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1 Introduction

Despite the Higgs discovery at the LHC [1, 2] and the continuous measurements of its

properties, the smallness of the Higgs mass still remains mysterious within the quantum

field theory of the Standard Model (SM). The traditional approach to the naturalness

problem such as the supersymmetry [3–6] or Higgs compositeness [7–12] relied on the

symmetry-based selection rules and the light new particles such as top partners in minimal

scenarios [13, 14] were expected to be observed at the LHC. However, the absence of the

evidence for the New Physics near the electroweak scale so far only degrades the naturalness

principle as a valid guiding principle that has been used for decades to extend the SM [15].

The relaxation meachanism is a recent new approach to the naturalness problem based

on the cosmological dynamics of the Higgs mass squared [16]. In the relaxation approach,

the smallness of the Higgs mass parameter is not associated with the symmetry, and in

principle no new physics near the electroweak scale is required to show up. After the
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first realization of the relaxation mechanism for the electroweak hierarchy problem in [16],

a series of improvements attempting to resolve downsides in the original scenario have

appeared [17–46]. Among them, the one using the particle production [28] is of particular

interest. We postpone the overview of the original idea and its variant using the particle

production to section 2.

In this work, we newly investigate the cosmological relaxation solution to the elec-

troweak hierarchy problem using the particle production of fermions. The application of

the fermion production [47, 48] in the Beyond the SM (BSM) scenarios has been somewhat

limited mainly due to the Pauli-blocking (unlike the parametric resonance for scalars [49]

or the particle production of the tachyonic gauge bosons [50]). A recent interesting applica-

tion in cosmology is the axion inflation in [51, 52] where the backreaction from the fermion

production was shown to be more efficient than the dissipation via the Hubble friction in

supporting the slow-roll of the inflaton and from where we adopted many technical results.

The goal of this work is to investigate the plausibility of realizing the cosmological relax-

ation using the fermion production as a dominant way of dissipating relaxion energy while

aiming to maintain the cutoff scale in a similar size to that of other variant models. Two

benchmark BSM scenarios that we consider in this work are the non-QCD model in [16]

and the double scanner mechanism proposed in [17]. While the non-QCD model does

not look satisfactory (not conclusive though), we use it as a toy example for the simpler

demonstration of the underlying physics, and the double scanner mechanism will be taken

as our proof-of-concept example. We will show that our proof-of-concept example avoids

downsides in the original relaxation scenario, but at the same time it brings new types of

theoretical challenges. We will also demonstrate that the fermions have to be SM singlet

for the mechanism to work and their masses are interestingly in the right ballpark to be

the dark matter candidates.

The paper is organized as follows. In section 2, we review the original relaxation

mechanism in [16] and some of its improvements. In section 3, we survey two BSM models,

namely non-QCD model and double scanner model, focusing on whether the backreac-

tion from the fermion production can support a slow-rolling relaxion while satisfying all

theoretical constraints. In section 4, we discuss about the prospect for dark matter candi-

dates and check their compatibility with the current phenomenological and astrophysical

bounds. The concluding remarks are summarized in section 5. In appendix A, we provide

all detailed derivations of our analytic expressions that we have used throughout our work.

2 Ralaxation overview

In this section, we briefly review the cosmological relaxation of the electroweak scale pro-

posed by Graham, Kaplan and Rajendran [16] (which we refer to as GKR) as well as the

issues in the GKR scenario. Relaxion is an axion-like particle (ALP) whose discrete shift

symmetry is softly and explicitly broken by a small coupling. The relaxion potential in

GRK scenario takes the form

∆V =
(
−Λ2 + gφ

)
|h|2 +

(
gΛ2φ+ · · ·

)
+ Λ4

c cos (φ/f) , (2.1)
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where φ is the relaxion field, h is the Higgs doublet, Λ is the cutoff scale of the relaxion

model, and g is a small dimensionful coupling. The ellipsis in eq. (2.1) refers to the higher

order terms in gφ/Λ2. The small potential terms for φ are technically natural in the sense

that the discrete shift symmetry φ → φ + 2πf is restored when the coupling g → 0. The

periodic potential Λ4
c cos (φ/f) arises from model-dependent non-perturbative dynamics

(either SM QCD or non-QCD strong gauge group), and the height of the potential barriers

Λ4
c ∝ M4−nvn, where the integer n ∈ [1, 4],1 M is a parameter of mass dimension, and v

is the Higgs vacuum expectation value (VEV). The QCD relaxion is problematic since it

generates an O(1) shift in the θ-term, causing the strong CP problem. Either an additional

mechanism (see [16, 41] for example) must be introduced to remedy the problem or one

needs to consider a new strong gauge group instead of QCD.

The relaxion field initially can be anywhere, while φ & Λ2/g, such that the effective

Higgs mass squared is positive, µ2 ≡ −Λ2 +gφ > 0, and electroweak symmetry is unbroken.

Since the cosine potential is switched off in the unbroken phase, the evolution of the relaxion

is driven by the linear potential. The mechanism is insensitive to the initial value of φ since

the relaxion is slow-rolling due to the Hubble friction. The relaxion must scan O(1) fraction

of the field space to naturally pass a critical point φc = Λ2/g where µ2 changes its sign,

and the Higgs develops a nonvanishing VEV. The increasing Higgs VEV backreacts onto

the potential by growing the potential barriers. Eventually it results in a compensation

between the slope of the periodic potential Λ4
c/f and the linear slope gΛ2, stabilizing the

relaxion in a local minimum near a small value, namely, the electroweak scale v. Therefore,

the smallness of the Higgs VEV is explained by the dynamical evolution of the relaxion

field instead of fine-tuning or anthropics.

Certain conditions must be satisfied to make the relaxation mechanism work. The

slow-roll of the relaxion must be long enough such that it can scan an O(1) fraction of

the whole field range, and it sets a lower bound on the number of e-folds Ne & H2/g2:

∆φ ∼ φ̇∆t ∼ φ̇ Ne/H ∼ (gΛ2/H2)Ne & Λ2/g where we have used the slow-roll condition

3Hφ̇ + d∆V
dφ ∼ 0. The vacuum energy should be greater than the typical relaxion energy

density, H2M2
P & Λ4. The potential barrier must be formed within the Hubble sphere,

H−1 > Λ−1. In addition, it has to be the classical rolling instead of the quantum spreading

that sets the vacuum into the correct one, leading to H2/φ̇ < 1. After the relaxion stops

rolling and the reheating of the universe occurs, a sufficiently high temperature may erase

the barrier and cause the relaxion to roll again. Hence, either the reheating temperature

must be low enough such that the barrier does not get melt or the traveling distance during

the second rolling must be short enough not to overshoot the electroweak scale.

Some downsides, however, exist for the original GKR scenario which relies on the

Hubble expansion to dissipate the relaxion energy. The typical size of the dimensionful

coupling g is tiny (e.g. g ∼ 10−31 GeV for the QCD axion model), and it leads to the super-

Planckian relaxion scanning during the inflation and the exponentially long e-folding. The

fact that those downsides are linked to the inflation suggests looking for a more efficient

1An example with n = 0 can be found in [28], whereas a scenario with the QCD axion (non-QCD axion)

is an example with n = 1 (n = 2) [16].
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Figure 1. A cartoon of the relaxation with the dark fermion production.

way of dissipating the relaxion energy than via the Hubble friction. Such an example

is found in the particle production sourced by the relaxion field. In ref. [28], Hook and

Marques-Tavares (HMT) utilized the particle production of tachyonic gauge bosons through

φFF̃ as an efficient way of dissipating relaxion energy. The exponential production of the

electroweak gauge boson naturally occurs to stop the relaxion at a value that generates

the electroweak scale. Since the mechanism can work in a non-inflationary era, the issues

mentioned above can be avoided. However, unlike the GKR scenario, the original HMT

mechanism operates in the broken phase of the electroweak symmetry. Such a model

requires a specific, usually non-trivial UV completion, e.g. from a left-right symmetric

model as in the appendix of [28]. The cutoff scale of the HMT scenario is relatively

low, up to 104∼5 GeV, and hence this scenario addresses the little hierarchy problem (see

also [53, 54] for more recent and updated analyses on the HMT mechanism).

3 Ralaxation from dark fermion production

In this section, we investigate the plausibility of the fermion production as an alternative

to the Hubble friction as a dominant way of dissipating relaxion energy to achieve the

slow-rolling of the relaxion. The cartoon picture for the situation is illustrated in figure 1.

As in the original GKR scenario, we rely on the cosine potential being switched on only in

the broken phase of the electroweak symmetry to stop the relaxion at the right place while

a large field excursion of the relaxion occurs in the unbroken phase. Since the fermion

production can not be exponential due to Pauli-blocking (unlike the case of the tachyonic

gauge boson), it would be difficult to be implemented to work in a similar manner to [28]

in the broken phase as a way of naturally selecting the electroweak scale.

3.1 Dark fermion production

The fermionic system that couples to the relaxion field φ through the derivative coupling

in an expanding Universe can be written as

∆S =

∫
d4x
√
−g
[
ψ̄

(
ieµaγ

aDµ −mψ −
1

fψ
eµaγ

aγ5∂µφ

)
ψ

]
, (3.1)
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where eµa is a vierbein and Dµ is the covariant derivative due to the spin connection from

the scale factor a in the metric,

ds2 = dt2 − a2dx2 = a2
(
dτ2 − dx2

)
. (3.2)

The overall dependence on the scale factor a in the fermionic system can be removed via

rescaling, ψ → a−3/2ψ, after which the Lagrangian density for the fermions in the conformal

time takes a simple form,

∆L = ψ̄

(
iγµ∂µ −mψa−

1

fψ
γµγ5∂µφ

)
ψ . (3.3)

Throughout this work, we will assume that the relaxion field φ is spatially homogeneous.

As was pointed out in [52] (see [55] for the related discussion), the fermion production in the

basis with the derivative coupling as in eq. (3.3) is not accurately estimated. A prescription

is to go to a new basis, where the fermion production is unambiguously estimated, via the

rotation [52]

ψ → e−i γ
5φ/fψψ . (3.4)

In the new basis, the interaction between the relaxion and fermions takes the form,

∆L = ψ̄
(
iγµ∂µ −mR + imIγ

5
)
ψ , (3.5)

where mR = mψ a cos(2φ/fψ) and mI = mψ a sin(2φ/fψ). One clearly sees in eq. (3.5)

that the fermion production vanishes in the massless limit since the fermions become free

fields. The new basis is more suitable to define the fermion number mainly because the

Hamiltonian for the fermion takes a simple quadratic form,

H = ψ̄
(
−iγi∂i +mR − imIγ

5
)
ψ , (3.6)

where ψ is taken to be a quantum field in terms of the creation and annihilation operators.

The fermion number density for a momentum ~k and helicity r is given by the vacuum

expectation value of the number operator at a finite time, namely 〈0|a†r(~k)ar(~k)|0〉. The

detailed computation will be given in appendix A. Here, we simply take the final result

to discuss about the main feature of the scenario. The fermion ψ in eq. (3.3) can not be

a SM one since the SM fermion will be massless during the scanning era in the unbroken

phase of the electroweak symmetry. We assume that ψ is a SM singlet massive Dirac

fermion (what we call the dark fermion in the following) and that its mass is a Higgs VEV

independent.2 The non-SM fermion ψ could be a candidate for a dark matter as a bonus.

We will investigate its plausibility in detail in section 4.

2Another justification for non-SM fermions is that the SM fermions, once produced, might quickly

thermalize, preventing from scanning the zero-temperature Higgs mass squared, and the issue can be avoided

for dark fermions.
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3.2 Slow-rolling from backreaction

In presence of the backreaction due to the fermion production, the equation of motion for

the relaxion reads

φ̈+ 3Hφ̇+ Vφ(φ) = B , (3.7)

where Vφ ≡ ∂V/∂φ and dot denotes the differentiation with respect to the cosmic time, for

instance, φ̇ = ∂tφ. The backreaction B from the fermion production in eq. (3.7) is given by

B =
2mψ

a3fψ
〈ψ̄
[

sin (2φ/fψ) + i γ5 cos (2φ/fψ)
]
ψ〉 . (3.8)

The exact evaluation of the backreaction B can be found in appendix A. In the limit

µ2 ≡ m2
ψ/H

2 � ξ and ξ � 1, it is approximated to be

B ∼ − 1

fψ
H4µ2ξ2 , (3.9)

where ξ is defined as the ratio of the velocity of φ to the scale fψ in the Hubble unit,

ξ ≡ 1

2H

φ̇

fψ
. (3.10)

The parameter ξ plays a crucial role in controling the slow-rolling of the relaxion, or the

strength of the fermion production or energy dissipation. A strong fermion production

occurs when the adiabatic condition is strongly violated. This implies that the relaxion

should maintain a sizable velocity to strongly depart from the adiabaticity. What controls

the size of the velocity of φ would be the slope of the linear potential, namely g in our

framework. Having said that, the fermion production assisted slow-rolling favors a bigger

slope than that in the original GKR relaxation operating with the Hubble friction, whereas

the slope is smaller compared to the case of the inflation through the fermion production

in a steep axionic potential [52].

While the velocity of the slow rolling φ during the inflation in the absence of the

backreaction is determined by equating the second and third terms on the left hand side

of eq. (3.7), the velocity in our scenario is engineered to be determined by equating Vφ(φ)

with the backreaction term B in eq. (3.7):

Vφ(φ)(= gΛ2) ∼ B → φ̇ ∼ 2
g1/2Λf

3/2
ψ

mψ
∼ constant . (3.11)

It implies that the size of the backreaction is solely determined by the size of the slope g

as the left hand side of the slow roll equation in eq. (3.11) depends only on the slope for a

given cutoff scale Λ.

3.3 Theoretical constraints for relaxation

In the following, we list various constraints for the successful relaxation from the dark

fermion production, and we express them as a lower or upper bound on the dark

fermion mass.
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1. Consistency of slow rolling. The friction term due to the Hubble parameter should

be subdominant in order for the slow rolling to be maintained by the backreaction,

or to be consistent with the slow-rolling condition in eq. (3.11),

Vφ(φ) > 3Hφ̇ → mψ > 6
H

Λ

f
3/2
ψ

g1/2
. (3.12)

2. Validity of EFT. The validity of the EFT demands

φ̇ . Λ2 → mψ & 2
g1/2f

3/2
ψ

Λ
. (3.13)

3. Small dark fermion energy density. The energy density carried by dark fermions

must be smaller than the total energy,

ρψ ∼ 16π2H4µ2ξ3 . H2M2
p → mψ &

Λ3

H3

g3/2f
3/2
ψ

M2
p

, (3.14)

where the expression for the fermion energy density holds only in the approximation

µ2 � ξ and ξ � 1.

4. Small kinetic energy. The kinetic energy needs to be smaller than the total energy

φ̇2 . H2M2
p → mψ & 2

Λ

H

g1/2f
3/2
ψ

Mp
, (3.15)

which is automatically satisfied if the condition in eq. (3.13) is satisfied, provided

that the typical energy density of the relaxion should be smaller than the total energy

density, Λ4 . H2M2
p .

5. (Sub-Planckian) Large field excursion. While the natural scanning process requires

a large field excursion ∆φ & Λ2/g, and it can set a lower bound on the number of

e-folding through ∆φ = φ̇∆t = φ̇ (Ne/H) & Λ2/g, we express the constraint as an

upper bound on mψ for a fixed Ne,

∆φ &
Λ2

g
→ mψ . 2Ne

g3/2f
3/2
ψ

HΛ
. (3.16)

In this work, we will consider a modest size of the e-folding, Ne ∼ O(101∼3). It is

consistent with the viable parameter space according to our numerical simulation. It

also guarantees the validity of our analysis based on the analytic formula obtained

using approximated solutions of the equations of motion as it requires Ne & O(10)

(see appendix A.4 for the detail). On the other hand, requiring the field excursion to

be sub-Planckian leads to a lower bound on mψ,

Mp > ∆φ → mψ > 2Ne
Λ

H

g1/2f
3/2
ψ

Mp
, (3.17)

and it becomes weaker than the constraint in eq. (3.13) when Λ2 < HMp/Ne is

satisfied.

– 7 –
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6. Classical rolling beats quantum spreading. The evolution of φ should be dominated

by the classical rolling over the quantum spreading,

φ̇∆t & H → mψ .
g1/2f

3/2
ψ Λ

H2
. (3.18)

7. Barriers form. The barrier should form within the Hubble scale, H . Λc.

8. Precision of mass scanning. The effective Higgs mass squared should be selected with

the enough precision not to overshoot the electroweak scale, and it requires

∆m2
h ∼ g∆φ ∼ g 2πf . m2

h , (3.19)

which is easily satisfied in the parameter space of interest.

In addition to the constraints listed above, when the relaxion is scanning over the effective

Higgs mass squared, the temperature is required to be negligible compared to the elec-

troweak scale, not to scan over the thermal Higgs mass squared. We help this issue by

considering our relaxation mechanism during inflation driven by a separate inflaton sector

(where the inflationary Hubble H is much higher than Λ2/MP ). The constraint can be

avoided when the interaction rate between the relaxion and the SM sector can be made

small enough to be diluted during the inflation.3

The cosine potential for φ is turned on when φ passes the critical point φc from which

it enters into the broken phase of the electroweak symmetry. The relaxion is being trapped

in one of minimum when the slope of the linear potential is balanced with the slope of the

cosine potential,

gΛ2 =
Λ4
c

f
. (3.20)

By combining two lower bounds on mψ in eqs. (3.12) and (3.13) and two upper bounds

on mψ in eqs. (3.16) and (3.18), we can obtain four inequalities where fψ-dependence

completely drops out. The parameter g can be traded for Λ, Λc, and f via the relation in

eq. (3.20). Assuming a modest size of Ne and using two inequalities, f > Λ andH > Λ2/Mp,

we can get meaningful exclusion for the cutoff as a function of Λc:

Λ < min
[

(Ne/3)1/10M1/5
p Λ4/5

c , (1/6)1/7M3/7
p Λ4/7

c , N1/5
e M1/5

p Λ4/5
c

]
, (3.21)

where three bounds from the left are obtained by combining eqs. (3.12) and (3.16),

eqs. (3.12) and (3.18), and eqs. (3.13) and (3.16), respectively. The remaining combi-

nation gives a trivial constraint. Eq. (3.14) does not lead to the constraint that fits to the

3We find that this is plausible only in the double scanner mechanism among two scenarios in sections 3.4

and 3.5. The dark fermions may thermally produce relaxions even during the inflation (it is a characteristic

feature of the derivative coupling that induces strong backreaction at the higher energy or temperature) in

both scenarios. However, the small non-derivative couplings between the relaxions and the SM sector in

the double scanner mechanism lead to an inefficient interaction rate than H during the inflation. A similar

suppression is not obvious in non-QCD model as the relaxion may thermally produce new non-QCD gauge

bosons G′ above the confinement scale through the derivative coupling φG′G̃′, and then the new gauge

boson will thermalize the SM sector.
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Figure 2. The excluded region for the cutoff scale Λ as a function of Λc for Ne = 102. The

red (gray) excluded region corresponds to the first (third) term in eq. (3.21) for Ne = 102. The

discrepancy between two excluded regions is reduced with decreasing value of Ne. The blue region

corresponds to the case in eq. (3.22).

form in eq. (3.21). Using the inequality f > Λ in eq. (3.20) leads to g < Λ4
c/Λ

3, and it

can be combined with the condition for sub-Planckian field excursion ∆φ ∼ Λ2/g < Mp to

obtain another upper bound on the cutoff,

Λ < M1/5
p Λ4/5

c . (3.22)

The excluded region in (Λc, Λ) plane from eq. (3.21) for Ne = 102 is illustrated in figure 2

where the strongest bound corresponds to the first one (red region) in eq. (3.21) followed

by the third (blue region) as next strongest, and the second one is the weakest (not shown).

We also show in figure 2 the case from eq. (3.22) (gray region) which roughly matches to

eq. (3.21) for Ne = 1. As is evident in figure 2, the higher barrier is more compatible with

the higher cutoff scale.

In the next section, we will survey a few new physics models that predict different forms

of Λc, and we will determine the viable parameter space consistent with all the constraints

in those models. While one could explore the parameter space with the maximally allowed

cutoff scale within the ballpark for Λc in a specific model, throughout our work, we will

fix the cutoff scale to Λ ∼ 104∼5 (aiming to address only the little hierarchy problem)

as our benchmark point. Note that another type of relaxation scenario with the particle

production in [28] also has a similar low cutoff scale.

3.4 Non-QCD model

The model that we try first as an illustration is the non-QCD model [16] supplemented by

dark fermions. New massive fermions L, N (and their conjugates Lc, N c) in the non-QCD

model are charged under the new gauge group that gets strongly coupled in the low energy

– 9 –
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scales, and they have Yukawa-type couplings with the Higgs field:

∆Lnon-QCD = mLLL
c +mNNN

c + yhLN c + ỹh†LcN , (3.23)

where L and N have the same electroweak quantum numbers as those of the lepton doublet

and right handed neutrino. The L and Lc fermions must be heavier than the electroweak

scale to avoid the phenomenological constraints whereas N and N c can be made very light

such that it can form a condensate below the confinement scale ∼ 4πfπ′ . The hierarchy of

mL � fπ′ � mN will be assumed as in [16].

Assuming that the anomalous interaction (φ/f)G′µνG̃
′µν is allowed in the model, it

can be traded for the phase of the mass term mN via the chiral rotation for N ,

mNe
iφ/fNN c + h.c. = mNNN

c cos
φ

f
, (3.24)

where mN collectively refers to not only the bare mass in eq. (3.23) but also all kinds

of corrections to the mass. An analogous term to eq. (3.24) will generate the periodic

potential for φ of the type ∼ Λ4
c cos(φ/f) through the condensate 〈NN c〉 ∼ 4πf3

π′ below

the confinement scale. While mN in eq. (3.24) gets various contributions, the h-dependent

contribution at tree level is estimated to be

Λ4
c = 4πf3

π′ mN ∼ 4πf3
π′
yỹ〈h〉2

mL
, (3.25)

where fπ′ is the chiral symmetry breaking scale of new confining gauge group. For the

mechanism to work, all h-independent contributions to mN must be subleading [16]:

fπ′ < 〈h〉 and mL <
4π〈h〉√

log Λ/mL

, (3.26)

and it implies that the masses of L and Lc are at order of a few hundred GeV (lighter

masses will be constrained at the LHC). As was mentioned above, demanding that N and

N c should be lighter than the confinement scale gives rise to

4πfπ′ >
yỹ〈h〉2

mL
. (3.27)

Using the relation in eq. (3.20) with the expression of Λc in eq. (3.25), the decay constant

in the cosine potential can be expressed as

f = 4πf3
π′
yỹ〈h〉2

mL

1

gΛ2
, (3.28)

and it needs to be bigger than the cutoff scale, f & Λ, to be consistent with the EFT.

The viable parameter space for the relaxation from the dark fermion production to work

is illustrated in (g, mψ) plane in the left panel of figure 3, while fixing other parameters

such as Λ, H, fψ, and Ne. A different choice of those parameters leads to a different allowed

region in (g, mψ) plane. In the right panel of figure 3, we illustrate the allowed region of

the parameters (from eqs. (3.27) and (3.28)), which are specific to the non-QCD model,
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Figure 3. The viable parameter space for non-QCD model. The light-red region in bottom-right

corner of the first panel corresponds to the excluded region from the small energy density carried

by the dark fermion. The constraint from the ‘classing rolling beats the quantum spreading’ is too

weak to show up in the plot. We set Λ = 104 GeV, H = 5×10−6 GeV, fψ = 0.5 GeV, and Ne = 100

in both panels (and g = 10−6 as well for the right panel). The approximation µ2 � ξ is not valid

in the region above the dashed line.

Λ H mψ fψ g mL yỹ fπ′ f mφ

104 5×10−6 1.×10−6 0.5 1.×10−6 300 1.5×10−2 45 3.4×104 5.×10−2

Table 1. A benchmark point in GeV (except the dimensionless parameter yỹ) for the non-QCD

model.

in the (yỹ/mL, fπ′) plane for the cutoff Λ = 104 GeV. Based on the result in figure 3, we

present one benchmark point in table 1 for the illustration. The large field excursion of

φ is definitely sub-Planckian, ∆φ ∼ Λ2/g < Mp, for the range of g in figure 3 and cutoff

scale Λ ∼ 104 GeV.

If the energy released from the strong fermion production can be transferred to the

visible sector with the new strong group, the barrier Λc will disappear during the reheating-

era and the relaxion will start rolling again, spoiling the mechanism. This unwanted

property has led to non-trivial constraints on the model [16]. The situation is worse in our

scenario with the dark fermion production as there could be a chance that the SM sector

might be thermalized even during the inflation, spoiling the entire mechanism. One way

to resolve these issues can be found in the so-called double scanner mechanism [17] where

the new strong gauge group is engineered to get strongly coupled at the same scale as the

cutoff value. The detailed analysis of the double scanner mechanism in the context of the

strong dark fermion production will be the subject of the next section.
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3.5 Double scanner mechanism

The double scanner mechanism [17] introduces an additional slow-rolling field σ whose

main role is controlling the amplitude of the cosine potential, while scanning the Higgs

mass parameter is still carried out by the original relaxion field φ. The relevant part of the

potential is given by

∆V = gΛ2φ+ gσΛ2σ +
(
−Λ2 + gφ

)
|h|2 +A(φ, σ, h) cos (φ/f)

+
∂µφ

fψ
ψ̄γµγ5ψ +

∂µσ

fσ
ψ̄γµγ5ψ +mψψ̄ψ ,

(3.29)

where we will assume the universal decay constants fψ = fσ for φ and σ for simplicity.

The amplitude A(φ, σ, h) in eq. (3.29) is given by

A(φ, σ, h) = εΛ4

(
β + cφ

gφ

Λ2
− cσ

gσσ

Λ2
+
|h|2

Λ2

)
, (3.30)

where ε is a supurion that accounts for the shift symmetry breaking. Recall that the con-

finement scale in non-QCD model has to be much lower than the cutoff scale to suppress

all h-independent contribution to the cosine potential individually (see eq. (3.26) for in-

stance). In the double scanner mechanism, the confinement scale can be made as big as

the cutoff scale, Λcon ∼ Λ, while keeping h-dependent contribution in eq. (3.30) as the

dominant term. The newly introduced slow-rolling field σ cancels all h-independent terms

of order ∼ εΛ4 in eq. (3.30) together during the cosmological evolution of interest with

the appropriate choice of coefficients, β, cφ, and cσ of order one, and this cancellation is

technically natural.

The double scanner mechanism features multiple stages of cosmological evolution in

(φ, σ) plane. In stage one, two fields φ and σ start evolving at some initial points while

φ & Λ/g and σ & Λ/gσ such that the effective Higgs mass squared parameter is positive.

The electroweak symmetry is unbroken as usual. Since the amplitude has a generic size of

A ∼ εΛ4, the potential for φ is dominated by the A cos (φ/f) which causes φ to get stuck at

some minimum. The σ field continuously rolls down while scanning the amplitude A. At

some point, the cosine potential for φ becomes smaller than the linear potential for φ, and

φ starts rolling down the linear potential (the second stage begins). The field φ continues

rolling down along the trajectory, represented by φ∗ in [17], along which the evolution is

dominantly driven by the linear potential. The second (third) stage ends (begins) when

φ passes the critical point, φc = αΛ/g, after which the sign of the effective Higgs mass

squared flips, and the electroweak symmetry breaking is triggered. In stage three, the h2

term in eq. (3.30) is switched on, and it dominates the amplitude. The amplitude scaling

as ∼ h2 keeps growing as φ keeps rolling down the potential since the negative Higgs mass

squared term increases. The relaxion field stops rolling and it is trapped in one of the

cosine potential wells when the steepness of the cosine potential is balanced with the slope

of the linear potential:

gΛ2 =
A

f
∼ εΛ2v2

f
. (3.31)
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In the last stage, the field σ keeps moving down the potential4 until it finds its minimum

somewhere. Around the end of the last stage, we do not expect any cancellation in the

amplitude A(φ, σ, h), and the typical size of the amplitude will be A ∼ εΛ4 which implies

that the natural size of φ mass without fine-tuning is expected to be

m2
φ =

εΛ4

f2
∼ g

v2

Λ4

f
=
g

f

(
Λ

v

)4

v2 . (3.32)

Whereas the mass of σ is given by

m2
σ ∼ g2

σ . (3.33)

For the successful scanning over φ tracking σ along the sliding trajectory φ∗ (where the

cosine potential is smaller than the linear potential) before it reaches the critical point, φc,

the condition dφ(t)/dσ(t) = (g/gσ)1/2 > dφ∗/dσ should be satisfied.5 Otherwise, φ gets

deviated from the trajectory before it reaches φc, and it gets stuck at some minimum. To

avoid this situation, we require

cφ g
3/2 > cσ g

3/2
σ , (3.34)

which gives rise to g > gσ for cφ ∼ cσ ∼ O(1). Once it passes the critical point where the

Higgs barrier is switched on, φ needs to exit the trajectory to continue its evolution along

the path where the amplitude grows like ∼ εΛ2v2. It requires dφ(t)/dσ(t) < dφ∗/dσ which

leads to (cφ − 1/(2λ)) g3/2 > cσ g
3/2
σ (see [17] for the related discussion).

Theoretical constraints for the double scanner mechanism to work are similar to those

in non-QCD model in section 3.4. The constraints from eq. (3.13) to eq. (3.18) similarly

apply to σ with gσ, and we take a stronger one in the numerical simulation to determine

the viable parameter space. Since the cosine potential for φ contributes to the Higgs mass

squared of order ∼ m2
φ, we demand m2

φ . v2 not to reintroduce the naturalness problem.

Using the expression in eq. (3.32), we obtain the upper bound on g,

g

f

(
Λ

v

)4

. 1 → g . f
( v

Λ

)4
. (3.35)

While the double scanner mechanism relies on the field σ which cancels the amplitude in

eq. (3.30), the cosine potential gets quantum corrections at quadratic order on cos(φ/f)

such as ε2Λ4 cos2(φ/f) etc [17]. The mechanism is spoiled unless those corrections to Higgs

barrier (∼ εΛ2v2) remain subleading, and ignoring the loop factors, it requires

ε . v2/Λ2 . (3.36)

Combing eq. (3.31) and eq. (3.36), we obtain another upper bound on g,

g .
v4

fΛ2
= (Λ/f)2 f

( v
Λ

)4
.
v4

Λ3
, (3.37)

where the last inequality is due to f & Λ which also makes the above constraint stronger

than eq. (3.35).

4While there is a trajectory along which the amplitude is the smallest in presence of the positive h2 term,

evolving along that trajectory requires the negative velocity of σ (since σ should climb up the potential in

the σ direction to increase the σ value).
5The slow roll velocities, φ̇ and σ̇, in our scenario using fermion production are determined by the

nonlinear backreaction terms, and it leads to dφ(t)/dσ(t) = (g/gσ)1/2 instead of g/gσ (=Vφ/Vσ) as in [17].
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Figure 4. The viable parameter space for the double scanner mechanism. Excluded regions from

‘Sub-Planckian’ and ‘Validity of EFT’ numerically coincide. The constraint from the ‘classical

rolling beats the quantum spreading’ is too weak to show up in the plot. We set Λ = 104 (105)

GeV, H = 5 × 10−6 (1 × 10−6) GeV, fψ = 0.5 (5) GeV, ε = 1 × 10−5 (2 × 10−6), Ne = 100, and

gσ = 0.2 g in the left (right) panel. The approximation µ2 � ξ is not valid in the region above the

dashed line.

The parameter space consistent with all the constraints mentioned above in (g, mψ)

plane is illustrated in figure 4, and a benchmark point is presented in table 2. The cutoff

scales were fixed to Λ = 104 or 105 GeV in figure 4 as our aim is to address the little

hierarchy problem (see caption of figure 4 for other chosen parameters).

As was explained in section 3.3, the inflation is driven by a separate inflaton sector to

avoid scanning the thermal Higgs mass squared during the scanning era. This idea works for

the double scanner mechanism due to the confinement scale as big as the cutoff scale unlike

the case of the non-QCD model. However, the successful double scanner mechanism from

the fermion production also has to be safe against being thermalized to the temperature

above Λ during the reheating era, and it imposes a constraint on the inflaton sector. In this

work, without getting into the details of the reheating, we assume that the energy stored in

the inflaton sector is smaller or at most comparable to that of the relaxation sector (collec-

tively denotes the entire sector of ψ, φ, SM, and the strong gauge group) when the relaxation

sector gets in thermal equilibrium.6 We also assume that the end of relaxation coincides

6A possibility to make the inflaton sector energy density to be subdominant is to require that the

inflaton decays into radiation after inflation and that this timescale is sufficiently short compared to the

thermalization timescale of the relaxation sector (see [56] for a recent discussion about reheating in different

sectors). In a situation that the reheating temperature in the inflaton sector is higher than the cutoff scale

Λ and the relaxation sector is in thermal equilibrium with the inflaton sector during such a short time scale,

thermal effects would erase the periodic potential barriers, leading to the stabilized relaxion to roll again.

The inflaton sector and its interaction to the relaxation sector have to be constrained such that either the

second scanning era itself does not happen or it does not overshoot the electroweak scale during the second

scanning era (if it occurs). Another possibility is to consider a scenario where its energy density decays

faster than the radiation [57, 58].
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Λ H mψ fψ ∼ fσ g gσ(∼mσ) ε f mφ

104 5×10−6 1.×10−6 0.5 1.×10−5 2.×10−6 1.×10−5 6.1×104 5.2

105 1×10−6 1.×10−6 5 1.×10−6 2.×10−7 2.×10−6 1.2×105 1.2×102

Table 2. A benchmark point in GeV (except the dimensionless parameter ε) for the double scanner

mechanism.

with the end of inflation such that the fermion energy density ρψ would not be diluted away

by inflation to allow the possibility of ψ as a dark matter candidate. This can be achieved

by appropriately setting up the inflationary sector and choosing parameters therein.

3.6 Comments on fψ � Λ

Apparently, the scale fψ in the derivative interaction in eq. (3.3) needs to be much smaller

than the cutoff scale of the model, namely fψ � Λ, to make the fermion production

efficient enough. Two hierarchical scales without a natural explanation can be considered

to be either inconsistent from the EFT point of view or a strong coupling problem when

fψ is normalized to Λ. It has been a generic issue in applications which heavily rely on

the fermion production as a main dissipation, and we are not an exception. While we do

not have a solution for this issue, we will briefly comment on the possibility of the thermal

decoupling between the dark fermion sector and the visible sector with the new strong

gauge group.

The thermal decoupling is an attractive idea, if it can be realized, for two theoretical

issues: the second scanning in the reheating era and two apparently inconsistent scales

within an EFT. If the interaction rate between two sectors can be made negligible over the

entire range of temperature with respect to the Hubble parameter, the dark fermion sector

will have its own thermal history without interfering with the visible sector. If this is the

situation, the barrier of the cosine potential will not be erased. Besides, it will be natural

for two thermally disconnected sectors to have their own cutoff scales, and the EFT of one

sector would not spoil the validity of the EFT of the other sector.

From our numerical simulation, we find that the interaction rate between two sectors

via the intemediate φ-exchange such as diagrams in figure 5 can be made smaller than

the Hubble parameter. It is basically because the diagrams are doubly suppressed: small

mψ parameter from the derivative coupling and h-φ mixing angle. There also could be

processes that decay into the states of the new strong gauge group. Based on our naive

dimensional analysis (NDA), we find that the interaction rate can be made smaller for

the double scanner scenario (marginally smaller for the non-QCD model) than the Hubble

parameter although it has to be confirmed by more exact numerical simulation.

The major threats to the idea of the thermal decoupling come from the processes such

as those in figure 6. For instance, the dark fermion can first thermally produce the relaxion

φ whose lifetime is not shorter than the typical interaction timescale. Then, those φ fields

can thermally produce the SM particles. The typical diagrams such as those in figure 6

have only one suppression which is not enough to make the interaction rate smaller than
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Figure 5. Typical diagrams for the interaction between the dark fermion sector and SM sector

where at least one φ appears as an intermediate mediator.

ψ

ψ

φ

φ

φ

φ

φ

φ

φ

φ

h

h

Figure 6. Example diagrams for three different types of interactions between 1) dark fermion

sector and φ sector, 2) self interaction in the φ sector, and 3) φ sector and SM sector.

the Hubble parameter.7 In this situation, the energy carried by the dark fermion will

be efficiently transferred to the visible sector. On the other hand, when the temperature

drops below mφ, the diagrams involving φ in figure 6 will be exponentially suppressed as

φ becomes non-relativisitc particle, and thus two sectors will be thermally decoupled.

The above discussion suggests that one need to suppress those diagrams in figure 6 to

achieve the thermal decoupling over the entire temperature range. One might try to dilute

the energy density released by the dark fermion away below mφ such that the diagrams in

figure 6 are exponentially suppressed. We leave it for the future work.

4 Prospect for dark matter

We investigate the compatibility of two models in sections 3.4 and 3.5 with the current

phenomenological and astrophysical constraints.

4.1 Relic abundance and dark matter

Since the Higgs field dominantly mixes with φ, we diagonalize only the 2× 2 mass matrix

of (h, φ), and we treat σ separately.(
h1

h2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
h

φ

)
, (4.1)

7As was mentioned in section 3.3, the situation is different during the inflation as the inflationary

expansion rate H during the inflation is assumed to be higher than Λ2/Mp.

– 16 –



J
H
E
P
0
2
(
2
0
2
0
)
1
3
5

where the mixing angle is given by

tan(2θ) =
2mhφ

m2
h −m2

φ

, or tan θ =
y

1 +
√

1 + y2
, (4.2)

where we defined y ≡ 2mhφ/(m
2
h −m2

φ), and mhφ = gv. Since m2
h > m2

φ is required not to

reintroduce the fine-tuning, the mixing angle is roughly ∼ 2mhφ/m
2
h ∼ 2gv/m2

h.

The decay rate of φ in non-diagonalized basis is given by

Γφ = θ2
φhΓh(mφ) + Γφ→ψψ(mφ) , (4.3)

where

Γφ→ψψ =
1

2π

m2
ψ

f2
ψ

mφ

√√√√1−
4m2

ψ

m2
φ

. (4.4)

It is important to notice that the derivative coupling gives an effective coupling of mψ/fψ
instead of E-growing effective coupling E/fψ. One can see that the suppression by mψ/E

is originated from the equation of motion of fermions in the derivative coupling. The decay

rate for σ is obtained by the replacement φ ↔ σ. While φ can always decay into dark

fermions before the Big Bang Nucleosynthesis (BBN), the σ → ψψ channel might not be

kinematically allowed in some allowed parameter space where mσ ∼ gσ < 2mψ. Once the

σ → ψψ decay channel is kinematically opened, the σ field decays into dark fermions well

before BBN. Otherwise, σ mainly decays into SM fields via the mixing with the Higgs,

and its lifetime is longer than the age of the universe. Therefore, the candidates that could

potentially serve as dark matters in our scenario are ψ and σ.

The abundance of σ can get a contribution from the vacuum misalignment. The energy

density ρσ at the start of the oscillating regime is ∼ m2
σ(∆σ)2 where the misalignment of

σ is given by ∆σ ∼
√
NeH.8 The relic abundance for Ne ∼ O(102) is expected to be

negligible,

Ωσ
0 =

ρσ0
ρc
∼ 1

ρc
m2
σNeH

2

(
T0√
mσMp

)3

� 1 , (4.5)

where Tosc =
√
mσMp is the temperature below which σ is in the oscillating regime. We

conclude that the non-thermally produced σ has negligible contribution to the current dark

matter abundance.

The σ field can also be produced from the thermal bath via ψψ → σσ (via t and

u-channels) process. The production of σ from the φ scattering is negligible. The order of

magnitude estimate of the thermally averaged interaction rate, ignoring all numeric factors,

in the limit T � mψ, mσ is roughly

Γψψ→σσ(T ) ∼
m2
ψ

f4
σ

T 3 . (4.6)

8This estimate of the misalignment is better justified when mσ � H (with H being the Hubble during

the inflation). While mσ . H in our benchmark points, our conclusion on the abundance of σ remains the

same. Also note that the quantum fluctuations for mσ > H are further suppressed [59].
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Figure 7. The thermally averaged interaction rate of ψψ → σσ, Γψψ→σσ(T ), (black) for two

benchmark points in table 2 and the Hubble rate (red).

The thermally produced σ field is expected to decouple from the thermal bath below the

temperature,

Td ∼
f4
σ

Mp

1

m2
ψ

, (4.7)

which looks close to mψ and mσ especially for the case of our benchmark point with

Λ ∼ 104 GeV in table 2. The more exact numerical evaluation of the thermally averaged

interaction rate is illustrated in figure 7 for two benchmark points in table 2, and the

decoupling temperatures are found to be roughly two orders of magnitudes higher than our

rough estimate in eq. (4.7). It implies that the thermally produced σ gets out of equilibrium

while being relativistic. Among the annihilation channels of ψ into a pair of σ, φ, or SM

particles, the dominant channels are ψψ → φφ, σσ (the channel to φφ will be shut off

below mφ though). Similarly ψ decouples from the thermal bath while being relativistic.

Both ψ and σ (or only ψ if σ decays before BBN) could be warm dark matter (WDM)

candidates, and their abundances today are, assuming no entropy dilution with the constant

relativistic degrees of freedom from its decoupling epoch,

Ωσ, ψ
0 =

mσ, ψ n
0
γ

ρc
∼ 0.12

h2

(
mσ, ψ

3.× 10−3keV

)
, (4.8)

where we have used the fact that after decoupling the photon temperature Tγ and the

effective temperature of σ, ψ evolve identically due to the constant relativistic degrees of

freedom, namely Tγ = Tσ, ψ. For our keV-scale σ and ψ, the relic abundance in eq. (4.8) is

three orders of magnitude higher than what is needed to be consistent with the present relic

abundance. This constraint is in a tension with those from the Lyman-α forest analysis

on the free-streaming length as they put a strong lower bound on the thermal WDM mass

mWDM & 5keV [60–62]. If the warm dark matter is a partial component of the whole dark

matter, the Lyman-α bound can be relaxed [63].
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The tension between the relic abundance (4.8) and the Lyman-α bound in thermal

WDM can be ameliorated in our scenario as follows. For σ, the easiest solution will be to

make it heavier than 2mψ so that the channel σ → ψψ is kinematically opened and σ decays

into dark fermions before the BBN. This option will be viable for the first benchmark point

with the cutoff, Λ ∼ 104 GeV, in table 2 after a slight modification of parameters, but it will

be difficult for the second benchmark point with the higher cutoff. For ψ (and σ if the decay

to ψ is forbidden), for instance, one can modify the strength of ψψ → σσ to significantly

increase the decoupling temperature such that the discrepancy of the effective degrees of

freedom at the decoupling temperature Td and at T0 leads to (up to) two-order of magnitude

suppression. It can be achieved by adapting non-universal fermion couplings to φ and σ

such as setting fσ = Λ while keeping fψ as before. In this situation, the slow-rolling of σ

will be maintained via the Hubble friction9 while the fermion production is still responsible

for the slow-rolling of φ. This choice makes the interaction rate Γψψ→σσ(T ) always smaller

than H within the cutoff scale, and thus the decoupling temperature will be roughly mφ

below which Γψψ→φφ is switched off. Using the total entropy conservation of the Universe,

one can estimate g∗S(T0)/g∗S(Td) ∼ O(10−2) for Td ∼ mφ ∼ O(101−2) GeV. Consequently,

the thermal WDM mass bound from the Lyman-α constraints gets slightly relaxed due to

the change in the relativistic degrees of freedom at the decoupling temperature,

mWDM & 5keV×
(
g∗S(Td) ∼ O(102)

g∗S(T � MeV)

)−1/3

∼ 1keV. (4.9)

Although predicted by our relaxation parameter space, the keV-scale dark fermion mass is

better consistent with this bound. Similarly, the relic abundance of ψ is diluted as

Ωψ
0 ∼

0.12

h2

(
mσ, ψ

3.× 10−3keV

)
× g∗S(T0)

g∗S(Td)
× 1

S
, (4.10)

where we have introduced an extra suppression factor 1/S from the entropy dilution that

might be originated from a short-period entropy injection right after the decoupling of ψ.

It can help lowering the relic abundance to the acceptable level [64]. Since the interaction

rates between σ and φ with fσ = Λ are negligible compared to H, the σ fields are likely

non-thermal with a negligible abundance.

Before concluding this section, we briefly point out one significant difference between

our fermion warm dark matter and the standard sterile neutrino warm dark matter. The

dark fermion in our model is not only a SM singlet, but also a stable particle. The sterile

neutrino, however, can decay. Apart from decaying into three left-handed neutrinos when

the sterile neutrino mass is lower than twice of the electron mass, the sterile neutrino has

the loop-level decay channel: N → ν + γ [65], which could be detectable from the X-ray

observations [66, 67].

9This does not reintroduce the downsides of the GKR scenario such as the super-Planckian field excursion

and a large number of e-folding.
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5 Conclusion

We have investigated a scenario of the cosmological relaxation of the weak scale supported

by the backreaction from the dark fermion production during inflation, with the cutoff scale

104∼5 GeV. Being a more efficient friction source than the Hubble expansion, the fermion

production plays a significant role in removing downsides in the original GKR scenario.

Hence, our models do not have any extremely small parameters, the number of e-folds is

of appropriate size, and the relaxion field excursion is sub-Planckian.

A characteristic property of the models with the fermion production through the deriva-

tive coupling is the possible thermalization between the produced fermions and the axionic

source field even during inflation. While this could be alarming in a relaxion model in which

scanning over the thermal Higgs mass squared should be avoided, the double scanner sce-

nario can survive (while the non-QCD model might not) by considering the relaxation

during the inflation whose inflationary expansion rate is higher than Λ2/Mp such that the

thermal relaxion cannot thermalize the visible sector during inflation. Another generic

feature, or unwanted downside, of those models lies in the appearance of a scale fψ, as-

sociated with the axionic derivative coupling to the fermion, much smaller than the EFT

cutoff scale. This may lead to strong coupling, non-perturbativity, or the EFT inconsis-

tency problem, and should be solved separately by an extra mechanism. We leave it to the

future work.

Our model allows the possibility of the observation-consistent keV scale warm dark

matter. While the fermion mass parameter controls the strength of the interaction in

various places in our model, its preferred value for our scenario to work is coincidently in

the vicinity of the right ballpark for the keV scale warm dark matter.
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A Fermion production

A.1 Convention

Our convention for the explicit computations is the same as those in [52]. The metric has

mostly negative signs, ηµν = diag.(+1, −1, −1, −1). The gamma matrices are given by

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi
−σi 0

)
, γ5 =

(
0 1

1 0

)
. (A.1)
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A.2 The model

We consider the theory of the relaxion coupled to the SM singlet Dirac fermion through

the derivative coupling (see eq. (3.1)),

S =

∫
d4x
√
−g
[
ψ̄

(
ieµaγ

aDµ −mψ −
1

fψ
eµaγ

aγ5∂µφ

)
ψ +

1

2
(∂µφ)2 − V (φ)

]
, (A.2)

on the FRW metric

ds2 = dt2 − a(t)2dx2 = a2
(
dτ2 − dx2

)
, (A.3)

where a(t) is a scale factor of the Universe. We assume that the pseudo-scalar is spatially

homogeneous. More explicit form of the action in eq. (A.2) on the FRW metric is

S =

∫
dτd3x a3

[
ψ̄

(
iγµDµ −mψa−

1

fψ
γ0γ5 ∂τφ

)
ψ +

1

2a
(∂τφ)2 − aV (φ)

]
. (A.4)

The overall scale factor due to
√
−g in the Lagrangian for fermions can be removed via

rescaling, ψ → a−3/2ψ. Under this rescaling, the covariant derivative due to the spin

connection become partial derivative, and the resulting Lagrangian becomes

L = ψ̄

(
iγµ∂µ −mψa−

1

fψ
γ0γ5 ∂τφ

)
ψ +

1

2
a2 (∂τφ)2 − a4V (φ) . (A.5)

The Lagrangian in eq. (A.5) is problematic for the estimation of the fermion occupation

number since the fermionic part in the corresponding Hamiltonian is not entirely captured

in the quadratic form in ψ:

H = Πψ ∂τψ + Πφ ∂τφ− L ,

= ψ̄

(
−iγi∂i +mψa+

1

fψ
γ0γ5 ∂τφ

)
ψ − 1

2a2

(
ψ̄γ0γ5ψ

)2
f2
ψ

+
1

2a2
Π2
φ + a4V (φ) ,

(A.6)

where the quadratic term in ψ is what is taken as the free Hamiltonian in literature and

also the part diagonalized by the eigenstates from the equation of motion.

While the subtlety is linked to the derivative coupling, the derivative coupling can be

rotated away by the field redefinition, ψ → e
−i φ

fψ
γ5

ψ [52]. In the new basis, the Lagrangian

reads

L = ψ̄
(
iγµ∂µ −mR + imIγ

5
)
ψ +

1

2
a2 (∂τφ)2 − a4V (φ) , (A.7)

where mR = mψ a cos
(

2φ
fψ

)
and mI = mψ a sin

(
2φ
fψ

)
. The corresponding Hamiltonian is

given by,

H = ψ̄
(
−iγi∂i +mR − imIγ

5
)
ψ +

1

2
a2 (∂τφ)2 + a4V (φ) . (A.8)

Since the Hamiltonian takes a quadratic form in ψ, one can unambiguously estimate the

fermion occupation number.
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A.3 Fermion production

The first step to estimate the fermion occupation number is plugging the expression for

the quantum field for ψ,

ψ =

∫
d3k

(2π)3/2
eik·x

∑
r=±

[
Ur(k, τ)ar(k) + Vr(−k, τ)b†r(−k)

]
, (A.9)

in the Hamiltonian while keeping the relaxion as a classical source. The spinor function in

the helicity basis can be parametrized as

Ur(k, τ) =
1√
2

(
urχr
rvrχr

)
, Vr(k, τ) = CŪTr with C =

(
0 iσ2

iσ2 0

)
, (A.10)

where two-component spinor χr with the helicity r satisfies the eigenvalue equation, ~σ ·
kχr = rk χr, and ur and vr represent the relative amplitudes between two different chirality

states. The Hamiltonian in terms of the creation and annihilation operators is

H =
∑
r=±

∫
d3k

(
a†r(k), br(−k)

)(Ar B∗r
Br −Ar

)(
ar(k)

b†r(−k)

)
, (A.11)

where the expressions for Ar, Br in terms of ur and vr can be found in [52],

Ar =
1

2

[
mR(|ur|2 − |vr|2) + k(u∗rvr + vru

∗
r)− irmI(u

∗
rvr − v∗rur)

]
,

Br =
reirϕk

2

[
2mRurvr − k(u2

r − v2
r )− irmI(u

2
r + v2

r )
]
, eirϕk ≡ k1 + ik2√

k2
1 + k2

2

.
(A.12)

The Hamiltonian in eq. (A.11) can be diagonalized by the unitary transformation,(
ar(k)

b†r(−k)

)
→

(
α∗r β∗r
−βr αr

)(
ar(k)

b†r(−k)

)
, (A.13)

where the mixing angles αr and βr are called Bogoliubov coefficients which are functions

in terms of ur and vr. The Hamiltonian in eq. (A.11) has two energy eigenvalues,

± ω = ±
√
k2 +m2

R +m2
I . (A.14)

The occupation number is given by

nr(τ) = |βr|2 =
1

2
− mR

ω
(|ur|2 − |vr|2)− k

2ω
Re(u∗rvr)−

rmI

2ω
Im(u∗rvr) . (A.15)

More details can be found in [52]. One notes that the fermion occupation number as a

function of the cosmic time t is the same as the one in terms of τ .

Alternatively, the occupation number can be derived purely based on the group theo-

retic property as recently shown in [55]. In the group theoretic approach in [55], the authors

showed that the expression in eq. (A.15) collapses into the SO(3),10 invariant form,

nr(τ) =
1

2

(
1− q · ~ζr

|q|

)
, (A.16)

10SO(3) ∼ SU(2) is the subgroup of the symmetry group that corresponds to the freedom in the repre-

sentation of gamma matrices in Clifford algebra [55].
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where two SO(3) vectors ~ζr and q are given by

~ζr =
1

2
(u∗r , r v

∗
r )~σ

(
ur
rvr

)
= r Re(u∗rvr) x̂1 + r Im(u∗rvr) x̂2 +

1

2

(
|ur|2 − |vr|2

)
x̂3 with |~ζr| = 1 ,

q = rk x̂1 +mI x̂2 +mR x̂3 with |q| = ω ,

(A.17)

and they are subject to the equation of motion,

1

2
∂τ~ζr = q× ~ζr , (A.18)

which looks similar to, for instance, that of the classical precession motion. The equation of

motion in eq. (A.18) reproduces the same result as the one from the traditional approach.

A.4 Solution of equation of motion

While the fermion production is unambiguously defined with the Hamiltonian from the

Lagrangian in eq. (A.7), the analytic solution is more clearly obtained in the basis with the

derivative coupling in eq. (A.5). The equation of motion from the Lagrangian in eq. (A.5) is(
iγ0∂τ + iγi∂i −mψa−

a

fψ
φ̇ γ0γ5

)
ψ = 0 , (A.19)

where dot denotes the differentiation with respect to the cosmic time, for instance, φ̇ = ∂tφ.

Using the relation ~σ ·kχr = rkχr, the equation of motion in eq. (A.19) reduces to those in

terms of ũr and ṽr, and they arei∂τ −mψa −r k − a φ̇
fψ

r k + a
φ̇

fψ
−i∂τ −mψa


(
ũr
rṽr

)
= 0 , (A.20)

To convert the equation of motion into more familar form where analytic solutions are

manifest, we introduce a new set of variables,

x = −kτ , µ =
mψ

H
, ξ =

φ̇

2fψH
. (A.21)

Then, the equation of motion in terms of a new set of variables becomes(
i∂x +

µ

x

)
ũr +

(
1 +

2ξ

x
r

)
ṽr = 0 ,(

i∂x −
µ

x

)
ṽr +

(
1 +

2ξ

x
r

)
ũr = 0 ,

(A.22)

where ũr and ṽr were used to refer to the basis with the derivative coupling while keeping

ur and vr for the basis without the derivative coupling. We take two linear combinations,
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s̃r = (ũr + ṽr)/
√

2 and d̃r = (ũr − ṽr)/
√

2, and iterate two coupled first-order equations to

get two decoupled second-order differential equations,

∂2
xs̃r +

1

x
∂xs̃r +

[(
1 +

2ξ

x
r

)2

+
µ2

x2
− i

x

]
s̃r = 0 ,

∂2
xd̃r +

1

x
∂xd̃r +

[(
1 +

2ξ

x
r

)2

+
µ2

x2
+
i

x

]
d̃r = 0 .

(A.23)

After making a rescaling of s̃r = x−1/2sr (and d̃r = x−1/2dr) and changing the variable,

x = −z/(2i), the differential equations take the form of the Whittaker equation.

∂2
zsr +

[
−1

4
+

1

z

(
1

2
+ i2ξr

)
+

1

x2

(
1

4
+ µ2 + 4ξ2

)]
sr = 0 ,

∂2
zdr +

[
−1

4
+

1

z

(
−1

2
+ i2ξr

)
+

1

x2

(
1

4
+ µ2 + 4ξ2

)]
dr = 0 .

(A.24)

We choose the boundary conditions such that the fermion occupation number in eq. (A.15)

vanishes in the limit x→∞ (or equivalently τ → −∞ or t→ −∞ in terms of the confor-

mal time or the cosmic time). One notes that fermion occupation numbers in both basis

(with and without the derivative couplings) become identical in the limit x → ∞ (see

section 5 of [55] for the detail). Zero occupation number in the basis with the derivative

coupling guarantees the same boundary condition in the basis without the derivative cou-

pling. Therefore, we can safely take the solutions obtained in the basis with the derivative

coupling, namely

sr(x) = e−πrξW 1
2

+2irξ,i
√
µ2+4ξ2

(−2ix) ,

dr(x) = −iµe−πrξW− 1
2

+2irξ,i
√
µ2+4ξ2

(−2ix) ,
(A.25)

and use them in the new basis.

On the other hand, the scanning process in the relaxation mechanism occurs during

the finite time, roughly ∆t ∼ Ne/H. While it implies that the initial condition for the

zero occupation number should be imposed in principle at a finite time τ0 ( 6= −∞), the

approximate solutions in eq. (A.25) must be sufficient since the above time interval in the

cosmic time corresponds to the exponentially separated time interval in the conformal time,

τ

τ0
∼ e−H·∆t ∼ e−Ne � 1 for Ne ∼ O(101∼3) . (A.26)

Although we have checked numerically that the result assuming the finite τ0 is similar to

the asymptotic case with τ0 → −∞, we provide a semi-analytic proof for the validity of

our approximation in eq. (A.25).

Since the velocity φ̇ is positive, the occupation number is dominated by fermions with

the helicity r = −1 since the fermion production can actively occur whenever

r k + a
φ̇

fψ
= 0 , (A.27)
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and it is easily satisfied for the helicity r = −1 around k ∼ −2ξ/τ . Away from k ∼ −2ξ/τ ,

the WKB approximation is valid, and the occupation number is roughly constant. Even

in the absence of the interaction of the relaxion to fermions, the occupation number is

non-vanishing since a free massive fermion system in the expanding Universe can cause the

fermion production. The latter contribution is not captured by the relation in eq. (A.27)

as it is a gravitational effect, and we find that it shuts off around k ∼ −µ/τ . Consequently,

the occupation number for the helicity r = −1, assuming an initial condition at τ0 → −∞,

can be written approximately as

nr(k) ≈



1

2
for k <

µ

−τ
µ2

ξ
for

µ

−τ
< k <

2ξ

−τ
= 2ξHa

0 for k >
2ξ

−τ
,

(A.28)

where the momentum k is the one in the frame with the conformal time and µ2/ξ in the

region of interest is typically much smaller than 1/2. The numerical validation of the

approximated occupation number in eq. (A.28) is shown in figure 8 for two choices of ξ

values, ξ = 10, 100, for the purpose of illustration (see also figure 1 of [52] or figure 4 of [55]

for related discussions). While the numerical simulation with a larger ξ in our benchmark

points is technically challenging due to the highly oscillatory behavior, we suspect the

generic feature remains the same.

When the zero occupation number is imposed at a finite time τ0 ( 6= −∞), the solution

of the Whittaker equation in eq. (A.24) is given in terms of the Whittaker functions of

both kinds (instead of the approximation in eq. (A.25)),

s, d(x) = AW (1)(x) +BW (2)(x) , (A.29)

where W (1) (W (2)) is the Whittaker function of the first (second) kind. The coefficients

A, B in eq. (A.29) are found to be functions of three dimensionless parameters,

x0 = −kτ0 , 2ξ =
φ̇

fψH
, µ =

mψ

H
. (A.30)

It can be shown that A, B converge into their asymptotics at x0 → ∞ (as those in

eq. (A.25)) as long as x0 = −kτ0 � 2ξ. Since τ/τ0 � 1 and the parametrization

in eq. (A.28), the contribution to the fermion production from the momentum interval

k = (−2ξ/τ0, −2ξ/τ) will agree with our approximation with eq. (A.25). It is the contribu-

tion from the interval k = (0, −2ξ/τ0) that might potentially invalidate our approximation.

Defining an intermediate momentum scale,

kint = max(−µ/τ, −2ξ/τ0) , (A.31)

and taking nr(k < kint) = 1 as a conservative choice, our approximation with the solutions

in eq. (A.25) will be valid as long as the following inequality for the number densities
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Figure 8. The occupation number (see eq. (A.15) or (A.16)) for the helicity r = −1 (solid black)

and r = 1 (dashed red) as a function of x = k/aH . The plots correspond to ξ = 10 (left) and

ξ = 100 (right) with µ = 1 for the purpose of illustraion. The same plots are displayed in two

different styles: typical scale (top) and logarithmic scale (bottom) of the horizontal axes.

integrated over each momentum interval is satisfied,

∫ kint

0
d3k nr(k) ≈ k3

int �
∫ −2ξ/τ

kint

d3k nr(k) ≈ µ2

ξ

(
2ξ

−τ

)3

, (A.32)

where the contributions are dominated by the case with r = −1 and we dropped the factor

from the integration over the solid angle. Demanding inequality in eq. (A.32) gives rise to

the constraint,

µ� ξ2 when kint =
µ

−τ
ξ

µ2
�
(τ0

τ

)3
= e3Ne when kint =

2ξ

−τ0
.

(A.33)

The constraints in eq. (A.33) are satisfied in our benchmark points as long as the number

of e-folding is bigger than ∼ O(10), namely Ne & O(10). Therefore, we conclude that our

approximation using the solutions in eq. (A.25) is justified.
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A.5 Backreaction

The equation of motion for the relaxion in presence of the coupling to the fermion ψ is

obtained in the basis without the derivative coupling, and it is given by

φ̈+ 3Hφ̇+
∂

∂φ
V (φ) =

2mψ

fψa3
ψ̄

[
sin

(
2φ

fψ

)
+ iγ5 cos

(
2φ

fψ

)]
ψ , (A.34)

where the term in the right-hand side is the backreaction, what we call B, due to the fermion

production. Using the expression for the quantum field in eq. (A.9), it is given by in terms

of ur and vr (also in terms of ũr and ṽr, quantities in the basis with the derivative coupling),

B =
mψ

fψa3

∑
r

∫
d3k

(2π)3

[
sin

(
2φ

fψ

)(
|vr|2 − |ur|2

)
− ir cos

(
2φ

fψ

)
(u∗rvr − urv∗r )

]
,

=
mψ

fψa3

∑
r

∫
d3k

(2π)3

[
− ir(ũ∗r ṽr − ũrṽ∗r )

]
.

(A.35)

The above expression differs from that in [52] by the overall factor of 2. We suspect

that it is due to the missed normalization factor 1/
√

2 in Vr(k, t). Using the relations,

ũr = (sr + dr)/
√

2x and ṽr = (sr − dr)/
√

2x in section A.4, the backreaction can be

expressed in terms of sr and dr whose analytic solutions were the Whittaker functions,

B =
mψH

3

π2fψ

∑
r

r

∫ ∞
0

dxx= [d∗r(x)sr(x)] . (A.36)

The integration is non-trivial, but it can be done analytically using the integral represen-

tation of the Whittaker functions known as the Mellin-Barnes representation,

Wa, b(z) =
e−z/2

2πi

∫
C
dt

Γ
(

1
2 + b + t

)
Γ
(

1
2 − b + t

)
Γ (−a− t)

Γ
(

1
2 + b− a

)
Γ
(

1
2 − b− a

) z−t, (A.37)

where the contour C covers from −i∞ to i∞ with a deformation to separate the poles of

Γ
(

1
2 + b + t

)
Γ
(

1
2 − b + t

)
from those of Γ (−a− t). We have checked the result in [52].

While we have a few disagreements with those in [52] in some detail (possibly due to typos),

we have reproduced the same result as [52] up to a factor of 2 that was mentioned above.

Since all necessary details can be found in [52], we do not repeat the computation here.

Instead, we present only the final result for the backreaction. It is given by

B=
mψH

3

π2fψ

∑
r

r

∫ Λ

0
dxx= [d∗r(x)sr(x)]

=
µ2H4

π2fψ

[
−6ξ (ln2Λ+γE)− 3

2

√
µ2+4ξ2 sinh(4πξ)csch(2π

√
µ2+4ξ2)+7ξ

+
i

4
(µ2−8ξ2−6iξ+1)·

[(
1+sinh(4πξ)csch(2π

√
µ2+4ξ2)

)
H−i(

√
µ2+4ξ2+2ξ)

+
(

1−sinh(4πξ)csch(2π
√
µ2+4ξ2)

)
H
i(
√
µ2+4ξ2−2ξ)

]
− i

4
(µ2−8ξ2+6iξ+1)·

[(
1+sinh(4πξ)csch(2π

√
µ2+4ξ2)

)
H
i(
√
µ2+4ξ2+2ξ)

+
(

1−sinh(4πξ)csch(2π
√
µ2+4ξ2)

)
H−i(

√
µ2+4ξ2−2ξ)

]]
.

(A.38)
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When µ2 � ξ and 1 � ξ (note that this limit is consistent with the parametrization

in eq. (A.28)), the backreaction in eq. (A.38) is approximately given by

B ≈ − 4

π

H4µ2

fψ
ξ2 , (A.39)

where the negative sign implies that the backreaction plays a role of drag force in the

classical picture. Unlike what was discussed in [52], we find that the condition µ� 1 is not

necessary to derive the approximation in eq. (A.39). Since ξ � 1, the condition µ2 � ξ

that leads to the approximation in eq. (A.39) is always satisfied for µ � 1. Although

the approximation in eq. (A.39) apparently does not depend on the Hubble parameter H

as µ, ξ ∝ 1/H, it should not be considered to be valid in the H → 0 limit. Since two

expansion parameters in terms of H scale like 1/ξ ∝ H and µ2/ξ ∝ 1/H, the limit that

leads to the approximation in eq. (A.39) is not consistent with the H → 0 limit.

For the purpose of illustration, we numerically evaluate the integrand of the backreac-

tion in eq. (A.35), namely before the integration over the momentum, for the same set of ξ

values as those in figure 8, ξ = 10, 100 (smaller than our benchmark values), and they are

shown in the upper panel of figure 9 as a function of x = k/aH . While the x-dependence in

d3k/a3 is not included in the upper panel of figure 9, including it amounts to simulate the

integrand of eq. (A.36). As is evident in the lower panel of figure 9, it is more pronounced

in a larger x region though due to the multiplicative x. Similarly to the occupation number

in figure 8, the backreaction shuts off around x ∼ 2ξ as is expected.

A.6 Fermion energy density

In this section, we estimate the fermion energy density using the previously obtained

fermion occupation number. Unlike the case of the backreaction, we provide the full com-

putation filling the gap in [52]. The total energy density summed over the fermion and its

anti-particle is given by

ρψ(τ) = 2
∑
r

∫
d3k ω nr(τ) . (A.40)

We can re-express ρψ(τ) in terms of sr and dr that we know their solutions,

ρψ(τ) =
8π

τ4

∑
r

∫ Λ

0
dxx2

[√
x2+µ2

2
+
x

2
− µ

2x
<[s∗rdr]−

|sr|2

2

]
,

=
4π

τ4

∑
r

[∫ Λ

0
dx
(
x2
√
x2+µ2+x3

)
−µ
∫ Λ

0
dxx<[s∗rdr]−

∫ Λ

0
dx x2|sr|2

]
.

(A.41)

In what follows, we will calculate each contribution in the above expression individually,

providing the detail.

The first term of the second line in eq. (A.41) is trivially evaluated, and it is given by∑
r

∫ Λ

0
dx

(
x2
√
x2 + µ2 + x3

)
=

1

4
Λ(2Λ2 + µ2)

√
Λ2 + µ2 +

1

4
µ4 ln

µ

Λ +
√

Λ2 + µ2
+

Λ4

2
.

(A.42)
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Figure 9. The integrand of the backreaction given in eq. (A.35) (upper panel) and eq. (A.36) (lower

panel) for the helicity r = −1 (solid black) and r = 1 (dashed red) as a function of x = k/aH . The

plots correspond to ξ = 10 (left) and ξ = 100 (right) with µ = 1 for the purpose of illustration.

In the limit Λ� µ, it is approximated to be

Λ4 +
1

2
µ2Λ2 +

µ4

16
+
µ4

4
ln

µ

2Λ
. (A.43)

The second term of the second line in eq. (A.41) is the real part of what we have already

calculated in the backreaction (except the helicity r in the helicity sum):

µ
∑
r

∫ Λ

0
dxx<[s∗rdr]

=
µ2

2

[
2Λ2−2(µ2−2b2+1)(ln2Λ+γE)+µ2+4−6b2+6ab· sinh(2πb)

sinh(2πa)

+
1

2

(
1− sinh(2πb)

sinh(2πa)

)[
(µ2−2b2+3ib+1)H−i(a−b)+(µ2−2b2−3ib+1)Hi(a−b)

]
+

1

2

(
1+

sinh(2πb)

sinh(2πa)

)[
(µ2−2b2+3ib+1)Hi(a+b)+(µ2−2b2−3ib+1)H−i(a+b)

]]
,

(A.44)

where

a ≡
√
µ2 + 4ξ2 , b ≡ 2ξ . (A.45)
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The third term of the second line in eq. (A.41) is the volume integration of |sr|2. Using the

integral representation of the Whittaker function, we can the analytic expression for it.

∑
r

∫ Λ

0
dxx2|sr|2

=
∑
r

∫ Λ

0
dxx2e−πrb W 1

2
+irb,ia(−2ix) W 1

2
−irb,−ia(2ix)

=
∑
r

(
−e
−πrb

4π2

)∫
C′
ds

Γ
(

1
2−ia+s

)
Γ
(

1
2 +ia+s

)
Γ
(
−1

2 +irb−s
)

Γ(−ia+irb)Γ(ia+irb)
2−s e−

πis
2

×
∫
C
dt

Γ
(

1
2 +ia+t

)
Γ
(

1
2−ia+t

)
Γ
(
−1

2−irb−t
)

Γ(ia−irb)Γ(−ia−irb)
2−t e

πit
2

Λ3−s−t

3−s−t
,

(A.46)

where the contour C in the t integration separates the poles of Γ
(

1
2 + ia + t

)
Γ
(

1
2 − ia + t

)
from those of Γ

(
−1

2 − irb− t
)
, and the contour C ′ for the s integration separates the poles

of Γ
(

1
2 − ia + s

)
Γ
(

1
2 + ia + s

)
from those of Γ

(
−1

2 + irb− s
)
. Since the integrand goes

to zero as <[t] → ∞, we can take the clockwise contour C. Similarly for the contour C ′.

While there exist infinitely many poles at t = n − 1/2 − irb (with n ≥ 0) enclosed by C

and at s = n− 1/2− irb (with n ≥ 0) enclosed by C ′, only few poles contribute as Λ→∞
due to Λ3−s−t. The poles in the contour C that contribute are at

t =− 1

2
− irb, 1

2
− irb, 3

2
− irb, 5

2
− irb, 7

2
− irb,

3− s (as 3 > <[s]) .
(A.47)

We consider each of them individually and sum them up later.

1. t = −1
2 − irb. The following poles in the contour C ′,

s =− 1

2
+ irb,

1

2
+ irb,

3

2
+ irb,

5

2
+ irb,

7

2
+ irb , (A.48)

contribute, and the contribution is estimated to be

∑
r

[
Λ4

2
+
i

3
µ2Λ3 − 1

8
µ2(µ2 + 2irb + 1)Λ2

− i

24
µ2(µ2 + 2irb + 1)(µ2 + 4irb + 4)Λ

− 1

192
µ2(µ2 + 2irb + 1)(µ2 + 4irb + 4)(µ2 + 6irb + 9)

·
(
H3−i(a−rb) +H3+i(a+rb) −

25

12
− πi

2
− ln 2Λ− γE

)]
.

(A.49)

2. t = 1
2 − irb. The poles inside the contour C ′,

s =− 1

2
+ irb,

1

2
+ irb,

3

2
+ irb,

5

2
+ irb , (A.50)
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leads to the contribution,∑
r

µ2

[
− i

3
Λ3 +

1

4
µ2Λ2 +

i

8
µ2(µ2 + 2irb + 1)Λ

+
1

48
µ2(µ2 + 2irb + 1)(µ2 + 4irb + 4)

×
(
H2−i(a−rb) +H2+i(a+rb) −

11

6
− πi

2
− ln 2Λ− γE

)]
.

(A.51)

3. t = 3
2 − irb. The following poles,

s =− 1

2
+ irb,

1

2
+ irb,

3

2
+ irb (A.52)

gives the contribution,

− 1

2

∑
r

µ2(µ2−2irb+1)

[
Λ2

4
+
i

4
µ2Λ

+
1

16
µ2(µ2+2irb+1)

(
H1−i(a−rb)+H1+i(a+rb)−

3

2
−πi

2
−ln2Λ−γE

)]
,

(A.53)

4. t = 5
2 − irb. The contribution from poles,

s =− 1

2
+ irb,

1

2
+ irb (A.54)

is estimated to be

1

6

∑
r

µ2(µ2 − 2irb + 1)(µ2 − 4irb + 4)

×
[
i

4
Λ +

1

8
µ2

(
H−i(a−rb) +Hi(a+rb) − 1− πi

2
− ln 2Λ− γE

)]
,

(A.55)

5. t = 7
2 − irb. In this case, only one pole,

s =− 1

2
+ irb (A.56)

gives the contribution which is given by

− 1

192

∑
r

µ2(µ2 − 2irb + 1)(µ2 − 4irb + 4)(µ2 − 6irb + 9)

×
(
H−1−i(a−rb) +H−1+i(a+rb) −

πi

2
− ln 2Λ− γE

)
.

(A.57)

Summing up over the contributions from the above five poles at t = −1/2 − irb, 1/2 −
irb, 3/2− irb, 5/2− irb, 7/2− irb, we obtain

Λ4 − 1

2
µ2Λ2 +

3

4
µ2(µ2 − 4b2 + 1)(ln 2Λ + γ)

− 3

8
µ2(µ2 − 4b2 + 1)

(
H−i(a−b) +H−i(a+b) +Hi(a−b) +Hi(a+b)

)
− b4 +

1

96
b2(35µ4 + 228µ2 + 264)− 1

384
µ2(µ6 + 38µ4 − 23µ2 + 228) .

(A.58)
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Finally we check the contribution from the pole at t = 3 − s. It has non-zero value at

3 > <[s], otherwise the pole t = 3 − s cannot be enclosed by the contour C. Performing

the integration of eq. (A.46) over t and using Γ(z)Γ(1− z) = π/ sin(πz), we obtain

−µ
2

16

∑
r

e−πrb
∫
C′
ds

e−πis ·sinh[π(a−rb)] sinh[π(a+rb)]

sin
[
π
(

1
2−ia+s

)]
sin
[
π
(

1
2 +ia+s

)]
sin
[
π
(

1
2−irb+s

)]
×

(
5
2 +ia−s

)(
5
2−ia−s

)(
3
2 +ia−s

)(
3
2−ia−s

)(
1
2 +ia−s

)(
1
2−ia−s

)(
−7

2−irb+s
)(
−5

2−irb+s
)(
−3

2−irb+s
)(
−1

2−irb+s
)(
−1

2 +irb−s
) . (A.59)

The evaluation of the above integration can be done using a similar trick used in the

calculation of the backreaction [52]. The expression in eq. (A.59) can be rewritten as

−µ
2

16

∑
r

e−πrb
∫
C′
ds

e−πis ·sinh[π(a−rb)] sinh[π(a+rb)]

sin
[
π
(

1
2−ia+s

)]
sin
[
π
(

1
2 +ia+s

)]
sin
[
π
(

1
2−irb+s

)]
×
[
g(s)−g(s−1)+h(s)

]
,

(A.60)

where the functions g(s) and h(s) are given by,

g(s) = c1

(
−1

2
− irb + s

)
+ c2

(
−1

2
− irb + s

)2

+
c−1

−1
2 − irb + s

+
c′−1

−1
2 + irb− s

+
c−3

−3
2 − irb + s

+
c−5

−5
2 − irb + s

h(s) =
c−7

−7
2 − irb + s

,

(A.61)

with the coefficients given below:

c1 =
1

2
−6irb ,

c2 =−1

2
,

c−1 =
1

8
[−12−11a2+2a4+a6+44irb+16ira2b−4ira4b+59b2−3a4b2−32irb3

+8ira2b3−2b4+3a2b4−4irb5−b6] ,

c′−1 =
1

24
[36+49a2+14a4+a6−132irb−96ira2b−12ira4b−193b2−72a2b2

−3a4b2+144irb3+24ira2b3+58b4+3a2b4−12irb5−b6] ,

c−3 =
1

8
[−12−13a2−2a4−a6+44irb+16ira2b−4ira4b+61b2+3a4b2−32irb3

+8ira2b3+2b4−3a2b4−4irb5+b6] ,

c−5 =
1

24
[−36−23a2+14a4+a6+132irb+96ira2b+12ira4b+167b2−72a2b2

−3a4b2−144irb3−24ira2b3+58b4+3a2b4+12irb5−b6] ,

c−7 =−3−3a2+15b2 .

(A.62)
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The first two terms in eq. (A.60) can be combined into one contour integration such that

a new contour C ′′ encloses only three poles at s = −1/2 + ia, −1/2− ia, −3/2 + irb:

−µ
2

16

∑
r

e−πrb

[∫
C′′
ds

e−πis ·sinh[π(a−rb)] sinh[π(a+rb)]·g(s)

sin
[
π
(

1
2−ia+s

)]
sin
[
π
(

1
2 +ia+s

)]
sin
[
π
(

1
2−irb+s

)]
+

∫
C′
ds

e−πis ·sinh[π(a−rb)] sinh[π(a+rb)]·h(s)

sin
[
π
(

1
2−ia+s

)]
sin
[
π
(

1
2 +ia+s

)]
sin
[
π
(

1
2−irb+s

)]] . (A.63)

The first integration in eq. (A.63) is straightforward to evaluate, and it is given by

µ2

8

∑
r

[
−eπ(a−rb) sinh [π(a + rb)]

sinh(2πa)
g

(
−1

2
+ ia

)
−e−π(a+rb) sinh [π(a− rb)]

sinh(2πa)
g

(
−1

2
− ia

)
+ g

(
−3

2
+ irb

)]
.

(A.64)

For the second integration in eq. (A.63), we take a counter-clockwise contour C ′ as the

integrand with h(s) wildly oscillates as <[s] → −∞. An infinite number of poles of s are

enclosed by the contour C ′, namely poles at s = n−1/2+ ia, n−1/2− ia, and n−3/2+ irb

(with n ≤ 0). The second integration in eq. (A.63) is estimated to be

µ2

8

∑
r

3(1 + a2 − 5b2)

[
eπ(a−rb) sinh [π(a + rb)]

sinh(2πa)
H3−i(a−rb)

+ e−π(a+rb) sinh [π(a− rb)]

sinh(2πa)
H3+i(a+rb) −

25

12

]
.

(A.65)

Summing over two contributions in eq. (A.64) and (A.65), we obtain the contribution from

the pole at t = 3− s:
1

384

[
192b4 + µ2(1 + µ2)(−228 + 37µ2 + µ4)− 4b2(132− 156µ2 + 35µ4)

+ 48ab(−26µ2 + 4b2 − 11) sinh(2πb)csch(2πa)
]

+
3

16
µ2(µ2 − 4b2 + 1)

[
(1 + sinh(2πb)csch(2πa))

(
Hi(a−b) +H−i(a−b)

)
+ (1− sinh(2πb)csch(2πa))

(
Hi(a+b) +H−i(a+b)

) ]
.

(A.66)

Therefore, the third term of the second line in eq. (A.41) is obtained by summing over

eqs. (A.58) and (A.66):∑
r

∫ Λ

0
dxx2|sr|2 = Λ4 − 1

2
µ2Λ2 +

3

4
µ2(µ2 − 4b2 + 1)(ln 2Λ + γE)

+
1

16

[
−8b4 + 22b2 + 64µ2b2 − 19µ2 − 7µ4

]
+

1

8
ab(−26µ2 + 4b2 − 11) sinh(2πb)csch(2πa)

− 3

16
µ2(µ2 − 4b2 + 1)

[
(1− sinh(2πb)csch(2πa))

(
Hi(a−b) +H−i(a−b)

)
+ (1 + sinh(2πb)csch(2πa))

(
Hi(a+b) +H−i(a+b)

) ]
. (A.67)
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So far we have completed the calculation of three terms in the second line in eq. (A.41),

and therefore, the fermion energy density as a function of the conformal time is given by

ρψ(τ) =
4π

τ4

[
1

4
µ4 ln

µ

2Λ
+

1

4
µ2(µ2+4b2+1)(ln2Λ+γE)

− 13

16
µ2−µ2b2− 11

8
b2+

1

2
b4+

1

8
ab(2µ2−4b2+11)sinh(2πb)csch(2πa)

− 1

16
µ2(µ2+4b2+12ib+1)(1−sinh(2πb)csch(2πa))H−i(a−b)

− 1

16
µ2(µ2+4b2−12ib+1)(1−sinh(2πb)csch(2πa))Hi(a−b)

− 1

16
µ2(µ2+4b2+12ib+1)(1+sinh(2πb)csch(2πa))Hi(a+b)

− 1

16
µ2(µ2+4b2−12ib+1)(1+sinh(2πb)csch(2πa))H−i(a+b)

]
,

(A.68)

where a =
√
µ2 + 4ξ2 and b = 2ξ. The fermion energy density as a function of the cosmic

time t is obtained as

ρψ(t) =
ρψ(τ)

a4
. (A.69)

One notices that the quartic and quadratic divergences were cancelled in ρψ, and the final

result has only logarithmic divergence. Similarly to the case of the backreaction, we simply

drop the logarithmic divergence and consider the finite terms. When µ2 � ξ and 1 � ξ,

the fermion energy density is approximated by

ρψ(t) ≈ 16π2

a4τ4
µ2ξ3 . (A.70)

Just like the case of the backreaction, the condition µ� 1 is not necessary to derive above

approximation.
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