
Case Study Investigation of the Fault Detection and Error

Locating E®ects of Architecture-based Software Testing

Jihyun Lee

Department of Software Engineering

Jeonbuk National University
567 Baekje-daero, Deokjin-gu

Jeonju-si, Korea

jihyun30@jbnu.ac.kr

Sungwon Kang*

School of Computing, KAIST

291 Daehak-ro, Yuseong-gu, Daejeon, Korea

sungwon.kang@kaist.ac.kr

Received 11 January 2019

Revised 27 February 2019
Accepted 10 July 2019

For software testing, it is well known that the architecture of a software system can be utilized

to enhance testability, fault detection and error locating. However, how much and what e®ects

architecture-based software testing has on software testing have been rarely studied. Thus, this
paper undertakes case study investigation of the e®ects of architecture-based software testing

speci¯cally with respect to fault detection and error locating. Through comparing the outcomes

with the conventional testing approaches that are not based on test architectures, we con¯rm

the e®ectiveness of architecture-based software testing with respect to fault detection and error
locating. The case studies show that using test architecture can improve fault detection rate by

44.1%–88.5% and reduce error locating time by 3%–65.2%, compared to the conventional

testing that does not rely on test architecture. With regard to error locating, the scope of

relevant components or statements was narrowed by leveraging test architecture for approxi-
mately 77% of the detected faults. We also show that architecture-based testing could provide a

means of de¯ning an exact oracle or oracles with range values. This study shows by way of case

studies the extent to which architecture-based software testing can facilitate detecting certain
types of faults and locating the errors that cause such faults. In addition, we discuss the

contributing factors of architecture-based software testing which enable such enhancement in

fault detection and error locating.

Keywords: Software product line testing; architecture-based software testing; points of observation;

points of control and observation.

*Corresponding author.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 30, No. 2 (2020) 191–216

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194020500096

191

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

https://dx.doi.org/10.1142/S0218194020500096

1. Introduction

Currently, the typical IT/R&D project budget assigned to testing ranges from 11%

to 40% of the total budget [1, 2]. The World Quality Report noted that the average

expenditure for quality assurance and testing was 26% of the total IT amount spent

in 2018 [3]. Testing needs to be more e±cient and requires research for better

management of the scale and complexity of software systems.

Software architecture refers to a set of important early design decisions for the

development of software systems. It provides guidelines and determines the impor-

tant constraints on development to ensure a high level of software quality, thereby

improving productivity, reusability, and maintainability during the software devel-

opment process [4, 5]. As software architecture represents a principled approach to

cope with the large-scale structures of software systems [6], software testing also

requires an approach to deal with the scale and complexity of software systems.

As software architecture can have advantages for those involved in software testing

because the code is developed on the basis of software architecture, we expect to

exploit software architecture for the testing and design specialized structures, i.e. test

architecture capable of addressing various testing challenges. This expectation has

been shared by many researchers [7, 8]. As stated in Shaw et al. [7], \Rethinking our

approach to software testing on the basis of software architecture is an important

research direction in software testing." This appraisal has been reemphasized in

other work [6].

Architecture-based software testing is \a testing approach that relies on test

architecture by employing architecture views such as logical views, module views and

execution views in order to control and observe the interaction points at which the

interactions between components or modules occur" [12]. In contrast with the testing

approaches that are not architecture-based software testing uses application archi-

tecture to design test architecture by placing control and observation points at

various architecturally important locations as de¯ned by the application architecture

and utilize them for detection faults at the locations close to where the errors causing

them reside so that the e®ort for error locating is minimized.

Test architecture concepts were de¯ned and used in distributed systems for

conformance and interoperability testing of the systems [14, 30, 31]. Controllable

distributed testing [14] has a similar purpose as architecture-based software testing

has but is di®erent from it in that it considers only one particular architecture

view, i.e. the distribution architecture, and utilizes for observation and control the

interaction points between distributed components, disregarding the possibility of

observing and controlling the interaction points of components internal to distrib-

uted systems and utilizing various other architecture views such as logical archi-

tecture, module architecture, execution architecture, etc. Keum et al. [13] apply such

concepts to the testing of service-oriented architecture (SOA) software, which

is noted for complex interactions among services in a distributed systems setting.

Although they used architecture-based software testing, they di®er in that they

192 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

failed to provide a framework of architecture-based software testing by considering

only one particular architecture view, i.e. the distribution architecture, and limiting

observation and control to the interactions between distributed components. This

contrasts with our previous work in [12], which generalizes architecture-based soft-

ware testing to observe and control the interactions of components that are internal

to distributed systems and to utilize various other architecture views such as logical

architecture, module architecture, and execution architecture. There are studies [8, 9,

17] that use the Testing and Test Control Notation (TTCN-3) for software system

testing based on test architecture concepts. Such studies indicate that test architectures

can be an important cornerstone of software testing and can o®er signi¯cant bene¯ts,

but they discuss the potential possibilities of test architecture at the conceptual level.

Test architecture concepts for software testing have been developed by Lee et al.

[12]. However, the nature and extent of the e®ects architecture-based software

testing o®ers during software testing has not been su±ciently investigated yet.a

Among the bene¯ts that architecture-based software testing can o®er from various

aspects such as productivity, reusability, and maintainability for software testing, its

main bene¯t is that with it we can enhance the fault detection ability of testing in a

cost-e®ective manner. Thus, our investigation in this paper focuses on validating the

e®ectiveness of architecture-based software testing with respect to fault detection and

error locatingb and compares the outcome with the conventional testing approaches

that do not rely on test architectures. We chose the empirical study of Mouchawrab

et al. [15, 16] for comparison because it provides experiment results about fault de-

tection e®ects of the state machine-based testing, the structural testing, and a testing

approach that combines the two techniques. The main goals of this study are (1) to

validate the fault detection and error locating e®ectiveness of architecture-based

software testing by comparing it with the empirical evidence presented in these earlier

reports; and (2) to ¯nd the contributing factors of architecture-based software testing

that enable such enhancement in fault detection and error locating.

This paper is organized as follows: Sec. 2 provides the motivation behind the

study with a brief description of test architecture concepts; Secs. 3 and 4 conduct two

case studies and describe answers to three research questions. Section 5 discusses the

results; Sec. 6 presents the existing research related to the concepts of test archi-

tecture and architecture-based software testing; ¯nally, in Sec. 7 we o®er concluding

remarks and suggest future work.

2. Revisiting Architecture-based Software Testing for

Motivation and Background

This section presents the motivation behind this study and the background knowledge

of architecture-based software testing. In Sec. 2.1, the concepts and de¯nitions of

aOnly Keum et al. [13] show the e®ects of test architecture during fault detection and error locating.
However, it is not readily applicable to systems which do not have SOA.
bError locating refers to the ¯nding of approximate locations of errors that cause a fault.

Case Study Investigation of the E®ects of Architecture-Based Software Testing 193

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

architecture-based software testing are brie°y explained. In Sec. 2.2, the motivation

for test architecture is explained with a vending machine application devised to

explain brie°y the fault detection capability of our method.

2.1. Architecture-based software testing

Architecture-based software testing [12]c is a testing approach that uses test archi-

tecture obtained from software architecture that is captured by architectural views,

such as logical views, module views and execution views, in order to observe and

control the interaction points at which the interactions between components

or modules occur. Point of observation (PO), which observes the behavior of the

implementation under test (IUT) and point of control and observation (PCO), which

observes and controls the behavior of IUT for observation are test elements and test

architecture for a given software system is software architecture of the system

augmented with a set of such test elements together with the relationships between

the system components and the test elements and the relationships between the test

elements [12]. A tester is a special PCO that contains a set of test cases, executes

test cases, produces pass or fail verdicts based on test oracles, and controls and

coordinates POs and other PCOs. By comparing the expected responses and the

actual responses from the components, the tester makes the ¯nal decision of the

correctness of the IUT with respect to a given test case.

A test architecture is formally represented as a 4-tuple hS, T , P , Ci, where S is an

IUT, T is the tester, P is a set of POs and C is a set of PCOs. In the test architecture

of Fig. 5(b), S is fS2g, T is fTesterg, P is fPO1, PO2g and C is fPCO1g. A PO is

formally represented as a triple hL, R, Mi, where L is the location of the PO, R is a

non-empty set of responses and M is a set of ports for the PO. A PCO is formally

represented as a quadruple hL, S, R, Mi, where L is the location of the PCO, S is a

non-empty set of stimulus, R is a non-empty set of responses and M is a set of ports

for the PCO. The syntax `PO1?msg' denotes that a response `msg' is received at PO1

and the syntax `PCO1! msg' represents that a stimulus `msg' is sent out for control

from PCO1.

Test architecture can be classi¯ed as IUT-independent test architecture or IUT

integrated test architecture depending on whether POs and PCOs are placed only at

locations external to the IUT or both at internal locations within the IUT as well as

at external locations. Figure 1 illustrates these two types of test architectures.

The IUT-independent test architecture shown in Fig. 1(a) has one PCO, i.e. the

Tester and one PO1. The IUT integrated test architecture in Fig. 1(b) has one PCO

and two POs, of which PO2 is placed within the IUT to allow the tester to observe

and/or control the internal behavior of the IUT.

In Fig. 1, port1 through port4 are the ports of IUT whereas tport1 is a test port

that is added to connect the Tester through the IUT to PO2. Figure 1(b) shows port3

cLee et al. [12] provides the detailed de¯nition of test architecture. In order to make this paper self-

contained, many descriptions in the subsection are reused from [12].

194 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

and port4 as the ports of C2 and C4, respectively. They are not shown in Fig. 1(a),

however, because they are not visible to the Tester. A test architecture is realized

by implementing POs, PCOs (including the tester) and interaction mechanisms

for them.

In the case of IUT-independent test architecture, POs/PCOs can be implemented

using message queues or test components with ports, for example, while IUT inte-

grated test architecture can be implemented using code instrumentation such as test

probes, assertions and specialized testing interfaces. Tracking interface, built-in

tracking code and systematic component wrapping for testing are yet other possible

implementation techniques for POs/PCOs. For example, for the test architecture of

Fig. 1(a), PCO1 can be implemented with a test component with one input port and

one output port. PCO1 in Fig. 1(a) stimulates the IUT through its input ports,

receives the stimulation result through its output ports and determines pass or fail by

comparing the result with the expected result. Likewise, a PO receives the obser-

vation result through its output ports.

In the case of IUT integrated test architecture, POs/PCOs can be implemented

with separate modules or classes referring to the IUT that includes assertions, console

or ¯le input/output statements, or accessors. For example, for the test architecture

of Fig. 1(b), built-in testing interface (i.e. Set-To-State operation) and built-in

tracking code (i.e. Is-In-State operation) can be used for implementing PCO1.

An interaction mechanism can be implemented using built-in test interface, built-

in test code, or mappings and connections for sending stimuli and receiving

responses. For the details for test architecture design, implementation and test

derivation based on test architecture, the reader can refer to Lee et al. [12] In order to

apply architecture-based software testing method, architectural speci¯cation for IUT

should be available. Then test engineers can decide the location and numbers of

POs/PCOs based on the architectural speci¯cation. Also test engineers should be

provided with the environment in which they can perform code instrumentation to

add necessary implementations for the POs/PCOs.

Any test case generation method can be turned into an architecture-based test

generation method. For example, if a state machine-based test generation method is

(a) IUT-independent test architecture example (b) IUT integrated test architecture example

Fig. 1. Test architectures examples.

Case Study Investigation of the E®ects of Architecture-Based Software Testing 195

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

used, its architecture-based version would just generate test cases in the same way but

with the di®erence that, in addition to the input values and expected results for the

application, as the input values to the relevant PCOs and the expected results from the

relevant POs should also be determined as required by the de¯ned test architecture.

Thus, test case description for architecture-based testing should include relevant POs/

PCOs of the test architecture. For example, in the cruise control system in Sec. 3.3, there

is a test case derived from a state machine consists of a sequence of events, which are

`engineOn', `on' and `accelerator'. A PO `throttle' in the test architecture is a PO that is

related to the response of each event. In architecture-based testing using a state ma-

chine, a test case may be described using the TTCN-3 test description style as follows:

Tester! engineOn

PO? throttle

Tester! on

PO? throttle

Tester! accelerator

PO? throttle

The syntax `Tester! engineOn' represents that `engineOn' event is sent out and

the syntax `PO? throttle' represents that the value of `throttle' is observed at PO.

2.2. Motivating example

Figure 2 shows the architecture of a vending machine application to be used in this

section. In this example, the `Vending Machine' component of the vending machine

application controls operation of the vending machine; the `Display' component

shows the status of the vending machine; and the `Dispenser' component dispenses

items and change.

When these components are integrated, there may be errors that cannot be detected

by the conventional testing. For example, consider the following test case TC1:

Tester! insertMoney(Amount)

Tester! itemOrder(Req Item)

Tester?Req Item

Fig. 2. Architecture of a vending machine application.

196 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

After the Tester sends a `insertMoney' message with the `Amount' number of

coins and sends the `itemOrder' message with the ordering item `Req Item', the

`Vending Machine' component invokes the `itemDispense (Req Item)' method of the

`Dispenser' component, which dispenses the `Req Item' and decreases the number of

items. After dispensing an item, the `Dispenser' checks whether there are any items

remaining. Meanwhile the Tester waits for `Req Item'.

As shown in Fig. 3, when there are no remaining items, the `Dispenser' component

should invoke the `displayEmpty (Req Item)' method of the `Display' component to

display an \empty" sign. If the `Dispenser' does not invoke the `displayEmpty

(Req Item)' method, it is an error but the Vending Machine component may not

detect it because it does not observe the properties of the `Dispenser' component. The

number of items in the `Dispenser' component is decreased whenever an item request

is made from the `Vending Machine' component, and whether this behavior includes

defects can be con¯rmed after all three components have been integrated. It may be

di®erent depending on the order of integration, but let us consider the case when they

are integrated in the order of the `Vending Machine' component, the `Dispenser'

component and the `Display' component. Even though an interaction between the

`Dispenser' component and the `Display' component mentioned above has been

caused by the `VendingMachine' component it is not visible to the `VendingMachine'

component. This defect may not be found unless the system state is observed by a test

case that is de¯ned in accordance with the described conditions. If we recognize the

existence of unobservable interactions, faults caused by such errors may be easily

detected. Referring to the architectural speci¯cation of the Vending Machine System

in Figs. 1 and 2, we may recognize such unobservable interactions.

As depicted in Fig. 4(a), we can detect the faults if a PO1 or PCO1 is inserted into

the vending machine application between the `Dispenser' and the `Display' compo-

nents, where interactions could not be observed without a PO or PCO. Figure 4(b)

Fig. 3. A vending machine operation when TC1 executes.

Case Study Investigation of the E®ects of Architecture-Based Software Testing 197

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

shows PO1 that is instrumented its test code into the `Display' component. PO1

provides an interface that enables test codes (enTestCode()) and allows observation

of the interactions between the `Dispenser' and the `Display' components. As `Tester'

is a specially designated PCO that orchestrates the overall testing process, it can

check through PO1 whether the `Dispenser' component correctly decreases the value

of the `numItems' variable while executing TC1.

However, if the number of items exceeds 1, the `displayEmpty()' method need

not be invoked. In the presence of a PCO such limitation can be overcome. Figure 4(b)

shows an example PCO, PCO1, which sends a message to control the value

of `numItems' and observes the result through PO1. The Tester sets the current

number of items to `1' through PCO1. By executing TC1, it can detect this error

through PO1.

(a) A test architecture for the vending machine

(b) Implementation of the test architecture in (a)

Fig. 4. IUT integrated test architecture–vending machine application.

198 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

Figure 5 shows the interaction of the vending machine when the following test

case, TC2:

Tester! setNumItems(item, numItem)

Tester! insertMoney(Amount)

Tester! itemOrder(Req Item)

Tester? Req Item

PO1? getNumItems(Req Item)

is executed under the test architecture of Fig. 4. In TC2, the Tester sends the

`setNumItems' message to set the number of items `Req Item' to `1'; from the 2nd

through the 4th lines of TC2 are similar to those of TC1; and PO1 waits for `get-

NumItems' to observe the value of `Req Item'. Unlike TC1, which is de¯ned without

test architecture, TC2 includes test elements for controlling and observing the in-

termediate states.

Even from this simple example we can clearly see that test architecture de¯ned by

adding POs/PCOs to the application architecture and the test code implementation

based on the de¯ned test architecture enable e±cient fault detection and error lo-

cating. Architecture-based software testing was instrumental, when compared with

the conventional testing, in achieving the speci¯c e®ects in Table 1 in the case of this

motivating example. In the remainder of this paper, we investigate to what extent

Fig. 5. A vending machine operation when TC2 executes.

Table 1. Summary of di®erences between architecture-based software testing and conventional testing in

the motivation example.

Architecture-based software testing Conventional testing

Testability Testability between `Dispenser' and

`Display' components is ensured even

after the components are integrated

Testability between `Dispenser' and `Display'

is not guaranteed after integration

Case Study Investigation of the E®ects of Architecture-Based Software Testing 199

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

and in what ways such bene¯ts of architecture-based software testing over the

conventional testing are achieved through case studies.

3. Design of Case Study Investigation

3.1. Research questions

In our case study investigation, we undertake a quantitative analysis of di®erences in

terms of fault detection and error location e®ectiveness and also a qualitative anal-

ysis in order to understand the reasons for these di®erences. Through this investi-

gation, we aim to obtain answers for the following research questions:

. RQ1: Does architecture-based software testing improve fault detection capability

beyond the testing without architecture?

. RQ2: Can faults be located e±ciently when architecture-based software testing is

used?

. RQ3: Can oracles be generated with minimal e®orts when architecture-based

software testing is used?

3.2. System selection

Among many systems for which their source code is provided and their case studies

report detailed experimental results and reproducible outcomes, we selected the

systems that were used by Mouchawrab et al. [15, 16] because their experiments with

the systems included fault detection experiments that compare the state machine-

based testing, structural testing and combinations of the two approaches. The sys-

tems are the cruise control system and the elevator system from Software Infra-

structure Repository (SIR) [18].

The cruise control system is a system that simulates a car engine and its cruise

controller and the elevator system is a system for servicing stop requests to move

Table 1. (Continued)

Architecture-based software testing Conventional testing

Fault detection
capability

Testing does not miss faults on the
interactions between `Dispenser' and

`Display' components that remained

after the system integration because
focusing on the unobservable inter-

action improves observability

Careful design of test cases can detect faults
on the unobservable interactions between

`Dispenser' and `Display' components that

testing did not ¯nd before the system
integration, but it may still easily miss

them

Error locating

capability

A PO or PCO is used as information for

error locating, so only the statements
containing `numItems', which is used

as a PCO, and the statements in-

volved in unobservable interactions

with it become suspicious statements
which may contain error

If `Empty' sign is not turned on, all state-

ments in Fig. 5 that the test case executes
become suspicious statements which may

contain error

200 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

passengers to other °oors in an elevator and up or down requests from °oors to move

passengers from one °oor to another. Table 2 provides the details of the two target

systems. As shown in Table 2, the two systems have suitable sizes for controlled case

studies.

Mouchawrab et al. [15, 16] report in detail the experimental results from a series of

controlled experiments including both black-box and white-box testing with concrete

experiment inputs. Hence, comparing architecture-based software testing, which is a

type of gray-box testing, with the experiment results of Mouchawrab et al. [15, 16]

will be illuminating.

3.3. Plans for case studies

With the selected systems, we compare the fault detection capabilities of the state

machine-based testing, the structural testing, and one that combines the state

machine-based testing and the structural testing. Our comparative experiments just

use the experiment results of Mouchawrab et al. [15, 16] without reproducing their

experiments here because we will apply architecture-based software testing to the

state machine-based testing of Mouchawrab et al. [15, 16] with no modi¯cation.

For each research question of RQ1–RQ3 we devised the following plans to obtain

answers:

. Plan for selecting and inserting POs: After identifying unobservable interactions

based on architectural speci¯cations, we manually select the variables to observe

among the variables participating in interactions as POs. The number of POs

depends on the size and complexity of unobservable interactions. The determined

POs are implemented in the form of test code and inserted into IUT.

. Plan for RQ1: We investigate this question by comparing in detail the fault de-

tection rates of the state machine-based testing with and without using archi-

tecture-based software testing. We then compare the results pertaining to fault

detection with those of the structural testing and the testing that combines the

state machine-based testing and the structural testing. State machine-based

testing has been widely used as a means of integration testing [16]. It is well known

that detecting faults related to certain speci¯c parameters and unspeci¯ed or

Table 2. Overview of the systems used for case studies [15].

System

Aspect Cruise control system Elevator system

classes 4 8

operations 34 74
attributes 14 37

LOC 358 581

transitions 17 50

states 5 6
events 7 10

Case Study Investigation of the E®ects of Architecture-Based Software Testing 201

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

sneak paths is challenging. Given the evaluation plan, we de¯ne the following two

sub-questions for our evaluation:

— RQ1 1: Does architecture-based software testing improve fault detection ca-

pability for faults requiring speci¯c parameter values?

FaultDetectionEfficiencyð%Þ ¼ Number of faults detected

Total number of faults

— RQ1 2: Does architecture-based software testing improve fault detection ca-

pability when faults are related to unspeci¯ed paths or sneak paths?

. Plan for RQ2: We investigate this question by checking whether we can pinpoint

suspicious components or code regions.

ErrorLocatingEfficiencyð%Þ ¼ Number of errors directly located by POs

Number of faults detected

. Plan for RQ3: We investigate how we can precisely de¯ne oracles for test cases in

architecture-based software testing. Oracles of architecture-based software testing

are the values to be compared with those observed at the POs of test architecture.

Because both systems selected for the case study include multiple threads, we

check that architecture-based software testing incurs little e®ort for oracle deci-

sions, even for the systems that execute with threads.

Table 3 summarizes the test environments of our case study investigation. We

inserted faults into the two systems. In the cruise control system, we automatically

Table 3. Test environments of the testing of Mouchawrab et al. [15, 16] and the architecture-based

software testing.

Approach
Aspect Mouchawrab et al. [15, 16] Architecture-based software testing

Basis for test case
generation

State-machine diagram,
including a transition tree

Structure of source code

State-machine diagram, including
a transition tree

Use case diagram or sequence

diagram at the architecture level

for selecting POs
Test coverage RTP

Extending the RTP criterion

RTP

Test coverage at test architecture [12]

Test data Test coverage-based test data generation Test coverage-based test data generation

Oracles State invariants, operations' contracts State invariants
Expected values of the selected POs

Fault seeding Automatically seeded using MuJava Automatically seeded using MuJava

only for four mutation operators

Data collection Perl script to automatically
execute test driver to inspect the

correctness of the system

Tester to execute test cases and
collect test results to check oracles

E®ectiveness of
approaches

Mutation score for each mutant Mutation scores of four selected mutants
The number of errors that are

located and narrowing down the scope

of the review

202 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

generated mutants using MuJava [19, 20] in the same manner as in Mouchawrab

et al. [15, 16], whereas in the elevator system we used source code including mutants

provided in SIR [18] without modi¯cation. The test cases for the two systems were

derived in the same manner as in Mouchawrab et al. [15, 16] so they were generated

based on state-machine diagrams, including class public interfaces, transition trees,

class diagrams, operation contracts and state invariants. We also used all possible

paths of the state machines with the Round-Trip Path (RTP) coverage [21].

According to Mouchawrab et al. [15, 16], in their experiment results the authors

could not detect faults on unary operators, relational and logical operators when they

tested the selected systems using the state machine-based testing. In our case study

investigation, we check whether architecture-based software testing based on the

same state machines can enhance faults detection capability compared to the state

machine-based testing for those kinds of faults. We also compare the capability of

architecture-based software testing based on state machines for those faults with the

testing that combines state machine-based testing and structural testing, which is

the one that showed the best fault detection rate in the experiments of Mouchawrab

et al. [15, 16]

To that end, we seeded faults using the automatic tool MuJava for the following

four mutation operators: Arithmetic Operator Insertion-Unary (AOIU) for the

mutations that negate numeric variables; Arithmetic Operator Insertion-Short-cut

(AOIS) for the mutations that insert the increment (þþ) or decrement (− −)
operators into numeric variable uses; Relational Operator Replacement (ROR) for

the mutations that replace binary Boolean operators; and Logical Operator Insertion

(LOI) operator. The LOI operator is the mutation that computes the 1's complement

of numbers by replacing X with �X. We selected these four mutation operators

because they are the mutants used in the experiments of Mouchawrab et al. [15, 16]

and the authors reported that their approach could not detect them well.

4. Case Studies

In this section, architecture-based software testing is applied to two selected systems

for an evaluation of its e®ects on fault detection and error locating processes. Case

studies are conducted in accordance with the process of architecture-based software

testing de¯ned in [12]. The major steps of architecture-based software testing process

are (1) design test architecture, (2) design test cases, (3) implement test architecture

and (4) execute test. This section describes the execution of the process and

the resulting artifacts of the case studies, respectively in Secs. 4.1 and 4.2. We

implemented and used the tester and test elements de¯ned in the test architecture for

test execution and evaluation of test results.

4.1. Test architecture and test cases design

Test architectures for the case study systems were designed based on their module

view architectures and behavioral view architectures. We depicted the test

Case Study Investigation of the E®ects of Architecture-Based Software Testing 203

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

architectures using the diagrams provided by SIR [18] and Mouchawrab et al. [15,

16]. In the case of the cruise control system, the sequence diagram was used to

describe most frequently occurring interactions in order to identify POs. We gen-

erated test cases based on the test architectures and the state-machine diagrams for

the systems. In this subsection, we describe test architecture for the selected system

and test cases generated based on it.

4.1.1. Test architecture and test cases for the cruise control system

The cruise control system has unobservable interactions between the `Controller',

`SpeedControl' and `CarSimulator' modules, as shown in the module view archi-

tecture of bold square part of Fig. 7. In this system, the values of the variables change

in real time, making it di±cult to ascertain their exact values. From the state-

machine diagram of Mouchawrab et al. [15, 16] and the module view architecture of

the cruise control system, we derived four invariant variables `state of speed

control', `setSpeed', `ignition' and `distance'. They are variables related to

unobservable interactions, and therefore we chose them as POs.

We derived one PO for the variable `throttle' from the architecture speci¯cation

shown in Fig. 6 because the variable `throttle' was related to the most frequent

interactions between `Controller' and `SpeedControl', where both observable and

unobservable interactions existed. However, we could not know the exact value of

throttle because it executes as a thread. Instead we could ¯nd the range of throttle

values from the architecture speci¯cation.

Fig. 6. Selecting a PO for the cruise control system.

204 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

Thus, ¯ve POs were inserted to i1, where interactions between the SpeedControl

and Controller. And a tester for executing test cases, monitoring and judging test

results. Figure 7 is a test architecture for the cruise control system.

As for test cases for the cruise control system, we designed 12 test cases with the

same method of Mouchawrab et al. [15, 16], i.e. using state-machine diagram with the

RTP coverage.

4.1.2. Test architecture and test cases for the elevator system

The experiments on the elevator system in Mouchawrab et al. [15, 16] established the

numbers of elevators and °oors in the cluster, the types of requests and the °oors or

elevators from which to send the requests in order to ensure the covering of a speci¯c

path in the transition tree in the elevator system. The elevator system has many

unobservable interactions from the `FloorInterface' and `ElevatorInterface' modules,

as shown in the module view architecture of the elevator system of bold square part

of Fig. 8. The elevator system contains threads, making it di±cult to observe the

values of the observation points.

Fig. 7. Test architecture of the cruise control system.

Fig. 8. Test architecture of the elevator system.

Case Study Investigation of the E®ects of Architecture-Based Software Testing 205

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

From the state-machine diagram of Mouchawrab et al. [15, 16] and the module

view architecture of the elevator system, we derived four POs `state of elevator',

`doorOpen', `motorMoving' and `direction', which were state invariants of a state-

machine diagram. In addition to the four POs for state invariants, we selected four

POs, `elevatorID', `°oorID', `bestElevatorID' and `thread status' and observed their

values. As a result, 8 POs were inserted into position i1 and i2 as shown test

architecture of the elevator system in Fig. 8. We did not need to implement addi-

tional code to observe the selected POs because the elevator system already has code

that checks their values.

For the elevator system, we designed 40 test cases from the same state-machine

diagram of Mouchawrab et al. [15, 16] and with the same method in accordance with

the RTP coverage.

4.2. Results of case studies

Test cases of the state machine-based testing are obtained typically using the paths

of the state machine. To check a state of an object oracle can be based on the values

of all attributes or the state invariants of the object in accordance with the events

[15]. In the case of architecture-based software testing, oracles should also be de-

termined for POs. In our case studies, we obtained oracles for values/ranges of POs

from architectural speci¯cations and also from executing all test cases on the target

systems before mutants are injected. To quantify the e®ects of architecture-based

software testing in locating errors, we counted the number of detected faults for

which we could narrow down the scope of the error locations to components or

statements relevant to the faults.

4.2.1. Results for the cruise control system

Table 4 shows the evaluation results for the cruise control system. In this case study,

we investigated in particular whether architecture-based software testing could de-

tect mutants related to unobservable paths. The number of mutants related to

unobservable paths were fewer than that of the mutants inserted by the state

Table 4. Architecture-based software testing results for the cruise control system.

State machine-based testing [15, 16] Architecture-based software testing

Mutation

operator

#

of

mutants

of

mutants

killed

of mutants only

related to

unobservable path*

of

mutants

killed

of directly

located error

by POs

AOIU 31 14 15 12 80% 4 33.3%

AOIS 148 66 124 86 69.3% 55 64%
ROR 79 21 54 25 46.3% 3 12%

LOI 49 18 30 20 66.7% 10 50%

*The number of mutants in our approach is fewer than that of [15, 16] because mutants related to the

`CruiseControl' and the `Controller' modules are excluded.

206 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

machine-based testing, but we could see that most of mutants were related to un-

observable paths as shown in Table 4. The results depicted in the number of the

mutants killed by architecture-based software testing show that architecture-based

software testing could detect more faults than the state machine-based testing. And

POs inserted based on system's architecture could reduce the error locating time by

as much as 64%.

The locations of the mutants seeded using the ROR operator cannot easily be

approximated even by architecture-based software testing. This occurs because the

ROR operator is assumed to seed a mutant to a conditional statement such that the

fault introduced by the mutant is not directly observed through a PO, although it

could be if the entire conditional statement is inspected. With regard to the

remaining detected faults for which we could not approximate error locations, we

could narrow down the scope to the modules or statements that are relevant to the

faults.

According to the report by Mouchawrab et al. [15] the mean of the mutation

scores of the cruise control system was 36.7%, whereas the evaluation results of the

cruise control system indicate that the mean of the mutation scores of architecture-

based software testing is on average 65.6% (see Table 5). The comparison results of

Table 5 show that the e®ects of architecture-based software testing on the fault

detection rate in the cruise control system are higher than that of the state machine-

based testing and that of the structural testing, respectively, but is lower than that of

the combined testing by 19.2%.

4.2.2. Results for the elevator system

For the evaluation of architecture-based software testing, we seeded the mutants to

the `Elevator' module only because it was involved in many unobservable interac-

tions. As shown in Table 6, about a half of the mutants were related to this module

and most of them were killed by POs de¯ned based on system's architecture.

For the mutant operator AOIS, architecture-based software testing approach

detected 205 of the mutants (i.e. 76.5% of the mutants was killed), but 150 of them

were killed through POs while those remaining were detected during compilation or

Table 5. Comparison with the three experiments of Mouchawrab et al. [15, 16] for the cruise control
system.

Systems Mouchawrab et al. [15, 16]

Mutation

operators

State machine-based

testing

Structural

testing

Combined testing

(state machineþ structural)

Architecture-based

software testing

AOIU 45.2 0 87.1 80

AOIS 44.6 3.4 91.2 69.3

ROR 26.6 1.3 67.1 46.3

LOI 36.7 0 93.9 66.7
Average 36.7 1.2 84.8 65.6

Case Study Investigation of the E®ects of Architecture-Based Software Testing 207

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

Tester execution. Similarly, 60 mutants (64.5%) introduced by the LOI operator

were also detected, but 19 mutants were excluded for the same reason with the AOIS

operator. The numbers in parentheses of Table 6 are the numbers of such mutants.

However, when we ran the Tester to execute the test cases, the system threw

exceptions or entered an in¯nite loop. This is certainly a result caused by mutants,

but it is not clear whether it could be detected by architecture-based software

testing. Actually the cause of an abnormal termination of the system was incorrect

allocation of values to the variables for the elevator direction and elevator state,

whose consequence is that elevator threads cannot terminate normally. These

threads were terminated through the Tester, which is a PCO that executes test cases.

Architecture-based software testing was e®ective in locating the errors related to

the AOIU mutation operator, while it was less e®ective for the AOIS and ROR

mutation operators (see the last column of Table 6). In the case of the ROR mutation

operator it is the same reason with the cruise control system case. However, In the

case of the AOIU it is di±cult to specify the reason.

The comparison results of Table 7 show that the e®ects of architecture-based

software testing on the fault detection rate are on average 68.4% for the elevator

system, which are higher than that of the state machine-based testing and that of the

Table 6. Architecture-based software testing results for the elevator system.

State machine-based

testing [15, 16] Architecture-based software testing

Mutation

operator

of

mutants

of mutants

killed

of mutants only related

to unobservable path*

of mutants

killed

of directly located

error by POs

AOIU 88 5 26 23 88.5% 15 65.2%

AOIS 556 42 268 150 56% 5 3.3%

(205*) (76.5%*)
ROR 107 10 53 30 56.6% 1 3.3%

LOI 192 18 93 41 44.1% 14 34.1%

(60*) (64.5%*)

*The number of mutants killed in parentheses includes the number of mutants killed during compilation
with the Tester.

Table 7. Comparison with the three experiments of Mouchawrab et al. [15, 16] for the
elevator system.

Systems Mouchawrab et al. [15, 16]

Mutation

operators

State machine-based

testing

Structural

testing

Combined

testing

Architecture-based

software testing

AOIU 5.7 13.6 83.0 88.5

AOIS 7.6 23.2 91.4 76.5

ROR 9.3 19.6 67.3 44.1

LOI 9.4 18.8 79.2 64.5
Average 8.0 18.8 80.2 68.4

208 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

structural testing, respectively, but is lower than that of the combined testing by

11.8% for the elevator system. Architecture-based software testing, as a kind of grey-

box testing, achieves quite high e®ects without relying on the source code.

4.3. Answers to research questions

Mouchawrab et al. [15, 16] reported that they could not detect faults related to sneak

paths or speci¯c parameters. To handle faults related to sneak paths, they repeated

certain command calls and conducted replication experiments. In order to detect

faults related to speci¯c parameters, they used a combination of boundary value

analyses and category partition techniques. However, for architecture-based software

testing, we simply inserted POs into the unobservable interactions identi¯ed in the

module view architecture and the behavioral view architecture. This approach allows

checking whether such POs can detect faults in the speci¯c paths and parameters.

RQ1: Does architecture-based software testing improve fault detection

capability beyond the testing without architecture?

With respect to this question, we found that architecture-based software testing

can better detect faults than the state machine-based testing or the structural

testing, but no better than the combined testing.

In the two case studies, the fault detection rates of architecture-based software

testing ranged from 44.1% to 88.5%. Unlike state machine-based testing or structural

testing, architecture-based testing showed similar fault detection rates for both

systems. The low rate of 44.1% was due to the many undetectable mutants inserted

in the `Elevator' module. For example, for the elevator system, many live mutants

were related to the function of choosing the best elevator. As with choosing the `best

elevator', where the outputs can di®er from state to state of a system, subsystem, or

module, it is di±cult to give pass/fail verdicts even when we observe the outputs and

compare them with the architectural speci¯cations. Moreover, there exist mutants

generated by the ROR and LOI operators that can never be terminated. This is the

case with the mutants inserted in the forms of `�0' or `� 0'. These are undetectable

mutants that can hardly be regarded as faults.

Architecture-based software testing was particularly e®ective for detecting four

types of faults, e.g. AOIU, AOIS, ROR and LOI, which would not be easily detected

by a single test case design technique alone. However, faults related to unspeci¯ed

paths or sneak paths were not detected by architecture-based software testing either

(Cf. Discussion section).

RQ2: Can faults be located e±ciently when architecture-based software

testing is used?

The answer to this question is that, not in all cases but in most cases, we can trace

the exact locations of errors. As shown in the last column of Tables 4 and 6, the POs

allowed directly locating from as little as 3.3% to as much as 65.2% of the errors.

Even in the cases when we could not pinpoint error locations, we could usually

Case Study Investigation of the E®ects of Architecture-Based Software Testing 209

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

narrow down the scopes of the suspected components because we had information

about interacting components and monitored variables. POs could narrow down the

ranges of suspected components to as speci¯c as the methods or as rough as the

modules related to the interaction. In architecture-based software testing, test cases

include associated PO(s) and their expected outputs. When faults are detected, i.e.

when the values observed at POs di®er from the expected outputs, we could ¯nd the

locations of the corresponding errors by checking statements that de¯ne, use, or

change the values observed at the POs.

RQ3: Can oracles be generated easily when architecture-based software

testing is used?

Architecture-based software testing provided a means of de¯ning exact oracles

with ranges of values by using architectural speci¯cations de¯ned by the scenario

view, the module view and the execution view. In the case of the cruise control

system, we could only determine oracles as ranges of values, for example, positive or

negative values for the variables `throttle', `setSpeed' and `distance' observed

through POs. The exact value of `throttle' could be determined while an `On' event

occurred and we could approximate its value with a range of values. It was di±cult to

get oracles for the variables `setSpeed' and `distance' because they were used by

multiple threads.

5. Discussion

In the case studies of Sec. 3, fault detection rates of architecture-based testing were

highest with the AOIU operators, next with the AOIS and LOI operators and lowest

for the ROR operators. In the experiments of Mouchawrab et al. [15, 16] the con-

ventional testing methods killed a small number of mutants for AOIU, AOIS and

LOI operators. Many of those mutants were killed only after using the combined

testing. In both case studies, architecture-based software testing yielded similar fault

detection results without relying on combined conventional testing methods. AOIU,

AOIS and LOI, where architecture-based testing showed good fault detection, were

mutations for unary operators. This is because architecture-based testing makes

observable the variables that are unobservable in certain states of the system. With

the same amount of test e®ort put for observation, architecture-based testing enables

us to focus on locations and variables that are architecturally important and

therefore are necessary to observe or control. But, we cannot guarantee that the

mutants terminated through our approach are identical to those through in the

experiments by Mouchawrab et al. [15, 16].

Our case studies also illustrate that architecture-based software testing can be

particularly e®ective for detecting certain types of faults (Cf. Sec. 3.3). That is, in the

case studies, architecture-based software testing could detect faults that are related to

speci¯c parameters and thus would not be easily detected by a single test case design

technique alone. For example, faults related to speci¯c parameter values (such as a

speci¯c value of the `setSpeed' variable of the cruise control system) are di±cult to

210 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

detect with the state-machine-based testing. And the variable `setSpeed' should be set

to a speci¯c value in order to detect mutants seeded in the `throttle' variable using the

AOIS operator. In contrast, architecture-based software testing can detect such faults

by observing the intermediate values of the interactions that would not be easily ob-

servable with the conventional testing. This indicates that architecture-based software

testing can be utilized e®ectively for systems with a lot of unobservable interactions or

with parameters involved in complicated predicate or computation relations.

Many faults undetected in the case studies were related to unspeci¯ed paths, or

sneak paths. The state machine-based testing could not detect such faults. Neither

could architecture-based software testing although it monitors the intermediate

values between unobservable interactions. This is due to that architecture-based

testing of this case study uses a state-machine diagram for deriving test cases and

state invariants for de¯ning oracles. As with the state machine-based testing, there

exist uncovered state sequences of systems and states. Undetected mutants, among

those generated by the AOIS and LOI operators, were on the paths that are not

covered by the state-machine diagram.

Concerning the e®ects of error locating, we would not typically design architec-

ture-based testing for the purpose of error locating but such e®ects can be achieved

by architecture-based testing as the result of the fault detection capability that it

supports. Therefore, this paper does not present systematic procedures or methods

for error locating that are based on system's architecture-based testing. In our case

study investigation, we aimed at ¯nding out what e®ects architecture-based testing

would have on error locating. As explained in the experimental results of the two case

studies, it is an e®ect that is introduced by the POs that have been inserted to

increase observability. When a fault is detected by a PO, the location of the error

that caused the fault can be narrowed down to the statements or the components

that are directly or indirectly linked to the PO. So if an error occurs in a variable

being observed, error locating is immediately terminated; otherwise the error is

located by examining the statements that have the computation-use relationship or

the predicate-use relationship with the variable. This result indicates that using

architecture-based software testing together with conventional testing methods

facilitates error locating.

6. Related Work

In this section, we describe works related to the test architecture concepts and PO/

PCO concepts as well as discussions for works that use the term, architecture-based

software testing.

6.1. Test architecture

The term `test architecture' was used in UML Testing Pro¯le (UTP) [9] and by

Nishi [5]. In UTP, test architecture is a set of elements that participate in realizing

Case Study Investigation of the E®ects of Architecture-Based Software Testing 211

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

the behavior of test cases with speci¯c roles in testing. Test architecture in UTP

supports black-box testing and de¯nes the test structure and its behavior. Unlike

the architecture-based software testing approach that we applied to the case studies

in this paper, UTP does not use architectural speci¯cations as a basis for de¯ning

test architecture. The role of test architecture in UTP is to specify test con¯guration

and the focus of UTP is not e®ective fault detection or error locating or enhancing

testability. The research of Nishi [5] attempts to de¯ne the scope of test system

architecture, presenting notations associated with test design patterns and test

architecture styles, which, however, does not show the details of such concepts. Test

system architecture is similar to that of UTP in that IUT is merely one component of

the test architecture. Test architecture notion in our approach is more general than

that of UTP [9] and Nishi [5] because ours approach puts software architecture that is

de¯ned with various architectural views [10] as a base for designing test architecture

design.

The concept of test architecture used in the research of Keum et al. [13] is similar

to that of this paper, but the speci¯c context of their test architecture is distributed

SOA. Keum et al. [13] use a control °ow graph (CFG) as a test model to describe

°ows of interactions among services, and show a means of generating architecture-

enabled test scenarios based on the test model and test architecture. However, the

research of Keum et al. [13] cannot be directly applied to the systems that do not

have SOA style because its test case derivation method relies on the CFG archi-

tectural model.

6.2. POs/PCOs

The notions of POs and PCOs have existed in many di®erent forms. The assert and

print statements in programming languages can be viewed as POs and the test

drivers and testing interfacese in built-in contract tests [11] can be viewed as PCOs.

Yu et al. [27] proposed a controllable and observable testing framework termed

SimTester, which inserts breakpoints (a type of PO) into critical code locations and

controls (a type of PCO) execution events to observe interactions between appli-

cations, device drivers and interrupt handlers. SimTester is a virtual platform used

to test software systems for concurrency faults such as races and deadlocks. Sim-

Tester uses PO/PCO concepts, but its observers and controllers are modules

developed to simulate interactions between applications and device drivers. The PO/

PCO of architecture-based software testing di®ers from that of SimTester in that it is

derived from architectural artifacts.

Vranken et al. [28] use the PCO concept to enhance the testability of hardware-

software systems. Their PCO [28] is conceptually similar to ours, but the description

of the boundary between the hardware and software is not clear, and it is di±cult to

adopt it for software testing. This research focuses on testing on hardware even if the

authors note that they discuss testing on hardware and/or software. However,

212 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

Vranken et al. [28] de¯ne three PCO operating modes, i.e. the transparent, obser-

vation and test modes. In the transparent mode, PCO is not used, whereas in the

observation mode it plays the same role as POs of our approach. In the test mode,

the control input is passed to both the PCOs, akin to the PCO role in our approach.

We use transparent and observation modes as an on/o® switch of test codes in our

approach.

6.3. Testing approaches using architectural artifacts

Ali et al. [22] summarize integration testing approaches using architectural artifacts

such as collaboration diagram as well as state-chart, use-case and sequence diagrams.

Other approaches [23] that use collaboration diagram are TESTOR, which utilizes

state-chart and collaboration diagram; UIT, which utilizes use-case diagram

and sequence diagram; and the SeDiTec approach, which uses testing interactions

between the classes involved in a sequence diagram. The approaches above are

similar to ours in that they use architectural artifacts from module view and scenario

view to obtain interaction information. They aim to generate test paths and test

cases which include interaction information with which to detect faults, whereas our

approach uses architectural artifacts to locate POs/PCOs and thereafter generates

test cases, including interaction information.

Bass et al. [10] found that software architecture can play an important role in

testing by supporting the production of a wide variety of test artifacts and test

automations if a proper mechanism to connect the architecture and code is provided.

There are studies that use formal descriptions for software architecture or software

architecture speci¯cation models [12, 24–26, 33, 34] for testing. The works of [24, 25,

33, 34] use architectural speci¯cations to generate test artifacts including test cases,

to detect architectural faults, or to locate errors. Our approach di®ers from these

studies in that ours is not limited to architectural defects and also checks whether the

system behaves as required at the integration test level and at the system test level.

Using test architecture explicitly enhances the testability, fault detection and error

locating capabilities at both test levels. Soria et al. [26] uses a use case map as an

architecture model de¯ned for mapping from architecture to code. This research uses

architecture model to localize faults at the code level, not to generate test artifacts for

testing or detect faults e±ciently. Thus, the problems addressed by this research are

a kind considerably di®erent from those that our architecture-based software testing

addresses by generating test cases based on test architecture with POs and PCOs.

Lee et al. [12] presented a framework of architecture-based software testing by

providing a method that derives test architecture based on software architecture

together with the foundational concepts and principles of architecture-based soft-

ware testing to help utilize test architecture for software testing. It conducted case

study experiments but did not provide quantitative results pertaining to the e®ects

of fault detection and error locating.

Case Study Investigation of the E®ects of Architecture-Based Software Testing 213

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

7. Conclusion and Future Work

In this paper, we conducted two case studies for investigating the e®ects of

architecture-based software testing with respect to fault detection and error locat-

ing. The investigation results show that architecture-based software testing can

improve fault detection rate by 44.1%–88.5% and reduce error locating time by 3%–

65.2%, compared to the conventional testing that does not rely on test architecture.

From the analysis of the case study results, we found the following e®ects of ar-

chitecture-based software testing. First, architecture-based software testing shows

higher fault detection rates than the conventional testing method and, unlike the

conventional testing, resulted in similar fault detection rates in both case studies. It

has been con¯rmed by comparing the fault detection rate of architecture-based

software testing with those of the conventional testing methods and the combined

testing method. This e®ect was possible because architecture-based testing enables

us to focus on the locations and variables that are architecturally important and

therefore are necessary to observe or control. Second, concerning error locating,

architecture-based software testing allows precise error locating. Even when the

error location cannot be precisely pinpointed, it narrows down the scope of com-

ponents that are suspected to have an error. This is because the location of the error

that causes a fault can be narrowed down to the statements or the components that

are directly or indirectly linked to the POs that observed the fault. Third, archi-

tecture-based software testing is particularly e®ective for detecting certain types of

faults. Because architecture-based software testing enables us to observe the in-

termediate values of the interactions that would not be easily observable with the

conventional testing. Lastly, architectural speci¯cations can provide a means of

de¯ning oracles with exact values or ranges of values that architecture-based soft-

ware testing could utilize but the conventional testing would not, as discussed in the

answer to RQ3 in Sec. 3.

Although e®ectiveness of architecture-based testing in fault detection and error

locating were con¯rmed through the case studies of this paper, they are limited in

their domains and scales. Therefore, for a more thorough evaluation we will study

our research questions with larger scale real-world software systems in the expanded

set of domains.

Acknowledgments

This research was supported by the National Research Foundation of Korea

(NRF) funded by the Ministry of Education (2017R1D1A3B03028609), by Basic

Science Research Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-

2013R1A1A3005162), and by Next-Generation Information Computing Develop-

ment Program through the National Research Foundation of Korea (NRF) funded

by the Ministry of Science and ICT (NRF-2017M3C4A7066210).

214 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

References

1. J. Lee, S. Kang and D. Lee, Survey on software testing practices, IET Softw. 6(4) (2012)
1–8.

2. International Software Testing Quali¯cations Board, Worldwide Software Testing
Practices Report 2015–2016, 2018, https://www.istqb.org/documents/ISTQB Worldwide
Software Testing Practices Report.pdf.

3. Capgemini, World Quality Report 2018–2019, 2018, https://www.capgemini.com/service/
world-quality-report-2018-19/.

4. T. Katayama, Motivation to establish a concept of test architecture, in Proc. International
Workshop on Software Test Architecture, 2011.

5. Y. Nishi, Perspective of research on test architecture design, in Proc. International
Workshop on Software Test Architecture, 2011.

6. P. Clements and M. Shaw, The golden age of software architecture revisited, IEEE Softw.
26(4) (2009) 70–72.

7. M. Shaw and P. Clements, The golden age of software architecture: A comprehensive
survey, IEEE Softw. 23(2) (2006) 31–39.

8. I. Schieferdecker, Test automation with TTCN-3 ��� State of the art and a future
perspective, Testing Software Systems, Lecture Notes in Computer Science Vol. 6435,
2010, pp. 1–14.

9. Object Management Group, Inc., UML Testing Pro¯le (UTP), 2018, http://www.omg.
org/spec/UTP/1.1/.

10. L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, 3rd edn.
(Addison-Wesley, 2013).

11. H. G. Gross ,Component-Based Software Testing with UML (Springer, 2004).
12. J. Lee, S. Kang and C. Keum, Architecture-based software testing, Int. J. Softw. Eng.

Knowl. Eng. 28(1) (2018) 1–8.
13. C. Keum, S. Kang and M. Kim, Architecture-based testing of service-oriented applica-

tions in distributed systems, Information Softw. Technol. 55(7) (2013) 1212–1223.
14. R. M. Hierons, Generating complete controllable test suites for distributed testing, IEEE

Trans. Softw. Eng. 41(3) (2015) 279–293.
15. S. Mouchawrab, L. C. Briand, Y. Labiche and M. D. Penta, Assessing, comparing, and

combining state machine-based testing and structural testing: A series of experiments,
Technical Report No. TR SCE-08-09, Carleton University, 2009.

16. S. Mouchawrab and L. C. Briand, Assessing, comparing, and combining state machine-
based testing and structural testing: A series of experiments, IEEE Trans. Softw. Eng.
37(2) (2011) 161–187.

17. C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler and S. Schulz, An Introduction to
TTCN-3, 2nd edn. (John Wiley and Sons, 2011).

18. Software-artifact Infrastructure Repository (last accessed Jan. 2019), http://sir.unl.edu/
portal/index.php.

19. Y.-S. Ma, J. O®utt and Y. R. Kwon, MuJava: An automated class mutation system,
Software Testing, Veri¯cation Reliability 15(2) (2005) 97–133.

20. Muclipse, An Open Source Mutation Testing plug-in for Eclipse (last accessed Jan. 2019),
http://muclipse.sourceforge.net/.

21. P. Ammann and J. O®utt, Introduction to Software Testing (Cambridge University
Press, 2008).

22. S. Ali, L. C. Briand, M. J. Rchman, H. Asghar, M. Z. Iqbal and A. Nadeem, A State
machine-based approach to integration testing based on UML models, Technical Report
No. SCE-05-02, Carleton, 2006.

Case Study Investigation of the E®ects of Architecture-Based Software Testing 215

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

23. A. Abdurazik and J. O®utt, Using UML collaboration diagrams for static checking and
test generation, in Proc. 3rd International Conference on the Uni¯ed Modeling Language,
2010, pp. 383–395.

24. D. J. Richardson and A. L. Wolf, Software testing at the architectural level, in Proc.
ACM SIGSOFT '96 Workshops, 1996, pp. 68–71.

25. A. Bertolino, P. Inverardi and H. Muccini, Software architecture-based analysis and
testing: A look into achievements and future challenges, Computing 95 (2013) 633–648.

26. A. Soria, J. A. D.-Pace, M. R. Campo, Architecture-driven assistance for fault-localiza-
tion tasks, Expert Systems 32(1) (2015) 1–22.

27. T. Yu, W. Trisa-an and G. Rothermel, SimTester, A controllable and observable testing
framework for embedded systems, in Proc.Virtual Execution Environments, 2012; T. Yu,
An observable and controllable testing framework for modern systems, in Proc. ICSE
Doctoral Symposium, 2013, pp. 1377–1380.

28. H. Varanken, M. F. Witteman and R. C. van Wuijtswinkel, Design for testability in
hardware-software systems, IEEE Design Test J. 13(3) (1996) 79–87.

29. I. Salman, A. T. Misirli and N. Juristo, Are students representatives of professionals in
software engineering experiments? in 37th IEEE Int. Conf. Software Engineering, 2015,
pp. 666–676.

30. ISO/IEC, ISO/IEC IS 9646 Part 1–7, Information technology-open systems intercon-
nection ��� Conformance testing methodology and framework, Standard, 1995.

31. T. Walter and I. Schieferdecker and J. Grabowski, Test architectures for distributed
systems: State of the art and beyond, in Proc. Int. Workshop on Testing Communicating
Systems, 1998, pp. 149–174.

32. B. Uzun and B. Tekinerdogan, Model-driven architecture based testing: A systematic
literature review, Inform. Softw. Technol. 102 (2018) 30–48.

33. B. Uzun and B. Tekinerdogan, Model driven architecture based testing tool based
on architecture views, in Proc. 6th Int. Conf. Model-Driven Engineering and Software
Development, 2018, pp. 404–410.

216 J. Lee & S. Kang

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
02

0.
30

:1
91

-2
16

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
O

R
E

A
 A

D
V

A
N

C
E

D
 I

N
ST

IT
U

T
E

 O
F

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 (
K

A
IS

T
)

on
 0

8/
29

/2
0.

 R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

	Case Study Investigation of the Fault Detection and Error Locating Effects of Architecture-based Software Testing
	1. Introduction
	2. Revisiting Architecture-based Software Testing for Motivation and Background
	2.1. Architecture-based software testing
	2.2. Motivating example

	3. Design of Case Study Investigation
	3.1. Research questions
	3.2. System selection
	3.3. Plans for case studies

	4. Case Studies
	4.1. Test architecture and test cases design
	4.1.1. Test architecture and test cases for the cruise control system
	4.1.2. Test architecture and test cases for the elevator system

	4.2. Results of case studies
	4.2.1. Results for the cruise control system
	4.2.2. Results for the elevator system

	4.3. Answers to research questions

	5. Discussion
	6. Related Work
	6.1. Test architecture
	6.2. POs/PCOs
	6.3. Testing approaches using architectural artifacts

	7. Conclusion and Future Work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

