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Abstract.  Computing of partition function is the most important statistical 
inference task arising in applications of graphical models (GM). Since it is 
computationally intractable, approximate methods have been used in practice, 
where mean-field (MF) and belief propagation (BP) are arguably the most 
popular and successful approaches of a variational type. In this paper, we 
propose two new variational schemes, coined Gauged-MF (G-MF) and 
Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower 
bounds for the partition function by utilizing the so-called gauge transformation 
which modifies factors of GM while keeping the partition function invariant. 
Moreover, we prove that both G-MF and G-BP are exact for GMs with a 
single loop of a special structure, even though the bare MF and BP perform 
badly in this case. Our extensive experiments indeed confirm that the proposed 
algorithms outperform and generalize MF and BP.
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1. Introduction

Graphical models (GM) express factorization of the joint multivariate probability dis-
tributions in statistics via a graph of relations between variables. The concept of GM 
has been developed and/or used successfully in information theory [1, 2], physics [3–7], 
artificial intelligence [8], and machine learning [9, 10]. Of many inference problems 
one can formulate using a GM, computing the partition function (normalization), or 
equivalently computing marginal probability distributions, is the most important and 
universal inference task of interest. However, this paradigmatic problem is known to 
be computationally intractable in general, i.e. it is #P-hard even to approximate [11].

The Markov chain Monte Carlo (MCMC) [12] is a classical approach addressing 
the inference task, but it typically suers from exponentially slow mixing or large vari-
ance. Variational inference is an approach stating the inference task as an optimization. 
Hence, it does not have such issues of MCMC and is often more favorable. The mean-
field (MF) [6] and belief propagation (BP) [13] are arguably the most popular algo-
rithms of the variational type. They are distributed, fast and overall very successful in 
practical applications even though they are heuristics lacking systematic error control. 
This has motivated researchers to seek methods with some guarantees, e.g. providing 
lower bounds [14, 15] and upper bounds [15–17] for the partition function of GM.

In another line of research, which this paper extends and contributes, the so-called 
re-parametrizations [18], gauge transformations (GT) [19, 20] and holographic trans-
formations [21, 22] were explored. This class of distinct, but related, transformations 
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consist in modifying a GM by changing factors, associated with elements of the graph, 
continuously such that the partition function stays the same/invariant4. In this paper, 
we choose to work with GT as the most general one among the three approaches. Once 
applied to a GM, it transforms the original partition function, defined as a weighted 
series/sum over states, to a new one, dependent on the choice of gauges. In par-
ticular, a fixed point of BP minimizes the so-called Bethe free energy [25], and it can 
also be understood as an optimal GT [19, 20, 26, 27]. Moreover, fixing GT in accor-
dance with BP results in the so-called loop series expression for the partition function  
[19, 20]. In this paper we generalize [19, 20] and explore a more general class of GT: we 
develop a new gauge-optimization approach which results in ‘better’ variational infer-
ence schemes than MF, BP and other related methods.

Contribution. The main contribution of this paper consists in developing two novel 
variational methods, called Gauged-MF (G-MF) and Gauged-BP (G-BP), providing 
lower bounds on the partition function of GM. While MF minimizes the (exact) Gibbs 
free energy under (reduced) product distributions, G-MF does the same task by intro-
ducing an additional GT. Due to the additional degree of freedom in optimization, 
G-MF improves the lower bound of the partition function provided by MF systemati-
cally. Similarly, G-BP generalizes BP, extending the interpretation of the latter as an 
optimization of the Bethe free energy over GT [19, 20, 26, 27], by imposing additional 
constraints on GT, and thus forcing all the terms in the resulting series for the parti-
tion function to remain non-negative. Consequently, G-BP results in a provable lower 
bound for the partition function, while BP does not (except for log-supermodular 
models [28]).

We prove that both G-MF and G-BP are exact for GMs defined over a single cycle, 
which we call ‘alternating cycle/loop’, as well as over line graph. The alternative cycle 
case is surprising as it represents the simplest ‘counter-example’ from [29], illustrat-
ing failures of MF and BP. For general GMs, we also establish that G-MF is better 
than, or at least as good as, G-BP. However, we also develop novel error correction 
schemes for G-BP such that the lower bound of the partition function provided by 
G-BP is improved systematically/sequentially, eventually outperforming G-MF on the 
expense of increased computational complexity. Such an error correction scheme has 
been studied for improving BP by accounting for the loop series consisting of positive 
and negative terms [30, 31]. According to to our design of G-BP, the corresponding 
series consists of only non-negative terms, which leads to easier systematic corrections 
to G-BP.

We also show that the proposed GT-based optimizations can be restated as smooth 
and unconstrained, thus allowing ecient solutions via algorithms of a gradient descent 
type or any generic optimization solver, such as IPOPT [32]. We experiment with 
IPOPT on complete GMs of relatively small size and on large GM (up to 300 variables) 
of fixed degree. Our experiments indeed confirm that the newly proposed algorithms 
outperform and generalize MF and BP. Finally, we remark that all statements of the 
paper are made within the framework of the so-called Forney-style GMs [33] which 
is general as it allows interactions beyond pair-wise (i.e. high-order GM) and includes 
other/alternative GM formulations, based on factor graphs [34].
4 See [23–24] for discussions of relations between the aforementioned techniques.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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2. Preliminaries

2.1. Graphical model

2.1.1. Factor-graph model. Given (undirected) bipartite factor-graph G = (X ,F , E), 
a joint distribution of (binary) random variables x = [xv ∈ {0, 1} : v ∈ X ] is called a 
factor-graph graphical model (GM) if it factorizes as follows:

p(x) =
1

Z

∏
a∈F

fa(x∂a),

where fa are some non-negative functions called factor functions, ∂a ⊆ X  consists of 

nodes neighboring factor a, and the normalization constant Z :=
∑

x∈{0,1}X
∏

a∈F fa(x∂a), 
is called the partition function. A factor-graph GM is called pair-wise if |∂a| � 2 for all 
a ∈ F , and high-order otherwise. It is known that approximating the partition function 
is #P-hard in general [11].

2.1.2. Forney-style model. In this paper, we primarily use the Forney-style GM [33] 
instead of factor-graph GM. Elementary random variables in the Forney-style GM are 
associated with edges of an undirected graph, G = (V , E). Then the random vector, 
x = [xab ∈ {0, 1} : {a, b} ∈ E ] is realized with the probability distribution

p(x) =
1

Z

∏
a∈V

fa(xa), (1)

where xa is associated with a set of edges neighboring the node a, i.e. xa = [xab : b ∈ ∂a] 

and Z :=
∑

x∈{0,1}E
∏

a∈V fa(xa). As argued in [19, 20], the Forney-style GM constitutes 

a more universal/compact description of gauge transformations without any restriction 
of generality: given any factor-graph GM, one can construct an equivalent Forney-style 
(see the supplementary material, available online at stacks.iop.org/JSTAT/19/124015/
mmedia).

2.2. Mean-field and belief propagation

We now introduce two most popular methods for approximating the partition function: 
the mean-field and Bethe (i.e. belief propagation) approximation methods. Given any 
(Forney-style) GM p(x) defined as in (1) and any distribution q(x) over all variables, 
the Gibbs free energy is defined as

FGibbs(q) :=
∑

x∈{0,1}E
q(x) log

q(x)∏
a∈V fa(xa)

. (2)

The partition function is related to the Gibbs free energy according to 
− logZ = minq FGibbs(q), where the optimum is achieved at q  =  p  [34]. This optim-
ization is over all valid probability distributions from the exponentially large space, and 
as such it is obviously computationally intractable.

In the case of the mean-field (MF) approximation, we minimize the Gibbs free energy 

over a family of tractable probability distributions factorized as q(x) =
∏

{a,b}∈E qab(xab), 
where each qab(xab) is an independent probability distribution, behaving as a (mean-field) 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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proxy to the marginal of q(x) over xab. By construction, the MF approximation provides 
a lower bound for logZ. In the case of the Bethe approximation, the so-called Bethe 
free energy approximates the Gibbs free energy [35]:

FBethe(b) =
∑
a∈V

∑
xa∈{0,1}∂a

ba(xa) log
ba(xa)

fa(xa)
−

∑
{a,b}∈E

∑
xab∈{0,1}

bab(xab) log bab(xab),

 

(3)

where beliefs b = [ba, bab : a ∈ V , {a, b} ∈ E ] should satisfy following ‘consistency’ 
constraints:

0 � ba, bab � 1,
∑

xab∈{0,1}

ba(xab) = 1,
∑

x′
a\xab∈{0,1}∂a

b(x′
a) = b(xab) ∀{a, b} ∈ E .

Here, x′
a\xab denotes a vector with x′

ab = xab fixed and minb FBethe(b) is the Bethe esti-
mation for − logZ . The popular belief propagation (BP) distributed heuristics solves 
the optimization iteratively [35]. The Bethe approximation is exact over trees, i.e. 
− logZ = minb FBethe(b). However, in the case of a general loopy graph, the BP esti-
mation lacks approximation guarantees. It is known, however, that the result of 
BP-optimization lower bounds the log-partition function, logZ, if the factors are log-
supermodular [28].

2.3. Gauge transformation

Gauge transformation (GT) [19, 20] is a family of linear transformations of the fac-
tor functions in (1) which leaves the partition function Z invariant. It is defined with 
respect to the following set of invertible 2× 2 matrices Gab for {a, b} ∈ E, coined 
gauges:

Gab =

[
Gab(0, 0) Gab(0, 1)

Gab(1, 0) Gab(1, 1)

]
.

The GM, gauge transformed with respect to G = [Gab,Gba : {a, b} ∈ E ], consists of  
factors expressed as:

fa,G(xa) =
∑

x′
a∈{0,1}∂a

fa(x
′
a)

∏
b∈∂a

Gab(xab, x
′
ab).

Here one treats independent xab and xba equivalently for notational convenience, and 
{Gab,Gba} is a conjugated pair of distinct matrices satisfying the gauge constraint 
G�

abGba = I, where I is the identity matrix. Then, one can prove invariance of the parti-
tion function under the transformation:

Z =
∑

x∈{0,1}|E|

∏
a∈V

fa(xa) =
∑

x∈{0,1}|E|

∏
a∈V

fa,G(xa).
 (4)

Consequently, GT results in the gauge transformed distribution pG(x) =
1
Z

∏
a∈V fa,G(xa). 

Note that some components of pG(x) can be negative, in which case it is not a valid 
distribution.

We remark that the Bethe/BP approximation can be interpreted as a specific choice 
of GT [19, 20]. Indeed any fixed point of BP corresponds to a special set of gauges 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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making an arbitrarily picked configuration/state x to be least sensitive to the local 
variation of the gauge. Formally, the following non-convex optimization is known to be 
equivalent to the Bethe approximation:

maximize
G

∑
a∈V

log fa,G(0, 0, . . . )

subject to G�
abGba = I, ∀ {a, b} ∈ E ,

 
(5)

and the set of BP-gauges correspond to stationary points of (5), having the objective as 
the respective Bethe free energy, i.e. 

∑
a∈V log fa,G(0, 0, . . . ) = −FBethe.

3. Gauge optimization to approximate the partition functions

Now we are ready to describe two novel gauge optimization schemes (dierent from 
(5)) providing guaranteed lower bound approximations for logZ. Our first GT scheme, 
coined Gauged-MF (G-MF), shall be considered as modifying and improving the MF 
approximation, while our second GT scheme, coined Gauged-BP (G-BP), modifies and 
improves the Bethe approximation in a way that it now provides a provable lower 
bound for logZ, while the bare BP does not have such guarantees. The G-BP scheme 
also allows further improvement (in terms of the output quality) on the expense of 
making underlying algorithm/computation more complex.

3.1. Gauged mean-field

We first propose the following optimization inspired by, and also improving, the MF 
approximation:

maximize
q,G

∑
a∈V

∑
xa∈{0,1}∂a

qa(xa) log fa,G(xa)−
∑

{a,b}∈E

∑
xab∈{0,1}

qab(xab) log qab(xab)

subject to G�
abGba = I, ∀ {a, b} ∈ E ,

fa,G(xa) � 0, ∀a ∈ V , ∀xa ∈ {0, 1}∂a,

q(x) =
∏

{a,b}∈E

qab(xab), qa(xa) =
∏
b∈∂a

qab(xab), ∀a ∈ V .

 

(6)

Recall that the MF approximation optimizes the Gibbs free energy with respect to q 
given the original GM. On the other hand, (6) jointly optimizes the objective over q 
and G. Since the partition function of the gauge transformed GM is equal to that of the 
original GM, (6) also outputs a lower bound on the (original) partition function, and 
always outperforms MF due to the additional degree of freedom in G. The non-negative 
constraints fa,G(xa) � 0 for each factor enforce that the gauge transformed GM results 
in a valid probability distribution (all components are non-negative).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Algorithm 1. Gauged mean-field.

1:  Input: GM defined over graph G = (V , E) with factors {fa}a∈V. A sequence of decreasing 
barrier terms δ1 > δ2 > · · · > δT > 0 (to handle extreme cases).

2: for t = 1, 2, · · · ,T  do
3:     Step A. Update q by solving the mean-field approximation, i.e. solve the following 

optimization:
    maximize

q

∑
a∈V

∑
xa∈{0,1}∂a

qa(xa) log fa,G(xa)−
∑

{a,b}∈E

∑
xab∈{0,1}

qab(xab) log qab(xab)

    subject to q(x) =
∏

{a,b}∈E
qab(xab), qa(xa) =

∏
b∈∂a

qab(xab), ∀a ∈ V .

4:    Step B. For factors with zero values, i.e. qab(xab) = 0, make perturbation by setting

             qab(x
′
ab) =

{
δt if x′

ab = xab

1− δt otherwise.

5:   Step C. Update G by solving the following optimization:

            maximize
G

∑
a∈V

∑
x∈{0,1}E

q(x) log
∏
a∈V

fa,G(xa)

             subject to G�
abGba = I, ∀ {a, b} ∈ E .

6: end for

7: Output: Set of gauges G and product distribution q.

To solve (6), we propose a strategy, alternating between two optimizations, for-
mally stated in algorithm 1. The alternation is between updating q, within Step A, 
and updating G, within Step C. The optimization in Step A is straightforward as one 
can apply any existing mean-field solver [6]. Step C, on the contrary, requires a new 
solver and, at the first glance, seems more complicated due to nonlinear constraints. 
However, the constraints can actually be eliminated. Indeed, one observes that the 
non-negative constraint fa,G(xa) � 0 is redundant, because each term q(xa) log fa,G(xa) 
in the optimization objective already prevents factors from getting close to zero, thus 
keeping them positive. Equivalently, once current G satisfies the non-negative con-
straints, the objective, q(xa) log fa,G(xa), acts as a log-barrier forcing the constraints to 
be satisfied at the next step within an iterative optimization procedure. Furthermore, 
the gauge constraint, G�

abGba = I, can also be removed, simply because it expresses one 
(of the two) gauge via another, e.g. Gba via (G�

ab)
−1. Then, Step C can be resolved by 

any unconstrained iterative optimization method of a gradient descent type. Next, the 
additional (intermediate) procedure Step B was considered to handle extreme cases 
when for some {a, b}, qab(xab) = 0 at the optimum. We resolve the singularity perturb-
ing the distribution by setting zero probabilities to a small value, qab(xab) = δ where 
δ > 0 is suciently small. In summary, it is straightforward to check that the algo-
rithm 1 monotonically decreases the objective of (6), and converges to a local optimum.

We also provide an important class of GMs where the algorithm 1 provably out-
performs both the MF and BP (Bethe) approximations. Specifically, we prove that the 
optimization (6) is exact in the case when the graph is a line (which is a special case 
of a tree) and, somewhat surprisingly, a single loop/cycle with an odd number of fac-
tors represented by negative definite matrices. In fact, the latter case is the so-called 
‘alternating cycle’ example which was introduced in [29] as the simplest loopy example 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Gauging variational inference

8https://doi.org/10.1088/1742-5468/ab3217

J. S
tat. M

ech. (2019) 124015

where the MF and BP approximations perform quite badly. Formally, we state the fol-
lowing theorem whose proof is given in the supplementary material.

Theorem 1. For GM defined over any line graph or alternating cycle, the optimal  
objective of (6) is equal to the exact log partition function, i.e. logZ.

3.2. Gauged belief propagation

We start discussion of the G-BP scheme by noticing that, according to [20], the G-MF 
gauge optimization (6) can be reduced to the BP/Bethe gauge optimization (5) by 
eliminating the non-negative constraint fa,G(xa) � 0 for each factor and replacing the 
product distribution q(x) by:

q(x) =

{
1 if x = (0, 0, · · · ),
0 otherwise. (7)

Motivated by this observation, we propose the following G-BP optimization:

maximize
G

∑
a∈V

log fa,G(0, 0, · · · )

subject to G�
abGba = I, ∀(a, b) ∈ E ,

fa,G(xa) � 0, ∀a ∈ V , ∀xa ∈ {0, 1}∂a.

 

(8)

The only dierence between (5) and (8) is addition of the non-negative constraints for 
factors in (8). Hence, (8) outputs a lower bound on the partition function, while (5) can 
be larger or smaller than logZ. It is also easy to verify that (8) (for G-BP) is equivalent 
to (6) (for G-MF) with q fixed to (7). Hence, we propose the algorithmic procedure for 
solving (8), formally described in algorithm 2, and it should be viewed as a modification 
of algorithm 1 with q replaced by (7) in Step A, also with a properly chosen log-barrier 
term in Step C. As we discussed for algorithm 1, it is straightforward to verify that 
algorithm 2 converges to a local optimum of (8) and one can replace Gba by (G�

ab)
−1 for 

each pair of the conjugated matrices in order to build a convergent gradient descent 
algorithmic implementation of the optimization.

Algorithm 2. Gauged belief propagation.

1:  Input: GM defined over graph G = (V , E) with and factors {fa}a∈V. A sequence of  
decreasing barrier terms δ1 > δ2 > · · · > δT > 0.

2: for t = 1, 2, · · · do
3:    Update G by solving the following optimization:

          maximize
G

∑
a∈V

log fa,G(0, 0, · · · ) + δt
∑
a∈V

∑
x∈{0,1}E q(x) log

∏
a∈V

fa,G(xa)

          subject to G�
abGba = I, ∀ {a, b} ∈ E .

4: end for

5: Output: Set of gauges G.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Notice that fixing q(x) eliminates the degree of freedom in (6), and G-BP should 
perform worse than G-MF, i.e. (8) � (6). However, G-BP is still valuable due to the 
following reasons. First, theorem 1 still holds for (8), i.e. the optimal q of (6) is achieved 
at (7) for any line graph or alternating cycle (see the proof of theorem 1 in the supple-
mentary material). More importantly, G-BP can be corrected systematically. At a high 
level, the ‘error-correction’ strategy consists in correcting the approximation error of 
(8) sequentially while maintaining the desired lower bounding guarantee. The key idea 
here is to decompose the error of (8) into partition functions of multiple GMs, and 
then repeatedly lower bound each partition function. Formally, we fix an arbitrary 
ordering of edges e1, · · · e|E| and define the corresponding GM for each ei as follows: 

p(x) = 1
Zi

∏
a∈V fa,G(xa) for x ∈ Xi, where Zi :=

∑
x∈Xi

∏
a∈V fa,G(x) and

Xi := {x : xei = 1, xej = 0, xek ∈ {0, 1} ∀ j, k, such that 1 � j < i < k � |E|}.

Namely, we consider GMs from sequential conditioning of xe1 , · · · , xei in the gauge 
transformed GM. Next, recall that (8) maximizes and outputs a single configuration ∏

a fa,G(0, 0, · · · ). Then, since Xi

⋂
Xj = ∅ and 

⋃|E|
i=1 Xi = {0, 1}E\(0, 0, · · · ), the error of 

(8) can be decomposed as follows:

Z −
∏
a

fa,G(0, 0, · · · ) =
|E|∑
i=1

∑
x∈Xi

∏
a∈V

fa,G(x) =

|E|∑
i=1

Zi. (9)

Now, one can run G-MF, G-BP or any other methods (e.g. MF) again to obtain a lower 

bound Ẑi of Zi for all i and then output 
∏

a∈V fa,G(0, 0, · · · ) +
∑|E|

i=1 Ẑi. However, such 

additional optimization inevitably increases the overall complexity. Instead, one can 

also pick a single term 
∏

a fa,G(x
(i)
a ) for x(i) = [xei = 1, xej = 0, ∀ j �= i] from Xi, as a 

choice of Ẑi just after solving (8) initially, and propose

∏
a∈V

fa,G(0, 0, · · · ) +
|E|∑
i=1

fa,G(x
(i)
a ), x(i) = [xei = 1, xej = 0, ∀ j �= i], (10)

as a better lower bound for logZ than 
∏

a∈V fa,G(0, 0, · · · ). This choice is based on the intu-
ition that configurations partially dierent from (0, 0, · · · ) may be significant too as they 
share most of the same factor values with the zero configuration maximized in (8). In fact, 
one can even choose more configurations (partially dierent from (0, 0, · · · )). This will make 
computations more complex, however improving the approximation quality as it brings 
the approximation closer to the true partition function. In our experiments, we consider 
additional configurations {x : [xei = 1, xei′

= 1, xej = 0, ∀ i, i′ �= j] for i′ = i, · · · |E|}, 
thus choosing

∏
a∈V

fa,G(0, 0, · · · ) +
|E|∑
i=1

|E|∑
i′=i

fa,G(x
(i,i′)
a ), x(i,i′) = [xei = 1, xei′

= 1, xej = 0, ∀ j �= i, i′], (11)

as a better lower bound of logZ than (10).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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4. Experimental results

We report results of experiments with G-MF and G-BP introduced in section 3. We also 
experiment here with improved G-BPs correcting errors by accounting for single (10) 
and multiple (11) terms, as well as correcting G-BP by applying it (again) sequentially 
to each residual partition function Zi. The error decreases, while the evaluation com-
plexity increases, as we move from G-BP-single to G-BP-multiple and then to G-BP-
sequential. To solve the proposed gauge optimizations, e.g. Step C. of algorithm 1, we 
use the generic optimization solver IPOPT [32]. Even though the gauge optim izations 
can be formulated as unconstrained optimizations, IPOPT runs faster on the original 
constrained versions in our experiments5. However, the unconstrained for mulations has 
a strong future potential for developing fast gradient descent algorithms. We generate 
random GMs with factors dependent on the ‘interaction strength’ parameters {βa}a∈V 
(akin inverse temperature) according to:

fa(xa) = exp(−βa|h0(xa)− h1(xa)|),

where h0 and h1 count numbers of 0 and 1 contributions in xa, respectively. Intuitively, 
we expect that as |βa| increases, it becomes more dicult to approximate the partition 
function. See the supplementary material for additional information on how we gener-
ate the random models.

In the first set of experiments, we consider relatively small, complete graphs with 
two types of factors: random generic (non-log-supermodular) factors and log-supermod-
ular (positive/ferromagnetic) factors. Recall that the bare BP also provides a lower 
bound of the partition function in the log-supermodular case [28], thus making the 
comparison between each proposed algorithm and BP informative. We use the log 
partition approximation error defined as | logZ − logZLB|/| logZ|, where ZLB is the 
algorithm output (a lower bound of Z), to quantify the algorithm’s performance. In the 
first set of experiments, we deal with relatively small graphs and the explicit compu-
tation of Z (i.e. the approximation error) is feasible. The results for experiments over 
the small graphs are illustrated in figures 1 and 2 for the non-log-supermodular and 
 log-supermodular cases, respectively. Figure 1 shows that, as expected, G-MF always 
outperforms MF. Moreover, we observe that G-MF typically provides the tightest 

Figure 1. Averaged log-partition approximation error versus interaction strength 
β in the case of generic (non-log-supermodular) GMs on complete graphs of size 4, 
5 and 6 (left, middle, right), where the average is taken over 20 random models.

5 The running time of the implemented algorithms are reported in the supplementary material.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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low-bound, unless it is outperformed by G-BP-multiple or G-BP-sequential. We remark 
that BP is not shown in figure 1, because in this non-log-supermodular case, it does 
not provide a lower bound in general. According to figure 2, showing the log-super-
modular case, both G-MF and G-BP outperform MF, while G-BP-sequential outper-
forms all other algorithms. Notice that G-BP performs rather similar to BP in the 

Figure 2. Averaged log-partition approximation error versus interaction strength 
β in the case of log-supermodular GMs on complete graphs of size 4, 5 and 6 (left, 
middle, right), where the average is taken over 20 random models.

Figure 3. Averaged ratio of the log partition function compared to MF versus 
graph size (i.e. number of factors) in the case of generic (non-log-supermodular) 
GMs on 3-regular graphs (left) and grid graphs (right), where the average is taken 
over 20 random models.

Figure 4. Averaged ratio of the log partition function compared to MF versus 
interaction strength β in the case of log-supermodular GMs on 3-regular graphs of 
size 200 (left) and grid graphs of size 100 (right), where the average is taken over 
20 random models.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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log-supermodular case, thus suggesting that the constraints, distinguishing (8) from (5), 
are very mildly violated.

In the second set of experiments, we consider sparser, but larger graphs of two 
types: 3-regular and grid graphs with size up to 200 factors/300 variables. As in the 
first set of experiments, the same non-log-supermodular/log-supermodular factors are 
considered. Since computing the exact approximation error is not feasible for the large 
graphs, we instead measure here the ratio of estimation by the proposed algorithm 
to that of MF, i.e. log(ZLB/ZMF) where ZMF is the output of MF. Note that a larger 
value of the ratio indicates better performance. The results are reported in figures 3 
and 4 for the non-log-supermodular and log-supermodular cases, respectively. Figure 3, 
shows that both G-MF and G-BP-sequential outperform MF significantly, e.g. up-to 
e14 times better in 3-regular graphs of size 200. We also observe that even the bare 
G-BP outperforms MF. In figure 4, algorithms associated with G-BP outperform G-MF 
and MF (up to e25 times). This is because the choice of q(x) for G-BP is favored by 
log-supermodular models, i.e. most of configurations are concentrated around (0, 0, · · · ) 
similar to the choice (7) of q(x) for G-BP. One observes here (again) that performance 
of G-BP in this log-supermodular case is almost on par with BP. This implies that 
G-BP generalizes BP well: the former provides a lower bound of Z for any GMs, while 
the latter does only for log-supermodular GMs.

5. Conclusion

We have explored the freedom in gauge transformation of GM and developed novel 
variational inference methods which resulted in significant improvement of the partition 
function estimation. We note that the GT methodology, applied here to improve MF 
and BP, can also be used to improve and extend utility of other variational methods.
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