′(x = L, t) , (6b)

where L is the length of the magnet. In the first equa-
tion, 2λϑIl is the spin current injected from the left
metal to the magnet, parametrized by the coefficient
ϑ ≡ (~/2edx) tan Θ with dx the normal-metal width
in the x direction and Θ the effective interfacial spin
Hall angle [19]; 2λγΦ̇ is the spin pumping from the
magnet into the metal, parametrized by the coefficient
γ ≡ ~g↑↓dz/4π with g↑↓ the effective interfacial spin-
mixing conductance [19] and dz the thickness of the in-
terface in the z direction; the right-hand side is the spin
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FIG. 2. A schematic illustration of a phase slip that decreases
the winding number w from 1 in the initial state (a) to 0 in
the final state (c) via the intermediate state (b), in which
w is not well defined. (c) An isolated skyrmion with the
skyrmion charge Q = ∆w = 1 leaves the ferromagnet through
the boundary.

current in the magnet evaluated at the left interface. The
equations (5) for the dynamics of the DW in conjunc-
tion with the boundary conditions (6) are completely
analogous to those for the dynamics of one-dimensional
magnets with easy-plane anisotropy [2]. By adopting the
known results for the latter system [3], we obtain the so-
lution for the steady state of our system, which precesses
at the uniform frequency

Φ̇ ≡ Ω =
ϑ

γ + γα/2

Il − Ir
2

(7)

and carries the spin supercurrent

Is = 2λ [ϑIl − (γ + αsx)Ω] , (8)

with γα ≡ αsL. These theoretical results for Ω and Is are
confirmed by micromagnetic simulations performed with
the aid of the software OOMMF [20]. See Supplemental
Material for the discussions on the simulation results [14].

The superfluid spin transport through a DW can be
probed experimentally in the following way proposed in
Refs. [3]. The uniform spin precession at the frequency
Ω induces the inverse spin Hall voltage in the metals,
∆V = ±2λϑΩ = ±2λϑ2(Il − Ir)/[γ(1 + L/Lα)], where
the upper (lower) sign corresponds to the left (right)
metal and Lα ≡ 2γ/αs is the crossover length. For a
numerical estimate, let us consider the non-local gener-
ation of the voltage ∆V in the right metal due to the
charge current Il in the left metal. We take the fol-
lowing material parameters for Pt|YIG|Pt compounds:
λ ∼ 50nm [21], s ∼ 10~/nm3 [22], α ∼ 10−4, Θ ∼ 0.1,
and g↑↓ ∼ 5/nm2 [23], which yields the crossover length
Lα ∼ 1µm [3]. When using dx = 5nm for the platinum
geometry and Jl = 1010A/m2 for the charge-current den-
sity [23], we obtain |∆V | ∼ 5× (1 +L/Lα)−1µV. Obser-
vation of the algebraic dependence of ∆V on L can serve
as evidence for the superfluid spin transport.

Phase slips creating skyrmions.—One-dimensional su-
perfluids are susceptible to dissipation; thermal and
quantum fluctuations engender finite resistance disturb-
ing the supercurrent via phase slips [5], to which the spin
supercurrent is not an exception [2, 24]. We will describe

a topological aspect of the phase slips occurring to DW
spin superfluid in the DW, which is absent in conven-
tional superfluids. For the conceptual convenience of the
discussion, we assume the periodic boundary conditions
along the x direction and the presence of one DW pinned
at the straight line y = 0. Then the metastable state of
the system can be classified by the integer U(1) winding
number of the angle Φ along the DW,

w =
1

2π

∫
dx ∂xΦ . (9)

The spin supercurrent sustained by the metastable state
is proportional to the winding number, Is = −2πηw/L.
Now, let us consider the spin texture expanded over the
two-dimensional plane of the magnet. It covers the unit
sphere integer number of times, which is referred to as
the skyrmion charge [6, 25]:

Q =
1

4π

∫
dxdy n · ∂xn× ∂yn . (10)

For the metastable states, the skyrmion charge is equal to
the winding number, Q = w. For example, in Figs. 1(a)
and (b), the spin texture departs from the north pole
of the unit sphere in the top of the magnet, covers the
equator once along the DW (i.e., w = 1), and arrives at
the south pole in the bottom. The spin texture covers
the unit sphere exactly once, and thus it is classified by
the skyrmion charge Q = 1. This relation between the
winding number and the skyrmion charge has been found
by Kudryavtsev et al. [26].

If spins do not fluctuate, the metastable state with
the nonzero winding number would be maintained indef-
initely. Magnets, however, generally experience thermal
or quantum fluctuations, which can drive transitions be-
tween metastable states by changing the winding num-
ber via phase slips. Due to the equivalence between the
winding number and the total skyrmion charge of the
metastable states, a phase slip should create or destroy
a skyrmion with the skyrmion charge identical to the
change of the winding number. As an example, let us
consider the scenario illustrated schematically in Fig. 2,
during which a particle-like skyrmion is produced. The
initial metastable state has the winding number w = 1
and the skyrmion charge Q = 1. Via the phase slip, the
winding number becomes zero w = 0, and the associated
loss of the skyrmion charge drifts away from the DW and
leaves the magnet through the boundary.

Phase slips can be inferred by measuring the induced
voltages in the proximate metals. See Fig. 3(a) for an
experimental setup, in which two normal metals are at-
tached to the Pt|YIG|Pt heterostructure along the length
of the magnet and the charge current I is flowing in two
identical platinum. Phase slips unwind the spin texture
with the average rate, which we denote by ν; skyrmion
charges are generated with the same frequency, Q̇ = ν.
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FIG. 3. (a) An experimental setup for probing phase slips. (b)
The linear relationship between the two phase-slip-induced
voltages, ∆VPt in the platinum and Vm in the metals. (c)
The temperature dependence of Vm/I induced by thermally
activated phase slips with the energy barrier Eb.

The created skyrmions are drifted away from the DW via
the Brownian motion [27] and eventually annihilated at
the top and bottom boundaries, giving rise to the elec-
tromotive voltage in the metals, Vm = P~ν/e, where e is
the electric charge of electrons and P is the dimensionless
phenomenological parameter characterizing the degree of
the magnetic proximity effect [28]. In addition, phase
slips result in the spin precession at the left and right
boundaries, which generates the inverse spin Hall voltage
in the platinum, ∆VPt = 2πλϑν [24]; this is analogous to
the phase-slip-induced voltage in one-dimensional super-
conducting wires [5]. Two voltages, Vm and ∆VPt, are
linearly proportional to each other as shown in Fig. 3(b)
with the ratio independent of the temperature and the
applied charge current, which can be tested against ex-
periments. Based on a dimensional analysis, rough nu-
merical estimates for Vm and ∆VPt due to thermally ac-
tivated phase slips can be obtained [14] by adopting the
results for one-dimensional superconductors [5, 29] and
spin superfluids [24]. When using K ∼ 3×10−6J/m2 [21],
T = 300K, L = 1mm, P ∼ 1 and J = 1010A/m2 for the
charge-current density in addition to the other parame-
ters used above, we obtain Vm ∼ 7nV and ∆VPt ∼ 20nV
with the phase-slip energy barrier Eb ∼ 500K. The func-
tional dependence of Vm/I on the temperature T is shown
in Fig. 3(c).

Interaction with magnons.—In two-dimensional mag-
nets, magnons are known to experience the emergent
magnetic field proportional to the density of the skyrmion
charge [8], which can be harbored by the DW carry-
ing a spin supercurrent. In the adiabatic limit, where
a magnon keeps its spin antiparallel to the background
spin texture, the emergent Lorentz force on it is given by

F = v × bẑ , (11)

where v is the velocity of the magnon and

b = −~n · ∂xn× ∂yn (12)

is the strength of the emergent magnetic field, which
is proportional to the integrand of the skyrmion charge
Q (10). The emergent magnetic flux is localized at the
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FIG. 4. (a) Magnons are deflected by the emergent magnetic
field engendered by the spin supercurrent in the DW. (b) The
magnon current Im flowing across the DW injects the spin
supercurrent Is = 2~Im into the wall via the magnonic spin-
transfer torque.

DW, where a nontrivial spin texture exists. Let us con-
sider a case shown in Fig. 4(a), where a magnon ap-
proaches the DW at the initial velocity vi = v0ŷ. After
traveling across the DW with the winding number w, the
magnon acquires a finite x component in its velocity:

vf,x =
1

m

∫
dt v0b = −4π~

m

w

L
, (13)

to linear order in b, where m ≡ ~s/2A is the effective
mass of magnons. The DW carrying a spin supercurrent
therefore gives rise to a magnon Hall effect, the strength
of which can be controlled by manipulating the spin su-
percurrent.

In return, magnons can affect the spin texture via the
magnonic spin-transfer torque [30]. Let us consider a
magnon current flowing in the positive y direction as
shown in Fig. 4(b). In the adiabatic regime, a magnon
changes spin from ~ẑ to −~ẑ while traveling across the
DW. The spin-rotational symmetry of the system re-
quires the conservation of spin angular momentum, and
thus the DW should absorb ∆Sz = 2~ẑ per each magnon
passing through it. Accordingly, the magnon current Im

across the DW will inject the spin current Is = 2~Im into
the DW, opening a possibility of magnonic manipulation
of spin superfluid.

Discussion.—The origin of the spin superfluid in a
DW, a boundary between two different domains, has
an instructive interpretation in terms of the topological
property of magnons bands. In each domain, magnons’
spin, which is antiparallel to the ground state, serve as a
good quantum number because the U(1) spin-rotational
symmetry is intact. In other words, the magnon band has
a definite chirality, and it can be considered as a U(1)-
symmetry-protected topological invariant of the band.
Then, the spin superfluid between two domains with
magnon bands of opposite chiralities has a natural in-
terpretation as a gapless mode [31, 32] between the two
topologically distinct phases, analogous to the edge states
of topological insulators [33].

The U(1) spin-rotational symmetry is crucial for in-
tact spin superfluidity, but it can be broken, e.g., by
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shape anisotropy or spin-orbit coupling, which will give
rise to a critical barrier for the spin supercurrent to flow
through the DW [2]. The barrier can be overcome by
thermal fluctuations at finite temperatures, where ther-
mally populated DWs can carry the spin current by mim-
icking superfluid spin transport [34].

The production of particle-like skyrmions by the phase
slips has been considered here as an example, whereas
the more common scenario would be the generation of
lumps that are not proper to be considered as particles.
According to the Hamiltonian H (1), they can decrease
their radius without any energy cost and disappear by
collapsing into a single lattice point [35]. There are sev-
eral ways to stabilize skyrmions in magnetic systems. For
example, the interfacial Dzyaloshinskii-Moriya interac-
tion [36], which can be induced by proximate heavy met-
als, can stabilize skyrmions with a fixed radius.
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