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We study a robust topological transport carried by vortices in a thin film of an easy-plane magnetic
insulator between two metal contacts. A vortex, which is a nonlocal topological spin texture in two-
dimensional magnets, exhibits some beneficial features as compared to skyrmions, which are local
topological defects. In particular, the total topological charge carried by vorticity is robust against
local fluctuations of the spin order-parameter magnitude. We show that an electric current in
one of the magnetized metal contacts can pump vortices into the insulating bulk. Diffusion and
two-dimensional nonlocal Coulomb-like interaction between these vortices will establish a steady-
state vortex flow. Vortices leaving the bulk produce an electromotive force at another contact,
which is related to the current-induced vorticity pumping by the Onsager reciprocity. The voltage
signal decays algebraically with the separation between two contacts, similarly to a superfluid spin
transport. Finally, the vorticity and closely related skyrmion type topological hydrodynamics are
generalized to arbitrary dimensions, in terms of nonsingular order-parameter vector fields.

Introduction.—Topology and geometry play an impor-
tant role in modern condensed matter physics1. Topo-
logical excitations, which are nonlinear order-parameter
textures, are interesting physical objects both theoret-
ically and experimentally2. Dynamics of these excita-
tions can result in conservation laws that do not re-
sult from any symmetries of the system, but rather, de-
rive directly from their topology, rooted in the homo-
topic properties of the associated fields. A magnetic
insulator is a rich platform to study various classes of
topological excitations and their (hydro)dynamics. On
the practical flip side, we can exploit these excitations
to deliver information through charge insulators more
effectively than using decaying quasiparticles, such as
phonons or magnons3. Chiral domain walls in quasi-one-
dimensional easy-plane (anti)ferromagnets4,5, skyrmions
in quasi-two-dimensional magnets6, and the winding of
three-dimensional spin-glass textures7 have already been
investigated extensively, in this context.

Easy-plane magnets support topological excitations re-
ferred to as vortices. They are characterized by the
U(1) winding number, similar to superconducting vor-
tices, and thus are nonlocal, being immune to arbitrary
local perturbations (or “surgeries,” in the jargon of topol-
ogists). This makes them more robust for long-ranged
transport than the previously considered topological de-
fects. In addition, their nonlocal nature engenders the
Coulomb-like interaction (logarithmic potential), giving
rise to a finite-temperature Kosterlitz-Thouless transi-
tion. Also, vortices are promising candidates for infor-
mation and energy storage8. In this paper, we will de-
velop the hydrodynamic picture of vortices and realize a
superfluid-like transport4,9–11, based on nonsingular tex-
tures in easy-plane magnetic materials.

Main results and discussion.—To illustrate our key
findings, we focus on the two-terminal geometry of Fig. 1.
An electric current in the left magnetic metal contact
with magnetization M exerts an adiabatic torque on the
spins of the film at the left boundary. For an appropriate

FIG. 1. A schematic for the proposed injection and detec-
tion of vortices. The electric current in the left magnetized
contact pumps vortices into the insulating bulk. The applied
voltage is Vin. The vortices leaving the system through the
right magnetized contact sustain the output voltage Vout. The
drag coefficient Cd ≡ Vout/Vin quantifies the efficiency of the
topological vorticity transport.

choice of M (polarized out of the plane), the work done
by the torque will energetically bias the vortex injection
into the bulk. By regarding these vortices as classical ob-
jects, diffusion and nonlocal Coulomb interactions12 will
establish a steady-state distribution of vortex density and
its flow. This pumped vorticity will leave the system and
induce an electromotive force13 at the right contact, ac-
cording to the Onsager-reciprocal process14. Using the
drag coefficient Cd ≡ Vout/Vin to measure the efficiency
of this topological transport, we find

Cd = (πηM)2σcσA/L , (1)

in the linear-response regime, when L → ∞ (so the
magnetic-insulator bulk dominates the impedance for the
vorticity flow). σc and σ here are the conductivity of
electrons in the metal contacts and the effective conduc-
tivity of vortices in the insulating bulk, respectively. η
is a phenomenological parameter measuring the contact
efficiency of the charge-vorticity interconversion. L is the
length of the magnetic insulator in the x direction, and A
is the cross section of the metal contacts in the xz plane.
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A vortex, being a nonlocal spin texture, shows some
beneficial features as compared to chiral domain walls
and skyrmions. For instance, the total charge of vortic-
ity is robust to local surgery, such as caused by thermal
spin fluctuations. We have the same total vorticity charge
even if we arbitrarily deform the spin configuration, as
long as the changes are local and not emanating to the
boundary. In contrast, local fluctuations could be detri-
mental to domain-wall chirality15 and skyrmion number.

At low temperatures, we can generate a vortex lat-
tice in a magnet by utilizing an adiabatic torque on the
boundary to control the effective chemical potential as-
sociated with the vorticity. This can serve as a plat-
form to explore fundamental physics of emergent soli-
tonic structures, beyond the Abrikosov vortex lattice16

in superconductors or the skyrmion lattice in chiral mag-
nets. Maintaining skyrmionic crystals out of equilibrium,
furthermore, can be more challenging, due to their lo-
cal character (and the associated finite lifetime, when
they are metastable). Another important aspect is the
long-ranged Coulombic interactions between the vortices.
We may exploit the associated nonlinear effects to real-
ize semiconductor-inspired transport phenomena like pn
junctions17. It is also interesting to explore the natural
plasma analogies in the ac response.

Continuity equation and stability.—Let us consider
a two-dimensional magnetic insulator at low tempera-
tures, such that the coarse-grained local spin-density field
m(t, x, y) = (mx,my,mz) captures its low-energy dy-
namics. The vortex density ρ and flux j constitute the
three-current jµ = (ρ, j)18:

jµ = εµνρεzbc∂νm
b∂ρm

c/2π , (2)

where a, b, c run over three spin-space projections x, y, z
and µ, ν, ρ run over three time-space coordinates t, x, y.
It is easy to verify that the density19 defined in Eq. (2) is
conserved: ∂µj

µ = 0, so long as the vector field m(t, x, y)
is smooth such that ∂µνm = ∂νµm. This is just the
continuity equation: ∂tρ+∇ · j = 0.

To see that we can geometrically interpret the current
in Eq. (2) as a vortex flow, let us integrate the conserved
quantity:

Q =

∫
Ω

ρ dxdy =
1

2π

∫
∂Ω

m2
‖∇φ · dl . (3)

where we use the Stokes theorem and the fact that ρ is a
curl of a vector field. Here, m‖ ≡ (mx,my) is the planar
projection of the vector field, φ is its polar angle relative
to the x axis, and Ω, ∂Ω denote the bulk and boundary
regions. To ensure that φ is well defined, we should re-
quire m‖ 6= 0. In the case of an easy-plane anisotropy,
m‖ = 1 on the boundary away from the vortex core (nor-
malizing the vector field so that m→ 1 away from strong
textures). Since the polar angle φ changes by 2πQ in one
complete anticlockwise passage around the core, we in-
deed see that Eq. (2) ia a proper expression for the vortex
density and current. Q is simply a S1 winding number.

In the easy-plane limit, the topological robustness is
rooted in the map m : S1 → S1, which can be classi-
fied by the fundamental group20 π1(S1) = Z. The base
manifold is ∂Ω ' S1 and m‖ serves as the XY order

parameter (hence S1 target manifold, in the easy-plane
case). We can thus see that magnetic textures with dif-
ferent Q are not smoothly connected to each other, and
the total charge, which is completely determined by the
boundary configuration, is robust to local surgery. Phys-
ically, a vortex is stable because it is a nonlocal object,
which must be moved across the entire system (or to-
wards an antivortex) in order to be eliminated. Accord-
ing to Eq. (2), these topological properties extend to gen-
eral three-component vector field in two spatial dimen-
sions, even in the absence of quantized vortices.
Vortex charge pumping.—We illustrate the injection of

vorticity in Fig. 1, where the linear electric current den-
sity (per unit thickness) Jin = −Jinŷ in the left contact
exerts the local (adiabatic) torque (per unit area in the
yz plane) of the form21

τ = ηM ·m(Jin · ∇)m . (4)

M = M ẑ here is the (uniform) out-of-plane magneti-
zation of the metallic contact, η is a phenomenological
parameter quantifying the strength of the torque, and m
stands for the (3D) magnetization unit vector along the
interface. The work done by this torque on the magnetic
texture dynamics is then proportional to the vorticity
inflow:

W =

∫
dtdydz τ · (m× ∂tm) = πηMIinQ , (5)

where Iin = Jinl with l being the thickness of the sys-
tem in the z direction and we use the fact ∂ym × ∂tm
is parallel to m above. Importantly, the torque discrimi-
nates between the topological charges Q of opposite sign.
We denote the work for Q = 1 as W+ ≡ πηMIin. Note
that this work is invariant under the xz-plane reflection,
which leaves the vortex charge unchanged [see Fig. 2(a)].

At low temperatures, we can generate a vortex lat-
tice in a magnet by utilizing the torque derived above as
follows. In this part, we assume the geometry of the sam-
ple is circular [see Fig. 2(b)]. For easy-xy-plane magnets,
now in two spatial dimensions, the energy is given by

U =
1

2

∫
Ω

dxdy
[
A(∇m)2 +Km2

z

]
− 1

2

∫
∂Ω

dl ηM ẑ ·
[
m× (I ·∇)m

]
, (6)

where the first term is the bulk energy composed of the
exchange energy ∝ A and the anisotropy energy ∝ K,
both positive. The second term is the interface energy
(integrated over the boundary of the magnet), due to
the torque, which is proportional to the net topological
charge within the magnet. The current is assumed to
flow around the magnetic insulator, tangentially to the
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FIG. 2. Structural symmetries of the vortices and the ap-
plied torque setup: (a) Vortex charge Q is invariant under
the xz reflection. (b) A nonequilibrium vortex density can
be controlled by the electric current circulating around the
magnetic region. Red points represent vortex cores. Arrows
represent electric current I = I t̂, where the unit vector t̂ curls
anticlockwise in the metal contact that is magnetized out of
the xy plane.

boundary: I = I t̂, with t̂ [see Fig. 2(b)] defined as the
anticlockwise unit vector. If the magnetization lies in the
xy plane, in a large K approximation, the energy can be
written in terms of the azimuthal angle φ:

U =
A

2

∫
Ω

dxdy (∇φ)2 − ηMI

2

∮
∂Ω

dl ·∇φ . (7)

The second term is quantized as −πηMIQ whereQ is the
total topological charge. We can minimize the energy

U(Q) = πAQ2/4− 2πηMIQ (8)

with respect to Q, by considering a configuration ∇φ =
Q
R2 ẑ× r (corresponding to a uniform distribution of vor-
tices), where R is the radius of the sample. The first term
∝ Q2 is the Coulomb interaction energy (which depends
on the detailed vortices’ distribution) and the second,
linear term is the torque-induced energy (which controls
the effective “chemical potential” of the vorticity). The
equilibrium winding number for a given current I is thus
found to be Q ∼ ηMI/A. For a fixed Q, the vortices
could be expected to form a triangular lattice when R
is sufficiently small (depending on the vortex core size

a =
√
A/K), in analogy to the Wigner crystal22. In the

opposite regime, as there is no neutralizing background
of opposite charge, the vortices should pile up on the
edge, which would modify the above electrostatic consid-
eration.

At finite temperatures, similarly to superfluid films, we
expect also a Kosterlitz-Thouless transition23, with the
critical temperature of TKT ∼ A/kB . When T > TKT,
vortex entropy wins over their energetic cost, resulting
in the proliferation of vortex pairs. We do not expect
the torque-controlled vortex chemical potential to affect
the Kosterlitz-Thouless transition in the thermodynamic
limit, due to the long-range repulsion of vortices that
prevents an extensive build-up of vorticity.

Topological spin drag.—In this section, we assume the
geometry of the sample is a strip [See Fig. 1]. Below the

temperature TKT, the vortices are bound into neutral
pairs, in thermodynamic equilibrium, and the vorticity
flow should, therefore, vanish in linear response. Above
TKT, the free vortices proliferate, which should result in
a finite conductivity σ. We then expect the constitutive
relation jx = −σ∂xµ, in terms of the effective electro-
chemical potential µ = µc + V . µc ∝ ρ here is the chem-
ical potential determined by the local vortex density ρ
and V is the electrostatic potential due to the nonlocal
Coulomb interaction. The current in the bulk is thus
given by

jx =− σ∂xµ = −D∂xρ+ σEx , (9)

where D is diffusion coefficient and E = −∇V is the ficti-
tious electric field determined by∇·E = 4π2Aρ(x), with
the (open) exchange boundary conditions (i.e., Ey = 0
at boundaries). The coefficient 4π2A is particular for
the logarithmic interaction for vortices. In a steady
state, ∂xjx = 0, we obtain charge distribution ρ(x) ∼
ρLe
−x/ξ+ρRe

(x−L)/ξ in the bulk, where ξ ≡
√
D/4π2Aσ,

when L � ξ. Vortices accumulate near the two ends
on a characteristic lengthscale of ξ. The magnetic bulk
thus acts like a parallel-plate capacitor [see Fig. 3(a)].
We can estimate the screening length ξ at high tempera-
tures, T � TKT, by treating the vortex plasma as nearly
ideal and collisionless. To this end, we invoke the Ein-
stein relation24: D/σ = kBT/ρ0, where ρ0 is the equilib-
rium density of the vortices (irrespective of their charge).

This gives ξ =
√
kBT/4π2ρ0A ∼

√
T/TKTρ0, which can

be interpreted as the Debye-Hückel length of our two-
dimensional two-component plasma.

From the reaction-rate theory25, the vortex inflow at
the left boundary is given by

jLx = γ+
L (T, I)− γ−L (T, I)

= γL(T )
[
e(W+−µL)/kBT − e−(W+−µL)/kBT

]
≈ 2γL(T )(W+ − µL)/kBT , (10)

in linear response. Here, γ±L (T, I) is the nucleation
rate of the vortices with Q = ±1, in the presence of
an applied electric current I [see Fig. 3(b)]. γL(T ) ∼
νL(T )e−E0/kBT can be thought of as the equilibrium in-
jection rate of vortices, in terms of the attempt frequency
νL(T ) and an effective energy barrier E0. Similarly, the
vortex outflow at the right boundary is given by

jRx ≈ 2γR(T )µR/kBT , (11)

which is driven by the electrochemical potential µR that
builds up in response to the build up and flow of the
vortices from the left contact.

Combining Eqs. (9)-(11) and imposing jLx = jRx =
σ
L (µL − µR), we find for the steady-state current along
the x direction:

jx =
W+

L
σ + kBT

2

(
1
γL

+ 1
γR

) . (12)
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FIG. 3. (a) Vortex charge density distribution as a func-
tion of position x, for a two-dimensional strip extended in
the transverse direction. The vorticity accumulates near the
two ends with the screening length ξ. The electric-current
induced work W+ (per vortex) at the left end injects vortices
into the magnetic bulk. The vortex current is driven by the
electrochemical potential µ. (b) Electrochemical potential µ
as a function of position x, in linear response. At the left
boundary, the vortex inflow is given by jLx ∝W+−µL, while
its outflow at the right is jRx ∝ µR. The respective edge elec-
trochemical potentials µL,R parametrize the (adiabatic) work
required to add an additional vortex there.

The dynamics of the order parameter at the right ter-
minal induces an electromotive force13 ε = πηj ×M,
according to the Onsager reciprocal relation14, where j
is the vorticity outflow normal to the interface and, as
before, we are assuming M ∝ ẑ. This translates into the
induced normalized voltage

Vout

Vin
=

(πηM)2σcA
L
σ + kBT

2

(
1
γL

+ 1
γR

) , (13)

where σc is the (Ohmic) conductivity of the metal con-
tacts andA their cross section in the xz plane. This (neg-
ative) drag coefficient between the two metal contacts,
which is mediated by the vorticity flow in the magnetic
insulator, scales algebraically∝ L−1 when L→∞, which
is a generic feature of topological hydrodynamics6,10.

In the limit of narrow metal contacts (in the x direc-
tion) and a strong magnetic proximity effect due to the
magnetic insulator, we can estimate ηM ∼ ~/e (in anal-
ogy to the adiabatic torques that were invoked in Ref.6

for the generation of skyrmion hydrodynamics). Note,
however, that for wider contacts, η will scale inversely
with their thickness, according to the definition (4), so
the drag (13) will ultimately vanish as A−1. The vortic-
ity hydrodynamics is also expected to get suppressed as
the system is scaled up along the z axis. In this limit, as
the vortices become larger, TKT increases, the vortex mo-
bility diminishes, while their pinning tendency increases.

Generalization to higher dimensions.—Let us consider
a σ model with symmetry O(n + 1), denoting the order
parameter field by m = (m1, · · · ,mn+1), in d spatial di-
mensions. There are two types of topological excitations,
in general. The first type is similar to skyrmions, where
we collect the infinity at one point, such that the base
manifold becomes Sd. The order parameter lives in the
coset O(n+ 1)/O(n) ' Sn since a vectorial order param-
eter breaks the symmetry O(n + 1) down to O(n) when

the direction of m is specified. Topologically-distinct tex-
tures are then classified by πd(S

n). When d = n, we get
skyrmionic textures, according to πn(Sn) = Z. The as-
sociated skyrmion current is given by20

Jµ = εµν1···νnεa1···an+1
ma1∂ν1m

a2∂ν2m
a3 · · · ∂νnman+1 ,

(14)
where we use the Greek letters for space-time indices and
the Roman letters for field indices.

Leaving the boundaries free, in the d = n case, how-
ever, results in another type of excitation. It is analogous
to the two-dimensional vorticity and thus more robust
than skyrmions due to its nonlocality. To understand
this, let us switch to the boundary of a region in Rd as
the base manifold. We can also effectively reduce the di-
mensionality of the order-parameter space by introducing
a hard-axis anisotropy: This gives m‖ = (m1, · · · ,md).

Therefore, the order-parameter manifold is now Sd−1.
The possible topological textures are classified accord-
ing to πd−1(Sd−1) = Z on the boundary. Such vorticity-
type excitations can always be introduced by adding hard
axes, as long as n+1 ≥ d. To make this physically mean-
ingful, we need m‖ 6= 0 on the boundary.

Let us now explicitly construct the generalization of
vorticity hydrodynamics, for d = n > 1, as suggested
by πd−1(Sd−1) = Z. The higher-dimensional vorticity
current, which obeys the continuity equation ∂µj

µ
a ∀a, is

given by

jµa = εµν1···νnεaa1···an∂ν1m
a1∂ν2m

a2 · · · ∂νnman . (15)

To reproduce our preceding discussion of the two-
dimensional vorticity flow, we take d = n = 2 and a = z.
We can, therefore, regard the vorticity density (2) as
the z component of a vector ~ρ = (j0

x, j
0
y , j

0
z ), which is

a conserved three-dimensional quantity (corresponding
physically to different projections of the order-parameter
field). This vectorial vorticity ~ρ is an axial vector, which
is invariant under spatial inversion and time reversal.
Note the vorticity (15) and skyrmion current Jµ are re-
lated via Jµ = jµama, in arbitrary dimensions.

The d = n = 1 case is special. The corresponding
order-parameter field is two-dimensional: m = (mx,my).
The vorticity density and current are given by

jµa = εµνεab∂νm
b , (16)

where µ, ν can be t, x and a, b can be x, y. For example,
if we choose a = x, then ρ = ∂xm

y and jx = −∂tmy.
Note that the total vorticity charge is bounded:

|Q| =
∣∣∣ ∫ R

L

∂xm
ydx
∣∣∣ = |my(R)−my(L)| ≤ 2 , (17)

which is due to π0(S0) = Z2.
Summary and discussion.—It is important to note that

we avoid the singular treatment12 of vortex density by al-
lowing the order parameter to come out of plane in the
core. As a result, we have a smooth expression for the
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vortex density (2) in terms of the order-parameter field.
This density is a conserved quantity obeying a continuity
equation, which can thus exhibit a hydrodynamic behav-
ior. We construct the torque (4) that is able to inject
vortices and show the vortices can mediate algebraically-
decaying transconductances in electrical circuits. In con-
trast to winding or skyrmions, vortices are “charged” spin
textures, which endows them with some beneficial fea-
tures. For example, vortices are robust against any local
perturbation resulted from thermal fluctuation15, as dif-
ferent topological sectors are distinct globally. Further-
more, vortices provide a possibility to realize pn junctions
or diodes17 for spintronic systems, due to their Coulom-
bic interactions, and may offer opportunities for infor-
mation and energy storage8. Another important point is
that we do not require the magnitude of the order param-
eter to be fixed to have a conserved density. This is again
in contrast to winding and skyrmions, where the hydro-
dynamic picture breaks down when there are strong fluc-
tuations in the order-parameter magnitude. In this sense,

the vortex transport is more stable than other types of
spin and topological flows.

Finally, we remark that our phenomenology of two-
dimensional vortex hydrodynamics applies equally well
to the antiferromagnetic as well as ferromagnetic films.
This is understood from the fact that all the pertinent ex-
pressions for the vorticity current, torque, work, etc., are
even in the magnetic order parameter m. In a collinear
bipartite antiferromagnet, the corresponding contribu-
tions from the two sublattices can thus effectively add
up, resulting in the same phenomenology.
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