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Abstract
A (flat) affine 3-manifold is a 3-manifold with an atlas of charts to an affine space R

3

with transition maps in the affine transformation group Aff(R3). We will show that a
connected closed affine 3-manifold is either an affine Hopf 3-manifold or decom-
poses canonically to concave affine submanifolds with incompressible boundary,
toral π -submanifolds and 2-convex affine manifolds, each of which is an irreducible
3-manifold. It follows that if there is no toral π -submanifold, then M is prime. Finally,
we prove that if a closed affine manifold is covered by a connected open set in R

3,
then M is irreducible or is an affine Hopf manifold.
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1 Introduction

1.1 Introduction and History

An affine manifold is a manifold with an atlas of charts to R
n , n ≥ 2, where the

transition maps are in the affine group. Euclidean manifolds are examples. A Hopf
manifold that is the quotient of R

n − {O} by a linear contraction group, i.e., a group
of linear transformation generated by an element with eigenvalues of norm greater
than 1 is an example. A half-Hopf manifold is the quotient of U − {O} by a linear
contraction group for a closed upper half-space U of R

n . (See Proposition 3.)
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For the currentlymost extensive set of examples of affinemanifolds, see the paper by
Sullivan and Thurston (1983).We still have not obtained essentially different examples
to theirs to this date. (See also Carrière 1989; Smillie 1977 and Benoist 2000 and
Benoist 1994.) A connected compact affine 3-manifold is radiant if the holonomy
group fixes a unique point, and has boundary tangent to a radiant vector field, which
exists by the fixed point. (See Sect. 2.3 and Barbot 2000; Fried et al. 1981.) Such a
manifold has a complete flow called a radiant flow. A generalized affine suspension is
a radiant affine manifold admitting a total cross-section. (See Proposition 2.) A radiant
affine n-manifold can be constructed easily from a real projective (n − 1)-manifold
using generalized affine suspension. (See Section 2.2 of Barbot 2000 or Chapter 3 of
Choi 2001).

For a subset M with a manifold topology, we denote by Mo the manifold interior
of M and by ∂M the manifold boundary of M .

A tetrahedron or 3-simplex is a convex hull of four points in a general position in an
affine spaceR

3. Let T be a convex simplex in an affine spaceR
3 with faces F0, F1, F2,

and F3. A real projective or affine 3-manifold is 2-convex if every projective map
f : T o ∪ F1 ∪ F2 ∪ F3 → M extends to f : T → M . (Carrière 1989 first defined this
concept).

A 3-manifoldM is prime ifM is a connected sumof twomanifoldsM1 andM2, then
M1 or M2 is homeomorphic to a 3-sphere. The subject of this paper is the following:
the question of Goldman in Problem 6 in the Open problems section of Apanasov et al.
(1997) is whether closed affine 3-manifolds are prime.

We showed that 2-convex affine 3-manifolds are irreducible in Choi (2000). Our
Theorem 3 shows that closed affine manifolds may be obtainable by gluing toral
π -submanifolds which are solid tori or solid Klein bottles with special geometric
properties to irreducible 3-manifolds. (See Definition 5.) This construction may result
in reducible 3-manifolds as we can see from Gordon (1991). Hence, the nonexistence
of solid tori or solid Klein bottles with special geometric properties in a closed affine
3-manifold M would show that M is prime. (See Corollary 1). We question whether
toral π -submanifolds can occur at all. We also answer the question when M is covered
by a connected open set in an affine space by Corollary 2.

For the related real projective structures on closed 3-manifolds, Cooper and Gold-
man (2015) showed that a connected sum RP3#RP3 admits no real projective
structure. For these topics, a good reference is given by Goldman (2018), originally
given as lecture notes in the 1980s.

1.2 Main Results

We give some definitions which we will give more precisely later. A real projective
structure on a manifold M is a maximal atlas of charts to RPn with transition maps
in the projective group PGL(n + 1, R). M is called a real projective manifold. At a
boundary point of M , we require that there is a chart to RPn with boundary mapping
to a submanifold of codimension-one.
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We use the double-covering map S
n → RPn , and hence S

n has a real projective
structure. The group of projective automorphisms of RPn is PGL(n + 1, R) and that
of S

n is SL±(n + 1, R).
We recall the main results of Choi (1999) which we will state in Sect. 2.5 in a

more detailed way. Let M be a closed real projective manifold. Let M̃ be the universal
cover and π1(M) the deck transformation group. A real projective structure on M
gives us an immersion dev : M̃ → S

n equivariant with respect to a homomorphism
h : π1(M) → SL±(n + 1, R). The real projective structure gives these data.

Recall a group Aff(Rn) of affine transformations of form x �→ Mx + b for M ∈
GL(n, R) and b ∈ R

n . The real projective space RPn contains the affine space R
n as

a complement of a hyperspace, and affine transformation groups naturally extend to
projective automorphisms. Affine geodesics also extend to projective geodesics.

Also, Rn identifies with an open hemisphere in S
n under the double covering map.

The group of affine transformations is the group of projective diffeomorphisms of the
open hemisphere under the identification. The open hemisphere is also called an affine
patch.

Conversely, given a closed 3-hemisphere H, letAut(H) denote the group of projec-
tive automorphisms of H. This group is isomorphic to Aff(Ho) when H

o is identified
with an affine space.

We will look an affine manifold as a real projective manifold, i.e., a manifold with
an atlas of charts to R

n ⊂ S
n with transition maps in the affine group Aff(Rn) ⊂

SL±(n + 1, R). An affine manifold has a canonical real projective structure since the
charts and the transition maps are projective also. (The converse is not true).

Let Kh be the kernel of h, normal in π1(M). We cover M by the holonomy cover
Mh = M̃/Kh corresponding to Kh with

– an induced and lifted immersion devh : Mh → S
n and

– an induced holonomy homomorphism hh : π1(M)/Kh → SL±(n + 1, R) satisfy-
ing

devh ◦ g = hh(g) ◦ devh for g ∈ π1(M)/Kh .

Let Mh have the path metric of the Riemannian metric pulled back from the Fubini-
Study Riemannian metric of S

3. The Cauchy completion M̌h of Mh is called a Kuiper
completion. The ideal set is Mh,∞ := M̌h − Mh . (See Sect. 2.5.1 for definitions.)

A 3-hemisphere is a closed 3-hemisphere in S
3, and a 3-bihedron is the closure

of a component H − S
2 for a 3-hemisphere H with a great 2-sphere S

2 passing
Ho. These have real projective structures induced from the double-covering map
S
3 → RP3. An open 3-hemisphere is the interior of a closed 3-hemisphere, and

an open 3-bihedron is the interior of a closed 3-bihedron. An open 3-hemisphere is
projectively diffeomorphic to an affine 3-space, and an open 3-bihedron is projectively
diffeomorphic to a half-space in an affine 3-space.

If the universal cover M̃ is projectively diffeomorphic to an open hemisphere, i.e.,
R
n , thenM is called a complete affinemanifold. If the universal cover M̃ is projectively

diffeomorphic to an open 3-bihedron, we call M a bihedral real projective manifold.
A hemispherical 3-crescent is a 3-hemisphere in M̌h whose boundary 2-sphere

contains a 2-hemisphere in the ideal set. A bihedral 3-crescent is a 3-bihedron B
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in M̌h so that a boundary 2-hemisphere is the ideal set. It is pure if a hemispherical
3-crescent does not contain it. A concave affine 3-manifold is a codimension-zero
connected compact submanifold of M defined in Choi (1999):

– A concave affine 3-manifold of type I is a compact affine manifold covered by R∩
Mh for a hemispherical 3-crescent R. (See Definition 2 for the precise definition.)

– Now, we assume that there is no hemispherical 3-crescent in M̌h . A concave affine
3-manifold of type II is a compact affine manifold covered byU ∩Mh of a unionU
of bihedral 3-crescents in Mh extending their open ideal boundary 2-hemispheres.
(See Definition 3 for the precise definition.)

We remark that when we talk about concave affine 3-manifold N of type II, then
there is no hemispherical crescent in the Kuiper completion of the holonomy cover of
the real projective manifold containing N . Otherwise, N is not defined.

The interior of a concave affine 3-manifold has a canonical affine structure inducing
its real projective structure. The two-faced submanifold of type I of a real projective
3-manifold M is roughly given as the totally geodesic 2-dimensional submanifold
arising from the intersection in Mh of two hemispherical 3-crescents meeting only in
the boundary.

Now, we assume that there is no hemispherical 3-crescent in M̌h . The two-faced
submanifold of type II of a real projective 3-manifold M is roughly defined as the
totally geodesic 2-dimensional submanifold arising from the intersection in Mh of
two bihedral 3-crescents meeting only in the boundary. For the precise definitions, see
Sect. 2.5.3.

Theorem 1 (Choi 1999) Suppose that M is a connected compact real projective 3-
manifold with empty or convex boundary that is neither complete affine nor bihedral.
Suppose that M is not 2-convex. Then M̌h contains a hemispherical or bihedral 3-
crescent.

Now,we sketch the process of convex-concave decomposition in Choi (1999) which
we recall in Sect. 2.5 in more details:

– Suppose that a hemispherical 3-crescent R ⊂ M̌h exists.

– If there is the two-faced submanifold of type I, then we can split M along
this submanifold to obtain Ms . If not, we let Ms = M . Let Ms

h denote the
corresponding cover of Ms obtained by splitting Mh and taking a union of
components, and let M̌s

h be its Kuiper completion.

– Then hemispherical 3-crescents in M̌s
h are mutually disjoint, and the intersec-

tion of each hemispherical 3-crescent with Ms
h covers a compact submanifold,

called a concave affine manifold of type I.
– We remove all these from Ms . Then we let the resulting compact manifold be
called M (1). The boundary is still convex.

– Let M (1)
h denote the cover of M (1) obtained by removing corresponding submani-

folds from Ms
h , and let M̌

(1)
h be the Kuiper completion of M (1)

h . Suppose that there

is a bihedral 3-crescent R ⊂ M̌ (1)
h .
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– If there is the two-faced submanifold of type II, then we can split M (1) along
this submanifold to obtain M (1)s . If not, we let M (1)s = M (1).

– LetM (1)s
h denote the cover ofM (1)s obtained fromM (1)

h by splitting and taking

a union of components, and let M̌ (1)s
h be the Kuiper completion. Then the

intersection of M (1)s
h with the union of bihedral 3-crescents in M̌ (1)s

h covers
the union of a mutually disjoint collection of compact submanifolds, called
concave affine manifolds of type II.

– We remove all these from M (1)s . Then the resulting compact real projective
manifold M (2) with convex boundary is 2-convex.

Note that given a real projective manifold M , we define

Ms, Ms
h, M̌

s
h, M

(1), M (1)
h , M̌ (1)

h , M (1)s, M (1)s
h , and M̌ (1)s

h

as above, and use this terminology throughout the paper.
We will further sharpen the result in this paper. A toral π -submanifold is a compact

radiant concave affine 3-manifold with the virtually infinite-cyclic fundamental group
covered by a special open set in a hemisphere. We will later show that a toral π -
submanifold is homeomorphic to a solid torus or a solid Klein bottle. (See Definition
5; Lemmas 16, 17). A half-Hopf manifold is an example of toral π -submanifolds;
however, some toral π -submanifolds are not one. We can make examples by pasting
some half-Hopf manifolds with same holonomy groups along solid tori. (This is a
simple construction).

Theorem 2 Let M be a connected compact real projective 3-manifold with empty or
convex boundary that is neither complete affine nor bihedral.

– Let Ms be the resulting real projective 3-manifold after splitting along the two-
faced totally geodesic submanifold of type I (resp. of type II ).

– Let N be a compact concave affine 3-manifold of type I (resp. of type II ) in Ms

with boundary compressible into Ms.

Then N is a toral π -submanifold of type I (resp. contains a unique maximal toral
π -submanifold of type II ), or M is an affine Hopf 3-manifold.

So far, our results are on real projective 3-manifolds. Now we go over to the result
specific to affine 3-manifolds.

Theorem 3 Let M be a connected compact affine 3-manifold with empty or convex
boundary. Suppose that M is neither complete affine nor bihedral and is not affine
Hopf 3-manifold.

– Let Ms be the resulting real projective 3-manifold after splitting along the two-
faced totally geodesic submanifold of type I.

– Now, Ms decomposes into concave affinemanifolds of type I with boundary incom-
pressible in Ms and toral π -submanifolds of type I.

Let M (1) be obtained by removing all concave affine manifolds of type I in Ms. Let
M (1)s denote the M (1) split along the two-faced submanifold of type II. M (1)s decom-
poses into compact submanifolds as follows:
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– a 2-convex affine 3-manifold with convex boundary,
– toral π -submanifolds of type II in concave affine 3-manifolds with boundary com-
pressible into M (1)s with the virtually cyclic holonomy groups, or

– concave affine 3-manifolds of type II with boundary incompressible in M(1)s .

The finally decomposed submanifolds from the decomposition are prime 3-manifolds.

However, the above decomposition is not necessarily a prime decomposition. The
following gives us a criterion for the primeness. This theorem is a generalization of
the 2-dimensional affine decomposition theory of Nagano and Yagi (1974).

Corollary 1 Let M be a connected compact affine 3-manifold with empty or con-
vex boundary. Suppose that there is no projectively embedded image of toral
π -submanifold of type I or II in M. Then M is irreducible or is an affine Hopf 3-
manifold and hence is prime.

We question whether that the above concave affine manifolds are maximal in the sense
of Choi (1999).

The following answers Goldman’s question partially.

Corollary 2 (Choi–Wu) Suppose that M is a connected closed affine manifold covered
by an open set Ω in R

3. Then M is either irreducible or is an affine Hopf 3-manifold.

One significance of this paper is to see how far the techniques of Choi (1999, 2000)
and can be applied to solve this problem.We isolated some objects here. We think that
the nonexistence results of 2-convex affine 3-manifolds of certain topological type
will be helpful here. We postpone this discussion to later papers.

1.3 Outline

The main tools of this paper are from three long papers of Choi (1999, 2000, 2001).
We summarize the results of Choi (1999, 2001) in Sect. 2. In Sect. 2.3, we recall
radiant affine n-manifolds and recall some results of Choi (2001). In Sect. 2.4, we
prove various facts about affine Hopf manifolds and half-Hopf manifolds. In Sect. 2.5,
we recall the convex and concave decomposition of real projective structures including
3-crescents and two-faced submanifolds in Choi (1999).

In Sect. 3, Theorem 6 claims that if the two-faced submanifold is non-π1-injective,
then the manifold is finitely covered by an affine Hopf 3-manifold. The idea for the
proof is by a so-called “disk-fixed-point argument” Proposition 8. That is, we can
find an attracting fixed point of a deck transformation g when a simple closed curve c
bounds a disk D with the property g(c) ⊂ Do. We prove Theorem 6 in Sect. 3.2.

The main technical core results are Theorems 7 and 8 in Sect. 3.3. We show that
a cover of the concave affine 3-manifold being a union of mutually intersecting 3-
crescents must be mapped to a subset in a hemisphere by devh , and the boundary has
a unique annulus component. Since the fundamental group of N acts on an annulus
covering its boundary properly and freely, the fundamental group is virtually infinite-
cyclic by Lemma 3.We complete the final part of the proof in Sect. 3.5 where we show
that these concave affine 3-manifolds contain toral π -submanifolds.We also show that

123



Convex and Concave Decompositions of Affine 3-Manifolds

a toral π -submanifold is homeomorphic to a solid torus or a solid Klein bottle. We
prove Theorem 2 at the end.

In Sect. 4, we discuss the decomposition of M into 2-convex real projective 3-
manifolds with convex boundary and toral π -submanifolds. i.e., Theorem 10. We use
the convex and concave decomposition theorem of Choi (1999) and Theorems 7 and
8 and replacing the compact concave affine 3-manifolds with compressible boundary
with toral π -submanifolds. We prove Theorem 3 and Corollaries 1 and 2 lastly here.

We thank Yves Carrière, David Fried, Bill Goldman and Weiqiang Wu for fruitful
discussions.

2 Preliminary

2.1 Some 3-Manifold Topology

Let K be amanifold. Let Diff(K ) be the group of diffeomorphisms of K with the usual
Cr -topology, r ≥ 0, and Diff0(K ) the identity component of this group.We define the
mapping class group Mod(K ) of a manifold K to be the group Diff(K )/Diff0(K ).

Since Mod(S2) = Z/2Z is a classical work of Smale (1959), there exist only
two homeomorphism types of S

2-bundles over S
1. If M ′ is orientable, then M ′ is

homeomorphic to S
2 × S

1. If not, M ′ is a non-orientable S
2-bundle over S

1. The
following is well known.

Lemma 1 Let Ñ := K × R for a compact manifold K covers a compact manifold
N as a regular cover. Suppose that Mod(K ) is finite. Then N is finitely covered by
K × S

1.

Given an embedded surface Σ in a 3-manifold M that is either on the boundary of
M or is two-sided,Σ is incompressible intoM ifπ1(Σ) injects intoπ1(M). Otherwise,
Σ is said to be compressible. A simple closed curve in Σ is essential if it is not null-
homotopic in Σ . A compressible surface always has an essential simple closed curve
that is the boundary of an embedded disk by Dehn’s Lemma.

A n-manifold is irreducible if every embedded two-sided 2-sphere bounds a 3-ball.
Also, prime 3-manifolds are either irreducible or are homeomorphic to an S

2-bundle
over S

1. (See Lemma 3.13 of Hempel 2004).

Lemma 2 Let L be a connected compact 3-manifold with the universal cover whose
interior is an open cell, and π1(L) is virtually infinite-cyclic. Then L is homeomorphic
to a solid torus or a solid Klein-bottle.

Proof Since the interior of the universal cover of L is a cell, L is irreducible. By
Theorem 5.2 of Hempel (2004), L is finitely covered by a solid torus. Hence, ∂L
is homeomorphic to a torus or a Klein bottle. Since ∂L is not π -injective, ∂L is
compressible by Dehn’s lemma. Since ∂L is compressible, we can find a disk D with
∂D ⊂ ∂L . Since L is irreducible, L − D is a cell. Therefore, the conclusion follows.

�

Lemma 3 Let G be a group G acting on an annulus A faithfully, freely, and properly
discontinuously with A/G a closed surface. Then G is virtually infinite-cyclic.
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Proof Let c be an essential simple closed curve in A. Since the surface groups are
locally extended residually finite by Peter Scott, there is a finite index subgroup
G ′ preserving the ends of A of G so that c is embedded to a simple closed curve
in A/G ′. Then for each nontrivial g ∈ G ′, we have g(U ∪c) ⊂ U or g−1(U ∪c) ⊂ U .
Choosing g so that g(c) is closest to c, we obtain a generator of G ′. Hence, G ′ is
infinite-cyclic. �


2.2 The Projective Geometry of the Sphere

Let V be a vector space. Define P(V ) as V − {0}/ ∼ where x ∼ y if and only if
x = sy for s ∈ R − {0}. PGL(V ) acts on this space where PGL(Rn) = PGL(n, R).

Recall that RPn = P(Rn+1). A subspace of RPn is the image V − {O} of a
subspace V of R

n+1 under the projection. The group of projective automorphisms is
PGL(n + 1, R) acting on RPn in the standard manner. A real projective n-manifold
with empty or convex boundary is a manifold with empty or nonempty boundary with
an atlas of charts to RPn with transition maps in PGL(n + 1, R) so that each point of
the boundary has a chart to a convex domain with boundary in RPn . A maximal atlas
is called a real projective structure. The boundary is totally geodesic if each boundary
point has a neighborhood projectively diffeomorphic to an open set in a half-space of
an affine space meeting the boundary.

An affine n-manifold with empty or convex boundary is an n-manifold with bound-
ary and an atlas of charts to open subsets or convex domains in R

n and the transition
maps inAff(Rn). Since the affine transformations are projective, an affine n-manifold
has a canonical real projective structure. We consider such n-manifolds as real pro-
jective n-manifolds with special structures in this paper. A real projective manifold
projectively homeomorphic to an affine manifold is called an affine manifold in this
paper.

Definition 1 An elementary example is an affine Hopf n-manifold that is the quotient
of R

n − {O} by an infinite-cyclic group generated by a linear map g all of whose
eigenvalues have norm > 1 or by 〈g,−I〉 for g as above. The quotient is a manifold
by Proposition 7 in Appendix 1.

If g acts on an (n − 1)-plane passing O , and the half-space H in R
n bounded by

it, then (H − {O})/〈g〉 is called a half-Hopf n-manifold. A real projective manifold
projectively homeomorphic to an affine Hopf n-manifold or a half-Hopf n-manifold
is called by the same name in this paper. (See Hopf 1948 for a conformally flat version
and Sullivan and Thurston 1983).

Let R+ := {t |t ∈ R, t > 0}. Define S(V ) as V − {0}/ ∼ where x ∼ y if and
only if x = sy for s ∈ R+. SL±(V ) acts on S(V ) transitively and faithfully. There
is a double cover S(V ) → P(V ) with the deck transformation group generated by
the antipodal map A : S(V ) → S(V ) induced from the linear map V → V given by
v → −v. We denote by ((v)) the equivalence class of v in S(V ). The homogeneous
coordinate system of S(Rn) is given by denoting each point by ((x1, . . . , xn)) for the
vector (x1, . . . , xn) �= 0.
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We denote by S
n the space S(Rn+1). The real projective sphere S

n has a real
projective structure given by the double covering map toRPn . The group of projective
automorphisms of S

n form SL±(n+1, R) as obtained by the standard action ofGL(n+
1, R) on R

n+1.
We embed R

n as an open n-hemisphere H
o in S

n for a closed n-hemisphere H by
sending (x1, x2, . . . , x) to ((1, x1, x2, . . . , xn)). We identifyR

n withH
o. The boundary

of R
n is a great sphere S

n−1∞ given by x0 = 0. The group of projective automorphisms
acting on H equals the group Aff(Rn) of affine transformations of H

o = R
n . (A good

reference for all these geometric topics is the book by Berger 2009).
We take the universal cover M̃ of ann-manifoldM . The existence of a real projective

structure on M gives us

– an immersion dev : M̃ → RPn , called a developing map and
– a homomorphism h : π1(M) → PGL(n+1, R), called a holonomy homomorphism

satisfying dev ◦ γ = h(γ ) ◦ dev for each γ ∈ π1(M).
By lifting dev, we obtain

– a well-defined immersion dev′ : M̃ → S
n and

– a homomorphism h′ : π1(M) → SL±(n + 1, R)

so that dev′ ◦ g = h′(g) ◦ dev′ for each deck transformation g of M̃ .
Let Kh be the kernel of h′ : π1(M) → SL±(n + 1, R). Let Mh := M̃/Kh be a

so-called holonomy cover. Then dev′ induces an immersion devh : Mh → S
3. The

deck transformation group Γh of the covering map ph : Mh → M is isomorphic to
π1(M)/Kh . Since the real projective structures is a real analytic structure, Γh acts
nontrivially on every open subset of Mh . We obtain

– an immersion devh : Mh → S
n , also called a developing map and

– a homomorphism hh : π1(M)/Kh → SL±(n + 1, R), also called a holonomy
homomorphism

satisfying

devh ◦ γ = hh(γ ) ◦ devh for γ ∈ Γh .

Lemma 4 Let M be a connected compact real projective manifold with convex bound-
ary. Consider a cover M ′ of M with a covering map pM : M ′ → M with a deck
transformation group Γ ′. Let pM ′ : M̃ → M ′ denote the covering map induced by
the universal covering map M̃ → M. Then

– given a projective immersion dev′ : M ′ → S
n satisfying dev′ = dev ◦ pM ′ , there

is a homomorphism h′ : Γ ′ → SL±(n + 1, R) satisfying dev′ ◦ γ = h′(γ ) ◦ dev′
for every γ ∈ Γ ′.

– dev′ is a holonomy cover if and only if pM : M ′ → M is a regular cover, and
h′|Γ ′ is injective.

Proof Straightforward. �

Lemma 5 Let M be a connected compact real projective manifold with convex bound-
ary. For any connected submanifold N of M, let Nh denote a component of its inverse
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image in Mh. Then ph |Nh : Nh → N is a holonomy covering map also and the
deck transformation group equals the subgroup Γh,Nh of Γh acting on Nh. For the
developing map, devh,Nh = devh |Nh holds, and for the corresponding holonomy
homomorphism, hNh = hh |Γh,Nh holds.

Proof First, Γh,Nh → Γh is injective. Since hh |Γh is injective, hh |Γh,Nh is injective.
SinceΓh,Nh is the regular deck transformation group of ph |Nh , we are done by Lemma
4. �

Lemma 6 Let M be a connected compact real projective manifold with convex bound-
ary. The deck transformation group Γh of Mh is residually finite. So, is Γh,Nh for any
connected submanifold N of M.

Proof Under hh , Γh is mapped injectively into a linear group SL±(n + 1, R). The
Selberg-Malcev lemma implies the conclusion. �


2.3 Radiant Affine n-Manifolds

Given any affine coordinates xi , i = 1, . . . , n, of R
n , a vector field

∑n
i=1 xi

∂
∂xi

is
called a radiant vector field. O of the coordinate system is called the origin of the
radiant vector field. Suppose that the holonomy group of an affine n-manifold M fixes
O . Then devh : Mh → R

n is an immersion and the radiant vector field lifts to a vector
field in Mh . The vector field is invariant under the deck transformations of Mh and
hence induces a vector field on M . The vector field on M is also called a radiant vector
field. (See Barbot 2000 and Chapter 3 of Choi 2001). Suppose that the vector field is
tangent to ∂M . This gives us a radiant flow which induces an action

R × M → M

whenever M is compact. We call an affine manifold M with a radiant flow tangent to
∂M a radiant affine manifold.

Let M be an affine manifold with the holonomy group fixing a point O . A radiant
line in Mh is an arc α in Mh so that dev|α is an embedding to a component of a
complete real line l with O removed.

Proposition 1 Let M be a connected compact affine n-manifold with empty or
nonempty boundary. Suppose that the holonomy group fixes the origin of a radiant
vector field, and the boundary is tangent to the radiant vector field. Then devh(Mh)

misses the origin of a vector field and Mh is foliated by radiant lines.

Proof See the proof of Proposition 2.4 of Barbot (2000). �

Let || · || denote the Euclidean metric of R

n . Given a real projective (n − 1)-
manifold Σ and a projective automorphism φ : Σ → Σ , we can obtain a radiant
affine n-manifold homeomorphic to the mapping torus

Σ × I/ ∼ where for every x ∈ Σ, (x, 1) ∼ (φ(x), 0).
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Let dev : Σ̃ → S
n−1 ⊂ R

n be a developing map with holonomy homomorphism
h : π1(Σ) → SL±(n, R). Then we extend dev to

dev′ : Σ̃ × R → R
n by (x, t) �→ exp(t)dev(x).

For each element γ of π1(Σ), we define the action of π1(Σ) on Σ × R by

γ (x, t) = (γ (x), log ||h(γ )(dev(x))|| + t).

This preserves the affine structure and the radiant vector field. The automorphism φ

lifts to φ̃ : Σ̃ → Σ̃ so that ψ ◦ dev = dev ◦ φ̃ for ψ ∈ SL±(n, R) where we define

φ̃ : Σ̃ × R → Σ̃ × R by φ̂(x, t) = (φ̃(x), log ||ψ(dev(x))|| + t).

Then the result Σ̃ × R/〈φ̂, π1(Σ)〉 is homeomorphic to the mapping torus. We call
this construction or the manifold the generalized affine suspension. If φ is of finite
order, then the manifold is called a Benzécri suspension.

Proposition 2 (See Proposition 3.2 of Choi 2000) Let M be a connected compact
radiant affine n-manifold. Then M is a generalized affine suspension if and only if the
radiant flow on M has a total cross section.

Corollary 3 (Barbot-Choi Barbot and Choi 2001, Corollary A Choi 2001) Let M be a
connected compact radiant affine 3-manifold with empty or totally geodesic boundary.
Then M admits a total cross-section to the radiant flow. As a consequence, M is affinely
diffeomorphic to one of the following affine manifolds:

– a Benzécri suspensions over a real projective surface of negative Euler character-
istic with empty or geodesic boundary.

– a generalized affine suspension over a real projective sphere, a real projective
plane, or a hemisphere,

– a generalized affine suspension over a real projective torus (Klein bottle), a real
projective annulus (Möbius band) with geodesic boundary.

There is a 6-dimensional closed radiant affinemanifold giving us a counter-example
to the existence of the cross-section to the radiant flow due to Fried.

Remark 1 We mention an error in Choi (2001) for Theorem A and Corollaries A and
B. We state Corollary A in the corrected form above. We assume not only that the
holonomy group of the affine manifold M fixes a common point but also that the
boundary is tangent to the radiant vector field. Proposition 1 should fill in the gap
since we just need to use the fact that radiant lines foliate the universal cover.

2.4 Affine 3-Manifolds with the Infinite-Cyclic Holonomy Groups

First, we will explore the affine Hopf manifolds (Fig. 1).
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Fig. 1 There must be an image
of c1 inside the component
bounded by c1

g

c

1

1

Lemma 7 Let X be a connected open orientable manifold with a group G acting on
it properly discontinuously and cocompactly. Let c1 be a codimension-one compact
connected submanifold where X − c1 has two open components, and let U be a
component. Then there exist infinitely many elements g ∈ G so that g(c1) ⊂ U.

Proof Let x ∈ c1. Since the action of G on X is cocompact, there exists an infinite
sequence {gi } of orientation-preserving gi ∈ G so that gi (x) ∈ U . Since the action
of G on X is properly discontinuous, gi (c1) ∩ c1 = ∅ except for finitely many i . We
may choose gi so that gi (c1) is a proper subset of U . �

Proposition 3 An affine Hopf 3-manifold M is homeomorphic to S

2 × S
1, RP2 × S

1,
or a nonorientable S

2-bundle over S
1. A half-Hopf 3-manifold M is homeomorphic

to a solid torus or a solid Klein bottle.

Proof Let M be an affine Hopf 3-manifold. The universal cover is R
3 − {O}, and

hence M does not contain any fake cells. We double cover it so that it has an infinite
cyclic holonomy group and call the double cover by M ′. Let g be the generator of the
holonomy group. Each eigenvalue of a nonidentity element g ∈ h(π1(M)) has either
all norms > 1 or all norm < 1 by definition. By taking g−1 if necessary, we assume
that all the norms are < 1. Let S be a unit sphere for a norm in Lemma 18. By Lemma
18, S and g(S) are disjoint. Then S and g(S) bound a compact space homeomorphic
to S × I . We introduce an equivalence relation ∼ where x ∼ y for x ∈ S, y ∈ g(S) if
y = g(x). Thus,

(R3 − {O})/〈g〉

is an S
2-bundle over S

1. Since Mod(S2) = Z/2Z is a classical work of Smale (1959),
there exist only two homeomorphism types of S

2-bundles over S
1.

Now, M is doubly or quadruply covered by S
2 × S

1. Since −I acts on S above, and
Mod(RP2) = 1, the proposition is proved.

Let M be a half-Hopf 3-manifold. Then we take a copy M ′ of M and glue M with
M ′ at the boundary ∂M and ∂M ′ by an induced map of −I : R

3 → R
3. Then the

topology follows �
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Theorem 4 Let M be a connected compact affine 3-manifold with empty or totally
geodesic boundary. Suppose that a virtually infinite-cyclic holonomy group of M fixes
apoint in the affine space.Also, suppose that the radiant flow is tangent to the boundary.
Then

– M is finitely covered by S
2 × S

1 or D2 × S
1.

– M is a generalized affine suspension of a sphere, RP2, or a 2-hemisphere.
– If M is closed, then M is an affine Hopf 3-manifold and is diffeomorphic to an

S
2-bundle over S

1 or RP2 × S
1. If M has totally geodesic boundary, then M is a

half-Hopf manifold.
– Any 3-manifold covered by an affine Hopf 3-manifold or a half-Hopf 3-manifold
respectively is one also.

Proof We take a finite cover N so that N has an infinite cyclic fundamental group.
By Theorem 5.2 of Hempel (2004) and Lemma 1, N has to be covered by S

2 × S
1

or D2 × S
1 finitely. Therefore, the universal cover M̃ is neither complete affine nor

bihedral.
By taking a finite cover N of M , we may assume that h(π1(N )) = 〈g〉 and g

fixes a point x in the affine space. Thus the holonomy group fixes a point x . Then
N is a radiant affine 3-manifold by definition in Choi (2001). (See Sect. 2.3). Since
the holonomy group is virtually infinite cyclic, the classification of such affine 3-
manifolds in Corollary 3 (Corollary A in Choi 2001) implies that N is a generalized
affine suspension of S

2, RP2, or a 2-hemisphere. To explain, N admits a total cross-
section by Theorem B of Barbot (2000). This means that N and hence M are covered
by R

3 − {x} or H − {x} for the closed half-space H of R
3 for x ∈ ∂H .

We now prove that whenM is closed, the only case is the affineHopf 3-manifold:M
is a generalized affine suspension of a real projective 2-sphere or a real projective plane
by the second item of the conclusion of Corollary 3. In the first case, M has an infinite
cyclic group as the deck transformation group acting on R

3 − {O}. By Proposition 7
in Appendix 1, M is an affine Hopf 3-manifold. In the second case, the double cover
of M is an affine Hopf 3-manifold. An order-two element k centralizes the infinite
cyclic group since the generator fixes a unique point in R

3. π1(M) is isomorphic to
Z × Z2. Also, k must act on a sphere in R

3 − {O} as an order two element, and hence
k = −I. Thus, M is an affine Hopf 3-manifold.

When M is a generalized affine suspension over a 2-hemisphere, similar arguments
apply to show that M is a half-Hopf manifold.

Any affine 3-manifold covered by an affine Hopf 3-manifold or a half-Hopf 3-
manifold satisfies the premises of the theorem. Thus, it is an affine Hopf 3-manifold
or a half-Hopf 3-manifold. �


We will be using the definition of convexity in Chapter 2 of Choi (1999). A convex
line in S

n is an embedded arc not containing a pair of antipodal points in its interior.
A subset A of S

n is convex if any two points of A are connected by a convex segment
in A. A convex hull of a subset B of S

n is the minimal convex subset containing B.

Corollary 4 Let M be a connected closed real projective n-manifold. Suppose that a
connected open subset Ω in S

n covers M and contains a smoothly embedded sphere
Sn−1 of codimension one with the following properties:
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Fig. 2 Diagram for (A). We are
showing the images of Bn under
Γ ′
h and the arc α

– Sn−1 bounds an n-ball Bn in R
n for an affine subspace R

n ⊂ S
n, and

– Bn is not contained in Ω .

Then M is projectively diffeomorphic to an affine Hopf n-manifold.

Proof A component of S
n − Sn−1 is an n-cell Bn in an affine patch. So, Bn is in

a properly convex domain. Since Ω covers a compact manifold, there exists a deck
transformation g so that g(Sn−1) ⊂ Bn ∩ Ω by Lemma 7. Then g(Bn ∪ Sn−1) ⊂ Bn

since the outside component of S
n − g(Sn−1) is not contained in a properly convex

domain. By the Brouwer fixed-point theorem, g fixes a point in the interior of Bn .
Proposition 9 in Appendix 1 shows that x is an attracting fixed point in a g-invariant
open hemisphere H

o (Fig. 2).
We now devote to showing that Ω = H

o − {x}, for this we do need a nontrivial
result ofWu (2012). The main difficulty is to show Ω contains everything between the
two spheres Sn−1 and g(Sn−1).

(A) We find a nonseparating sphere of dimension n − 1 in a finite over of M : by
Lemma 6, there is a cover M ′ of M by taking a finite-index normal subgroup Γ ′

h of

Γh so that p|Sn−1 is an embedding to a sphere Ŝ for the covering map p : Ω → M ′.
Furthermore, we may assume that Γ ′

h is orientation preserving.
Let gi0 be the power of g in Γ ′

h with least i0, i0 > 0. We obtain

gi0(Sn−1) ⊂ Bn and gi0(Bn ∩ Ω) ⊂ Bn ∩ Ω

as at the beginning of the proof.
For any g′ ∈ Γ ′

h so that g
′(Sn−1) ⊂ Bn , we have g′(Bn) ⊂ Bn as in the beginning

of the proof: the reason is: g′(Bn) is in a region bounded by g′(Sn−1) in S
n , and the

closure of the external component S
n − g′(Sn−1) is not contained in an affine space

while g′(Bn) is in an affine space.
By the paragraph immediately above, any generic embedded open arc α in the open

subset Bn ∩ Ω − gi0(Cl(Bn)) connecting x ′ ∈ Sn−1 to gi0(x ′) meets copies of Bn

under Γ ′
h other than gi0(Bn)

– in a compact interval disjoint from x ′ and gi0(x ′) or
– in the interval containing gi0(x ′) but not x ′.
Let us call f the number of times the second case happens. We may assume that

the intersection number at x ′ with α is +1 up to changing the orientation of M ′. Then
the oriented-intersection number of the image of α in M ′ meeting Ŝ is f +1 > 0 since
the contributions of the intersection points of the first kind will cancel out. Thus, Ŝ is
a nonseparating sphere (Fig. 3).
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Fig. 3 Diagram for B: the action
of ki and the images of spheres.
The gray region covers a
neighborhood of Ŝ ∪ I ′, and we
are filling in the white regions

(B) We will use Ŝ to obtain a sphere bounding a cell outside the neighborhood
of Ŝ union an arc connecting the two sides of Ŝ: since Ŝ is nonseparating, we take
a transversal embedded arc I ′ in M ′ connecting a point of Ŝ to itself and disjoint
from Ŝ in the interior. We take an ε-neighborhood N of I ′ ∪ Ŝ and let S′′ denote
the boundary sphere of the neighborhood. (See Lemma 3.8 of Hempel 2004 for the
construction.) Since S′′ bounds a neighborhood, it is a separating (n − 1)-sphere. We
choose sufficiently small ε so that S′′ is homeomorphic to a sphere. Let I be the lift
of I ′ starting from Sn−1. Let k be the deck transformation so that y and k(y) are
endpoints of I . Then S′′ lifts to a sphere in Ω that is a boundary component S′ of the
inverse image N ′′ of N , which is a neighborhood of

⋃
i∈Z ki (Sn−1 ∪ I ).

Again, k satisfies the properties of g above since p|Sn−1 : Sn−1 → Ŝ is an embed-
ding. By Proposition 9 in Appendix 1, there is an attracting fixed point of k in an affine
space. By a change of notation, let x denote to the attracting fixed point of k of an
affine space to be denote by H

o

Since a sequence {k j (Sn−1)} of compact sets geometrically converges to ∂H as
j → −∞, and Sn−1 is compact,Ω is disjoint from ∂H by the properness of the action
of 〈k〉 on Ω . Hence, Ω ⊂ H

o. Since x is a fixed point of k, we obtain Ω ⊂ H
o − {x}.

Since Ω ⊂ H
o, the sphere S′ is a subset of H

o. It is obvious that M ′ is an affine
manifold. By Theorem 1.2 of Wu (2012), S′′ bounds an n-ball B ′′ in M ′, and an n-ball
B ′ bounded by S′ in Ω = Mh embeds onto B ′′ under p for n ≥ 3. For n = 2, Nagano
and Yagi (1974) shows that the universal cover of a closed affine surface is affinely
diffeomorphic to a universal cover of R

2 − {O} or R
2 or R × (0,∞). Hence, every

open subset of S
2 that covers a closed affine surface is affinely diffeomorphic to

R
2 − {O}, R

2, or R × (0,∞).

Separating circles in such an open subset always bound embedded disks. (See Example
1.6 of Benoist 2000).

Since ∂B ′ is a component of ∂N ′′, we cannot have B ′ ⊂ N ′′ while N ′′ is not
compact. Hence, the interior of B ′ is disjoint from that of N ′′.

(C) Finally, we show that Ω = H
o − {x}: taking a union of B ′ with N ′′, we obtain

that open set D in H
o bounded by Sn−1 and k(Sn−1) is in Ω . Since

D ⊂ B ′ ∪ N ⊂ Ω,

we obtain Ω ⊃ ⋃
i∈Z ki (D).
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By the generalized Schoenflies theorem k−i (Sn−1) and ki (Sn−1), i > 0, bound a
region in H

o homeomorphic to Sn−1 × I , and

k−i (Sn−1) → ∂H and ki (Sn−1) → {x} as i → ∞

in the Hausdorff convergence sense. It follows that
⋃

i∈Z ki (D) = H
o − {x}. Hence,

Ω = H
o − {x}.

Now, Theorem 4 shows that Ω/〈gi0〉 is an affine Hopf 3-manifold, a compact
manifold. Therefore, M is finitely covered by an affine Hopf-3-manifold. Theorem 4
implies the result. �


2.5 Convex Concave Decomposition of Real Projective 3-Manifolds

2.5.1 Kuiper Completions

The immersion devh induces a Riemannian μ-metric on Mh from the standard Rie-
mannian metric μ on S

3. This gives us a path-metric to be denoted by d on Mh . (More
precisely dh but we omit J here). Recall from Choi (1999) the Cauchy completion
M̌h of Mh with this path-metric is called the Kuiper completion of Mh . (This metric
is quasi-isometrically defined by devh , and hence the topology is independent of the
choice of devh).

– The ideal set is Mh,∞ := M̌h − Mh , which is in general not empty.
– The immersion devh extends to a continuous map. We use devh as the notation
for the extended map as well.

– If M is an affine 3-manifold, we consider M as a real projective 3-manifold since
the charts and transition maps are projective. We define Mh , M̌h , and Mh,∞ as
above.

– Γh acts on Mh and Mh,∞ possibly with fixed points in Mh,∞.

Now, we discuss subsets of M̌h .

– For a compact convex subset K of M̌ so that devh |K is an embedding, we define
∂K to be the subset corresponding to ∂devh(K ).

– If devh(K ) is a compact domain in a subspace of S
3, then we define Ko as the

subset of K that is the inverse image of the manifold interior of devh(K ).
– An i -hemisphere in M̌h is a compact subset H so that devh |H is an embedding to
an i-hemisphere, 1 ≤ i ≤ 3. For 3-hemisphere, we require Ho ⊂ Mh .

– A 3-bihedron in M̌h is a compact subset B in M̌h so that Bo ⊂ Mh anddevh |B is an
embedding to a compact convex set K so that ∂K is the union of two 2-hemispheres
with the identical boundary great circle.

2.5.2 2-Convexity and Covers

A tetrahedron in M̌h is a compact subset T so that devh |T is an embedding to a
tetrahedron in an affine space in S

3. A face of T is a corresponding subset of devh(T ).
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Proposition 4 (Proposition 4.2 of Choi 1999) A connected compact real projective
3-manifold M is 2-convex if and only if for every tetrahedron T in M̌h with faces Fi ,
i = 0, 1, 2, 3, such that T o ∪ F1 ∪ F2 ∪ F3 ⊂ Mh, T is a subset of Mh.

2.5.3 Crescents and Two-Faced Submanifolds

A hemispherical 3-crescent is a 3-hemisphere H in M̌h so that Ho ⊂ Mh , and a 2-
hemisphere in ∂H is a subset of the ideal set Mh,∞. We define αR for a hemispherical
3-crescent R to be the union of all open 2-hemispheres in ∂R ∩ Mh,∞. We define
IR = ∂R − αR .

Remark 2 The results of Choi (1999) are true when the manifold-boundary ∂M is
convex. This is not proved there. However, it is straightforward to generalize.

By Proposition 6.2 of Choi (1999) or by its M̌h-version, given two hemispherical
3-crescents R and S in M̌h , the exactly one of the following holds:

– R ∩ S ∩ Mh = ∅,
– R = S, or
– R ∩ S ∩ Mh is a union of common components of IR ∩ Mh and IS ∩ Mh .

The components of IR∩Mh as in the last case are called copied components of IR∩Mh .
The union of all copied components in Mh , a pre-two-faced submanifold of type I,
is totally geodesic and covers a compact embedded totally geodesic 2-dimensional
submanifold in Mo

h by Proposition 6.4 of Choi (1999). The submanifold is called the
two-faced submanifold of type I (arising from hemispherical 3-crescents).

Remark 3 The components of a two-faced submanifold of type I all develop to a same
2-sphere in S

n . However, this sphere may not really be lifted in M̌h in a one-to-one
manner.

Note it is possible that the two-faced submanifold of type I may be empty, i.e., does
not exist at all.

The splitting along a submanifold A is given by the Cauchy completion Ms of
M − A of the path metric obtained by using an ordinary Riemannian metric on M and
restricting to M − A.

A bihedral 3-crescent is a 3-bihedron B in M̌h so that Bo ⊂ Mh and a 2-hemisphere
in ∂B is a subset of Mh,∞. If they are not contained in a hemispherical 3-crescent,
then we say that they are pure. For a bihedral 3-crescent R, we define αR as the
open 2-hemisphere in ∂R ∩ Mh,∞. We define IR := ∂R − αR , a 2-hemisphere. For a
3-crescent R, we define the interior of R as Ro = R − IR − αR .

We say that two 3-crescents R and S overlap if Ro ∩ S �= ∅, or equivalently
Ro ∩ So �= ∅. We say that R ∼ S if there exists a sequence of 3-crescents

R1 = R, R2, . . . , Rn = S where Ri ∩ Ro
i+1 �= ∅ for i = 1, . . . , n − 1.

We say that two bihedral 3-crescents R and S intersect transversely if

– IS ∩ IR is a segment with endpoints in ∂ IS and ∂ IR ,
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– IS ∩ R is the closure of a component of IS − IR , and
– R ∩ S is the closure of a component of R − IS .

In this case, αS ∪αR is a union of two open 2-hemispheres meeting at an open convex
disk αS ∩ αR . Thus, they extend each other. (See Chapter 5 of Choi 1999).

Proposition 5 We assume as in Theorem 2. Suppose that two bihedral 3-crescents R
and S in M̌h overlap. Then R and S either intersect transversely or R ⊂ S or S ⊂ R.
Moreover, devh |R ∪ S is a homeomorphism to its image devh(R) ∪ devh(S) where
devh(αR) and devh(αS) are 2-hemispheres in the boundary of a 3-hemisphere H.

Proof This is a restatement of Theorem 5.4 and Corollary 5.8 of Choi (1999). �


Assuming that there is no hemispherical 3-crescent in M̌h , we define as in Chapter
7 of Choi (1999)

Λ(R) :=
⋃

S∼R

S, δ∞Λ(R) :=
⋃

S∼R

αS,

Λ1(R) :=
⋃

S∼R

(S − IS), δ∞Λ1(R) := δ∞Λ(R). (2.1)

We showed in Chapter 7 of Choi (1999) devh |Λ(R) maps into a 3-hemisphere H and
devh |δ∞Λ(R) is an injective local homeomorphism to ∂H (see also Corollary 5.8 of
Choi 1999).

Given a subset A of M̌h , we define intA to be the interior of A in M̌h . We define
bdA to be the topological boundary of A in M̌h . By Lemma 7.4 of Choi (1999), there
are three possibilities:

– if intΛ(R)∩Λ(S)∩ Mh �= ∅ for two bihedral 3-crescents R and S, then Λ(R) =
Λ(S),

– Λ(R) ∩ Λ(S) ∩ Mh = ∅, or
– Λ(R) ∩ Λ(S) ∩ Mh ⊂ bdΛ(R) ∩ bdΛ(S) ∩ Mh .

In the third case, the intersection is a union of common components of bdΛ(R) ∩ Mh

and bdΛ(S) ∩ Mh . We call such components copied components. These are totally
geodesic and properly embedded in Mh . The union of all copied components in Mh , a
pre-two-faced submanifold of type II, covers a compact embedded totally geodesic 2-
dimensional submanifold in Mo by Proposition 7.6 of Choi (1999). The submanifold
is called the two-faced submanifold of type II (arising from bihedral 3-crescents).

2.5.4 Concave Affine Manifolds After Splitting

Let Ms denote the 3-manifold obtained from M by splitting along the two-faced
submanifold of type I. A cover Ms

h of Ms can be obtained by splitting along the
preimage of the two-faced submanifold of type I in Mh and taking a component for
every component of Ms and taking the union of these. For each component A of Ms

h ,
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let ΓA denote the subgroup of Γh of elements acting on Ao. Then ΓA extends to a deck
transformation group of A. We define Γ s

h the product group

∏

A∈C
ΓA for the set C of chosen components in Ms

h .

Again Ms
h has a developing map devsh : Ms

h → S
3, an immersion, and Ms

h → Ms is

a holonomy cover with the deck transformation group Γ s
h . There is a map Ms

h → M̌
by identifying along the splitting submanifolds. We can easily see that the Kuiper
completion M̌s

h contains a hemispherical 3-crescent if and only if M̌h does. Also, the

set of hemispherical 3-crescents of M̌s
h is mapped in a one-to-one manner to the set of

those in M̌h by taking the interior of the hemispherical 3-crescent in M̌s
h and sending

it to M̌h and taking the closure. Now M̌s
h does not have any copied components. (See

Chapter 8 of Choi 1999).

Definition 2 A connected compact real projective manifold with totally geodesic
boundary covered by R ∩ Ms

h for a hemispherical 3-crescent R is said to be a concave
affine manifold of type I in Ms .

LetH be the set of all hemispherical 3-crescents in Ms
h . The union

⋃
R∈H R ∩ Ms

h
covers a finite union K of mutually disjoint concave affine manifolds of type I in Ms .
Then Ms − Ko = M (1) is a compact real projective manifold with convex boundary.
The cover M (1)

h of M (1) is Ms
h with all points of hemispherical 3-crescents removed

from it. Then M̌ (1)
h has no hemispherical 3-crescent. (See p. 80–81 of Choi 1999.)

Now, we look at M (1) only. We split M (1) along the two-faced submanifold of type
II if it exists. Let M (1)s denote the result of the splitting. Also, the set of bihedral
3-crescents of M̌ (1) is mapped in a one-to-one manner to the set of those in M̌ (1)s

by taking the interior of the bihedral 3-crescent and sending it to M (1)s and taking
the closure. (See Chapter 8 of Choi 1999). Now M̌ (1)s

h does not have any copied

components. For a bihedral 3-crescent R in M̌ (1)s
h , Λ(R) ∩ M (1)s

h covers a compact

3-manifold with concave boundary in M (1)s
h . (See p. 81–82 of Choi 1999.)

Definition 3 Suppose that M̌h does not contain a hemispherical 3-crescent. Let R be a
bihedral 3-crescent in M̌h . IfΛ(R)∩Mh covers a compact real projective submanifold
N , then N is called a concave affine manifold of type II.

A concave affine manifold of type I or II is called a concave affine manifold. See
Chapter 8 of Choi (1999) as a reference of results stated here.

3 Concave Affine 3-Manifolds

In this section, we will prove Theorems 6, 7 and 8. The first one shows that the non-
π1-injective two-faced submanifolds of type I or type II cannot happen in general. In
the second and third ones, we will show that a concave affine manifold of type I or
type II with compressible boundary contains a toral π -submanifold.
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3.1 A Concave Affine Manifold Has No Sphere Boundary Component

Theorem 5 Let N be a concave affine manifold of type I or II. Then no component of
∂N is covered by a sphere.

Proof If N is a concave affine manifold of type I, then N is covered by Ñ = Ro ∪
(IR ∩ Nh) for a hemispherical 3-crescent R. Since IR ∩ Nh is a planar open surface
in IR , the conclusion follows.

Suppose now that there is no hemispherical 3-crescent inMh . Hence, all 3-crescents
are pure bihedral 3-crescents. Then N is covered by Λ(R) ∩ Mh for a bihedral 3-
crescent R. Let A be a component of bdΛ(R) ∩ Mh homeomorphic to a sphere. We
know that A is mapped into a convex surface in M − No under the covering map. If A
is totally geodesic, then A is tangent to IS ∩ Mh for a crescent S in Λ(R). Hence, A is
a subset of IS ∩ Mh , each component of which is not compact. This is a contradiction.

Suppose that each point x of A has some open geodesic segment in A containing
x . Since A is convex, x is on a unique maximal geodesic in A or is in a 2-dimensional
totally geodesic surface in A. Since A is convex, a geodesic segment in A must end at
the boundary of A. This implies that A is not compact, a contradiction.

Hence, there must be a point y where A is strictly concave. (See Appendix 1 for
definition.) This contradicts Theorem 11 in Appendix 1. �


3.2 Non-�1-Injective Two-Faced Submanifolds

Lemma 8 Let Mh be a holonomy cover of a connected compact real projective man-
ifold M with convex boundary. Let Ã1 be a properly embedded two-sided surface in
Mh covering a compact surface A1. If Ã1 is a disk, then the inclusion map A1 → M
induces an injective homomorphism π1(A1) → π1(M).

Proof The deck transformation group Γ Ã1
injects into the deck transformation group

Γh . Since Ã1 is a disk, Γ Ã1
is isomorphic to the fundamental group π1(A1) of A1.

Hence, the result follows. �

Theorem 6 implies that two-faced submanifolds are π1-injective unless M is an

affine Hopf 3-manifold.

Theorem 6 Suppose that M is a connected compact real projective 3-manifold with
empty or convex boundary and M is neither complete affine nor bihedral. Let S be
a component of a two-faced submanifold of type I or type II in M. Then either S is
π1-injective in M or M is an affine Hopf 3-manifold.

Proof (I) Let A1 be a component of the two-faced submanifold of type I. A component
Ã1 of IR ∩ Mh for a hemispherical 3-crescent R covers A1. If Ã1 is simply connected
and planar, then Ã1 is a disk. By Lemma 8, A1 is π1-injective in M , and we are done
here.

Let Γ1 denote the deck transformation group of Ã1 in Γh so that Ã1/Γ1 is compact
and diffeomorphic to A1. Now assume that A1 is non-π1-injective in M . By the above
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paragraph, the planar surface Ã1 contains a simple closed curve c1 not bounding a
disk in Ã1.

By Corollary 4 for dimension n = 2, Ã1 is projectively diffeomorphic toR
2−{O}.

Since Ã1 ⊂ I oR , we obtain

Ã1 = IR − {x} for x ∈ I oR .

Since Ã1 covers a component of the two-faced submanifold, Ã1 is a component of
IS ∩ Mh for a hemispherical 3-crescent S where

R ∩ S ∩ Mh = Ã1.

Since Cl(αS) ∪ Cl(αR) ⊂ M∞ bounds the compact domain R ∪ S in M̌h , we
obtain Ro ∪ So ∪ Ã1 = Mh . Now, devh |Ro ∪ I oR − {x} and devh |So ∪ I oS − {x} are
homeomorphisms to their images. Thus, devh |Mh is a homeomorphism to the image

devh(R)o ∪ devh(S)o ∪ devh(I oR) − devh(x).

Since devh(x) is an isolated boundary point, we are finished in this case by Corollary
4.

(II) Let A1 be a component of a two-faced submanifold of type II in M that is
non-π1-injective. Now, we assume that M̌h has no hemispherical 3-crescent. Then as
in case (I), its cover Ã1 is a component of IR ∩ Mh for a bihedral 3-crescent R and
contains a simple closed curve not contractible in Ã1. By Corollary 4, we obtain that
Ã1 = I oR − {x} for a bihedral 3-crescent R.

Since Ã1 is in a pre-two-sided submanifold, we obtain that IR ⊂ IS for another
bihedral 3-crescent S so that So ∩ Ro = ∅. It follows that

I oR − {x} = I oS − {x} and hence IR = IS .

Since Cl(αR)∪Cl(αS) ⊂ Mh,∞ forms the boundary of R∪ S, and Mh is disjoint from
it,

Mh = Ro ∪ So ∪ I oR − {x}

holds. Hence, devh is an embedding to devh(Ro)∪devh(So)∪devh(I oR −{x}). Since
devh(x) is an isolated boundary point, Corollary 4 implies the result in this case. �

Lemma 9 Let Ω1 be a connected open surface in Mh with devh(Ω1) bounded in an
affine space Ho for a 2- or 3-hemisphere H. Let G be a discrete subgroup of Γh acting
properly discontinuously and freely on Ω1, and hh |G is injective with hh(G) acting
on H. Then Ω1/G is noncompact.

Proof Let H1 be the intersection of the spanning great sphereΩ1 with H . SinceG acts
on H1, G acts as a group of affine transformations on the affine 2- or 3-space Ho

1 . Let
F be the compact fundamental domain ofΩ1. The closure Cl(devh(Ω1)) is a compact
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bounded subset of Ho
1 . The convex hullC1 of Cl(devh(Ω1)) in Ho

1 is a bounded subset
of Ho

1 . And hh(G) acts on it and fixes the center of mass m of C1. Since hh(G) acts
on some convex domain and its interior point, hh(G) is a group of bounded affine
transformations fixing m. Since hh(G) is a finite group being discrete, we choose a
hh(G)-invariant Euclidean metric dHo

1
on Ho

1 . LetU be an open ε-dHo
1
-neighborhood

of F in Ω1. We choose sufficiently small ε so that U ⊂ Ω1.
Since Ω1 is open, there exists a sequence {yi } exiting all compact sets in Ω1 even-

tually. There exists gi ∈ G such that gi (yi ) ∈ F . By taking a subsequence, we may
assumedevh(yi ) → y ∈ Ω1 and y is in the boundary ofdevh(Ω1), i.e., y /∈ devh(Ω1).
Then g−1

i (F) � yi . Since devh(yi ) → y, hh(g
−1
i ) is an isometry group fixing m, and

Ω1, y ∈ Ω1, is properly embedded, it follows that

devh(Ω1) ⊃ devh(g
−1
i (Uo)) = hh(g

−1
i )(devh(Uo)) � y for sufficiently large i,

which is a contradiction. �


3.3 Concave Affine Manifolds and Toral�-Manifolds

Definition 4 Let S1 and S2 be two crescents in M̌h so that IS1 ∩ Mh and IS2 ∩ Mh

intersect and are tangent but devh(S1)o ∩ devh(S2)o = ∅. In this case S1 and S2 are
said to be opposite.

Definition 5 Let M be a compact connected real projective manifold that is neither
complete affine nor bihedral, and let Mh be the holonomy cover of M . Assume that M
has no two-faced submanifolds. Let R be a hemispheric 3-crescent with IR ∩ Mh =
I oR − {x} for x ∈ I oR . Then a compact submanifold P covered by R ∩ Mh is called a
toral π -submanifold of type I.

Suppose that M̌h has no hemispheric crescent. GivenΛ(R) for a bihedral 3-crescent
R, we define the set CR,x for x ∈ S

3 as follows:

CR,x := {R′|R′ ∼ R, ∃g ∈ Γh, g(R) = R, hh(g)(x) = x,devh(I oR′) � x} �= ∅.

Let Λ′(R) be
⋃

R′∈CR,x
R′ whenever CR,x is not empty and

δ∞Λ′(R) :=
⋃

S∈CR,x

αS .

Then Λ′(R) develops into a 3-hemisphere H , and δ∞Λ′(R) develops to an open disk
in ∂H for a 3-hemisphere H by Chapter 7 of Choi (1999). Suppose that Λ′(R) ∩ Mh

covers a compact radiant affine 3-manifold P with boundary compressible into itself.
Then P is said to be a toral π -submanifold of type II.

Theorems 7 and 8 characterize the concave affine 3-manifolds with boundary com-
pressible into M . One consequence is that the fundamental group is virtually infinite
cyclic.
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Theorem 7 Let M be a connected compact real projective 3-manifold with empty or
convex boundary. Suppose that M is neither complete affine nor bihedral. Assume that
M has no two-faced submanifold of type I.

Let N be a concave affine 3-manifold of type I in M with nonempty boundary ∂N
compressible into M. Then N has a unique compressible boundary component A, and
N is a toral π -submanifold P of type I.

Proof Let N be a concave affine 3-manifold of type I in M . Then F ∩ Mh covers N
for a hemispherical 3-crescent F . Let ΓN denote the subgroup of Γh acting on F ∩Mh

as the deck transformation group of the covering map to N .
Let Ã1 denote a compressible component of IF ∩ Mh . By Lemma 8, Ã1 is not

simply connected. By Corollary 4 for dimension n = 2,

Ã = I oF ∩ Mh = I oF − {x}

holds. Thus,

Nh = F ∩ Mh = Fo ∪ I oF − {x}

is homeomorphic to D2 × R, and N is covered by D2 × S
1 by Lemma 1. By Dehn’s

lemma, we can obtain a compressing disk with boundary in ∂N . This shows that N is
finitely covered by D2 × S

1. Thus, N is a toral π -submanifold. �

We will prove Theorem 8 from here to the end of this Sect. 3.3, and hence the

premises of Theorem 8 are in effect to the end of Sect. 3.3:

Theorem 8 Let M be a connected compact real projective 3-manifold with empty or
convex boundary. Suppose that M is neither complete affine nor bihedral. Let Mh be
the holonomy cover of M. Suppose that M̌h has no hemispherical 3-crescent. Assume
that M has no two-faced submanifold of type II.

Let N be a concave affine 3-manifold of type II with boundary ∂N compressible
into M. Then one of the following holds:

– M is an affine Hopf 3-manifold, or
– N has a unique boundary component A compressible into N, and N contains a
maximal toral π -submanifold P of type II. Furthermore, the following holds:

– Let Nh ⊂ Mh be a component of the inverse image of N. The inverse image of
P in Nh meets the interior of any 3-crescent in the Kuiper completion Ňh of
Nh. The fundamental group of N is virtually infinite-cyclic.

– Let R be a 3-crescent in Cl(Nh) in M̌h. Then R is a bihedral 3-crescent and
devh |Λ1(R) is a homeomorphism to H − K for a properly convex compact
domain K in a 3-hemisphere H with K ∩ ∂H �= ∅.

A toral π -submanifold is maximal if no toral π -submanifold of type II contains it
properly.

Let Nh denote a component of the inverse image of N in Mh as in the premise.
Suppose that we obtain a bihedral 3-crescent R in Ňh so that a deck transformation

g acts on Ro ∪ I oR − {x} ⊂ Nh properly. We call such a bihedral 3-crescent a toral
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bihedral 3-crescent and the deck transformation acting on Ro∪ I oR −{x} an associated
deck transformation.

This proof is fairly long. We give the following outline:

(II) Concave affine 3-manifolds of type II.

(A) There exist three mutually overlapping bihedral 3-crescents in Λ(R) for a
bihedral 3-crescent R in M̌h .
(i) There is a pair of opposite bihedral 3-crescents in Λ(R). By Lemma 10,

M is covered by an affine Hopf 3-manifold finitely. (See Sect. 3.3.2.)
(ii) Otherwise, devh |Λ1(R) is a homeomorphism to H − K for a properly

convex domain K and a 3-hemisphere H containing K , andΛ(R) contains
a toral bihedral 3-crescent. Lemma17 gives us a toralπ -submanifold. (See
Sects. 3.3.3 and 3.3.4.)

(B) Otherwise, all bihedral 3-crescents R have devh(IR) containing a fixed pair
of points q, q−. Then Λ(R) is a union of segments from q to q−. (See Sect.
3.3.5.)
(i) A closed curve in a component A1 of bdΛ(R) ∩ Mh bounds a disk in the

union A1,+ of lines from q to q− passing A1. Here, the situation is similar
to (A)(i), and we use Lemma 17. (See Sect. 3.3.6.)

(ii) Otherwise, A1,+ is an annulus. We show that this case does not happen.
(See Sect. 3.3.7.)

3.3.1 Case (II)

Let N be a concave affine 3-manifold of type II in M . We assume that there is no
hemispherical 3-crescent in M̌h . Then N is covered by Λ(R) ∩ Mh for a bihedral
3-crescent R in M̌h . Let ΓN denote the subgroup of Γh acting on Λ(R) ∩ Mh as the
deck transformation group of the covering map to N . Recall that

devh(Λ(R)) ⊂ H ,devh(δ∞Λ(R)) ⊂ ∂H

for a 3-hemisphere H ⊂ S
3. (See Corollary 5.8 of Choi 1999).

(II)(A) Suppose that there exist three mutually overlapping bihedral 3-crescents
R1, R2, and R3 with {IRi |i = 1, 2, 3} in general position.

(II)(B) Suppose that there exist no such triple of bihedral 3-crescents.

See Fig. 4. We will defer (II)(B) to Sect. 3.3.5.
Now assume (II)(A). By modifying the proofs of Lemma 11.1 and Proposition 11.1

of Choi (2001) for bihedral 3-crescents, which are not necessarily radiant as in the
paper, we obtain that

devh : Λ1(R) → H − K and

devh |Λ1(R) ∩ Mh : Λ1(R) ∩ Mh → Ho − K (3.1)

are homeomorphisms for a 3-hemisphere H and a nonempty compact properly convex
set K . (See (2.1) for definition of Λ1(R). For Lemma 11.1 and Proposition 11.1 of

123



Convex and Concave Decompositions of Affine 3-Manifolds

Fig. 4 The image of transversal intersections of three 3-crescents under the orthogonal projection from the
3-hemisphere in S

3 containing their images under dev

Choi (2001), we do not need IR for each bihedral 3-crescent to contain the origin.
There is a mistake in the third line of the proof of Lemma 11.1 of Choi (2001). We
need to change P1∩ L1 and P1∩ L2 to P1∩ L2 and P1∩ L3 respectively). The general
position property of IRi , i = 1, 2, 3, implies that K is properly convex. Also, (3.1)
implies that hh |ΓN is injective.

We collect some facts from the above paragraph:

– devh(αR′) ⊂ ∂H for R′ ∼ R.
– bdΛ1(R) ∩ Mh is mapped into bdK under devh .
– hh(ΓN ) is an affine transformation group of Ho since it acts on an affine space Ho

as a projective automorphism group.

We can have two possibilities:

(II)(A)(i): Suppose that there exist two opposite bihedral 3-crescents S1, S2 ∼ R.
(II)(A)(ii): There are no such bihedral 3-crescents.

3.3.2 Case(II)(A)(i)

Here, we will show that M is an affine Hopf 3-manifold. The following finishes the
proof of Theorem 8 for the case (A)(i).

Lemma 10 Suppose that there exist two bihedral 3-crescents S1, S2 in M̌h so that
IS1 ∩ Mh and IS2 ∩ Mh intersect and are tangent but devh(S1)o ∩ devh(S2)o = ∅.
Assume S1, S2 ∼ R, and (II)(A)(i). Then there exists a unique component of ISi ∩ Mh

equal to I oSi − {x} for a point x of I oSi , i = 1, 2, and M is an affine Hopf 3-manifold.

Proof First, IS1 ∩ Mh and IS2 ∩ Mh meet at the union of their common components
since such a component is totally geodesic and complete in Mh and they are tangent.
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Let K ′ denote the inverse image in bdΛ1(R) of K . At least one component A1 of
I oS1 ∩Mh contains I oS1 − K ′ for a properly convex compact set K ′ by (3.1). Since A1 is
also in I oS2 ∩Mh , it follows that A1 is a common component of I oS1 ∩Mh and I oS2 ∩Mh .
By the classification of the affine 2-manifolds (see Nagano and Yagi 1974 and Benoist
2000), the only possibility is

A1 =
{
I oS1 or

I oS1 − {x}, x ∈ I oS1 .

In the first case, we obtain that

devh(Λ1(R) ∩ Mh) = Ho and

∂H = Cl(αS1) ∪ Cl(αS2) ⊂ M̌h,∞.

Hence,Mh is projectively diffeomorphic to the complete affine spacewhich contradicts
a premise of Theorem 8, which we are proving here.

Now suppose that A1 = I oS1 − {x}. Since

Cl(αS1) ∪ Cl(αS2) ⊂ Mh,∞,

So1 ∪ A1 ∪ So2 is homeomorphic to S
2 × R and Mh = So1 ∪ A1 ∪ So2 . Since S1 and S2

are mapped into the closures of two different components of S
3 − S

2 respectively,

devh |So1 ∪ A1 ∪ So2

is an embedding onto its image by geometry. Since devh(x) is an isolated boundary
point, Corollary 4 implies the result that M is an affine Hopf manifold. �


3.3.3 Case (II)(A)(ii)

From now on, we assume that M is not an affine Hopf 3-manifold. In this case,
Ko is a nonempty properly convex open domain, and bdΛ(R) ∩ Mh is mapped into
bdK : otherwise, dim K ≤ n − 1 and K is a subset of a hyperspace V . Then the two
components of Ho − V lift to open 3-cells in Λ(R)o by (3.1). The closures of two
cells in Λ(R) are bihedral 3-crescents again by (3.1). The two crescents are opposite.
Thus, we are in case (i), a contradiction.

By Lemma 11 and (3.1), we have bdΛ1(R) ∩ Mh = bdΛ(R) ∩ Mh . For following
Lemma 11, we do not need to assume (II)(A) and K needs not to be properly convex.

Lemma 11 Let M be as in Theorem 8 with a concave affine 3-manifold N with com-
pressible boundary in M. Assume that M is not an affine Hopf 3-manifold. Suppose
that devh |Λ1(R) is a homeomorphism to H − K for a compact convex domain K .
Then bdΛ1(R) ∩ Mh = bdΛ(R) ∩ Mh, and the interior of K is an open domain in
Ho.
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Proof Since for each crescent S, So is dense in S, we obtain

bdΛ(R) ∩ Mh ⊂ bdΛ1(R) ∩ Mh .

Given a point x ∈ bdΛ1(R), choose a convex open neighborhood B(x) ⊂ Mh with
devh |B(x) is an embedding. B(x) ∩ So for a crescent S, S ∼ R, is the closure of a
component of B(x) − IS ∩ B(x) for a totally geodesic disk IS ∩ B(x) with boundary
in B(x) since αS is disjoint from B(x). (See Choi 1999.) The set B(x) − Λ1(R) is
a convex set K ′′ in B(x). Since devh(Λ1(R)) is a homeomorphism to H − K by a
premise,

– devh(x) ∈ K ,
– devh |B(x) ∩ Λ1(R) is an embedding to devh(B(x)) − K , and hence
– devh |B(x) − Λ1(R)(= K ′′) is an embedding to devh(B(x)) ∩ K .

Suppose that K ′′ has the empty interior. So doesdevh(B(x))∩K . Sincedevh(B(x))
is a convex open ball,

devh(K ′′) = devh(B(x)) ∩ K

has the empty interior. Thus, K has the empty interior since Ko is dense in K . Since
devh(B(x)) ∩ K �= ∅, there is a proper subspace P such that K ⊂ P ∩ H and
Ho − P is in a union of two bihedrons disjoint from K . The inverse image of these in
Λ1(R) are also bihedrons by a premise. We take closures. Then we have an opposite
pair of bihedral 3-crescents with the interiors of the images disjoint from P . This is a
contradiction by Lemma 10.

Hence, K ′′ and K have nonempty interiors. The interior of K is disjoint from
devh(T ) for any crescent T , T ∼ R since otherwise

devh(T o) ∩ Ko �= ∅ while Ko ∩ devh(Λ1(R)) = ∅.

Thus, K ′′o ∩ Λ(R) = ∅, and x ∈ bdΛ(R). �

Lemma 12 Assume as in Lemma 11. Then K is an unbounded subset of an affine
space Ho. Moreover, K ∩ ∂H is a nonempty compact convex set, and bdK ∩ Ho is
homeomorphic to a disk.

Proof Suppose that K is a bounded subset of Ho. Then devh |Λ1(R) is a homeo-
morphism to H − K by (3.1). By Theorem 5, components of bdΛ(R) ∩ Mh =
bdΛ1 ∩ Mh by Lemma 11 are not homeomorphic to the 2-sphere or the projective
plane. bdΛ1(R)∩Mh is mapped into a surface in ∂K . Since themap cannot be onto the
sphere ∂K , there exists a noncompact component A1 of bdΛ(R)∩ Mh = bdΛ1 ∩ Mh

covering a closed surface B1. By Lemma 9, this is a contradiction as hh |ΓN is injec-
tive by (3.1). Hence, K is unbounded in Ho. Since bdK ∩ Ho is the complement of a
compact cell K ∩ ∂H , the final statement follows (Fig. 5). �
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Fig. 5 The diagram for H , K
and c1 ⊂ bdK for the case
(II)(A)(ii)

H

K

g

3.3.4 Case (II)(A)(ii) Continued: Obtaining a Toral Bihedral 3-Crescent

The next step is to show that devh |Λ(R) : Λ(R) → H is injective.
If each component of bdΛ(R) ∩ Mh is simply connected, then each component

is a disk by Theorem 5. By Lemma 8, these components are π1-injective. Hence, a
component A1 of bdΛ(R)∩Mh is not simply connected. bdK ∩Ho is homeomorphic
to a disk by Lemma 12. Since A1 is not simply connected, there exists a simple closed
curve c1 ⊂ A1 so that devh(c1) bounds a disk D1 in bdK ∩ Ho. By Lemma 11, the
premises of Lemma 13 hold. By Lemmas 13 and 17, N contains a toralπ -submanifold.
This finishes the proof of Theorem 8 for the case (II)(A)(ii).

Lemma 13 Assume as in Lemma 11. Let S be a properly embedded disk in Ho that is
the boundary of a convex domain K as in Lemma 11. Suppose that

bdΛ(R) ∩ Mh = bdΛ1(R) ∩ Mh

ismapped into S. Let A1 be a non-simply connected relatively open subset in bdΛ(R)∩
Mh containing a curve c1 so that devh(c1) bounds an open disk D1 in S. Then the
following hold:

– devh |Λ(R) : Λ(R) → H is injective.
– bdΛ(R) ∩ Mh has a unique component.
– Λ(R) contains a toral bihedral 3-crescent RP .
– The fundamental group of N is virtually infinite cyclic.

Proof LetΓ1 be the subgroup ofΓN acting on A1 cocompactly. There exists an element
g ∈ Γ1 such that hh(g)(devh(c1)) ⊂ D1∩devh(A1) by Lemma 7. Also, hh(g)(D1) ⊂
D1 since the external component of S − devh(c1) is not homeomorphic to a disk. By
(3.1), Λ1(R) is homeomorphic to Ho − K , a cell. We find an open disk D′

1 in Λ1(R)

that forms the interior of a compact disk D′′
1 with boundary c1 in bdΛ(R) ∩ Nh .

Then a component of Λ(R) ∩ Nh − D1 is a bounded domain B1 where Bo
1 is a cell.

Since the group action is proper, and D′′
1 in Nh is compact, we obtain g ∈ Γ1 where

g(B1 ∪ D′′
1 ) ⊂ B1 by Lemma 7. Thus, we can find a fixed point x in Cl(K ) for g

by the Brouwer fixed-point theorem. We can verify the premises of Proposition 8 in
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Appendix 1 for devh(D′′
1 ) by using a supporting hyperplane at x since K is convex

and the boundary of devh(D′′
1 ) is in K . Proposition 8 in Appendix 1 implies that x is

the fixed point of the largest norm eigenvalue of hh(g) and the global attracting fixed
point of hh(g)|Ho.

Now, we prove the injectivity of devh |Λ(R): let x j , j = 1, 2 be points of Λ(R).
Let R1, R2 ∼ R be two bihedral 3-crescents where x j ∈ R j , j = 1, 2. We may
assume that devh(R j ) meets devh(bdΛ1(R)) − ∂H by taking the maximal bihedral
3-crescents. Then hh(g)i (devh(R j )) meets a neighborhood of x for sufficiently large
i by (3.1). Since devh(gi (IR1)) and devh(gi (IR2)) are very close containing nearby
points for sufficiently large i and supporting a properly convex domain Ko, we obtain
that devh(gi (R1)) and devh(gi (R2)) meet in the interior. By (3.1), we obtain (3.1),

gi (R1)
o ∩ gi (R2) �= ∅

for sufficiently large i and hence

Ro
1 ∩ Ro

2 �= ∅.

By Theorem 5.4 and Proposition 3.9 of Choi (1999), devh |R1∪ R2 is injective. There-
fore, devh |Λ(R) is injective. This proves the first item.

Since devh |Λ(R) ∩ Mh is injective, the restriction of an immersion

devh |Cl(K ) ∩ bdΛ(R) ∩ Mh

is a homeomorphism to its image Y in bdK . The set Y is an open surface. Then
Y/hh(ΓN ) is a union of closed surfaces. Let Y1 be the image of A1. Y1/hh(Γ1) is a
connected closed surface homeomorphic to A1/Γ1.

Since devh(x) is a unique attracting fixed point of hh(g) in Ho, hh(g)i (c1) goes into
an arbitrary neighborhood of devh(x) in bdK for sufficiently large i . hh(g)i (c1) goes
into an arbitrary tubular neighborhood of bdK ∩ ∂H in bdK for sufficiently small
negative number i . Using i and −i for large integer i , hh(g)i (c1) and hh(g)−i (c1)
bound a compact annulus in bdK ∩ Ho. If there is a component Ỹ j of Y ⊂ bdK
other than devh(A1), then it lies in one of the annuli, a bounded subset of Ho, and Ỹ j

covers a compact surface Y j for some j . By Lemma 9, this is a contradiction. Thus,
bdΛ(R) ∩ Mh has a unique component.

Since hh(g)i (c1) are disjoint from QK and 〈hh(g)〉 acts on QK := S − devh( Ã1),
the set QK is either {devh(x)} or a closed set with infinitely many components. We
obtain QK = {devh(x)} by Lemma 14 and

(bdK − {devh(x)}) ∩ Ho = devh(A1). (3.2)

Since ΓN acts faithfully, properly discontinuously, and freely on an annulus A1, ΓN

is virtually infinite-cyclic. The existence of g shows that the hh(ΓN ) fixes the unique
point devh(x) corresponding to one of the ends. This proves the fourth item.

Let Kx ⊂ S
2
x denote the subspace of directions of the segments with endpoints in

devh(x) and Ko. Obviously, Kx is a convex open domain in an open half-space of S
2
x .
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Our hh(g) acts on Kx , and S
2
x has a hh(g)-invariant great circle S

1 outside Kx as we
can deduce from the existence of Kx .

We take a union of maximal segments in devh(Λ(R)) from devh(x) in directions
in S

1. Their union is a 2-hemisphere P with boundary in ∂H , and devh(x) ∈ P .
We find an open bihedron B ⊂ H − K whose boundary contains an open 2-

hemisphere in ∂H and P . By taking the inverse (devh |Λ1(R))−1(B) and the closure,
we obtain a bihedral 3-crescent RP ⊂ Λ(R) with x ∈ IRP . By the first item, g acts
on RP , IP , and x .

The last step is to show that RP has the desired property. By our choice of Kx and
P , we obtain

devh(IRP )o − devh(x) ⊂ H − Ko.

By (3.2) and the first item, we obtain

I oRP
− {x} ⊂ A1 ∪ Λ1(R). (3.3)

Hence, I oRP
− {x} ⊂ Nh for our bihedral 3-crescent RP above. There is an element

g ∈ ΓN acting on Ro
P ∪ I oRP

− {x}. �


Lemma 14 Let S0 be a properly embedded disk or cylinder in H
o. Let Ã0 ⊂ S0 be a

connected open set covering a closed surface A0 with the deck transformation group
G1 also acting on S0 for G1 ⊂ Aut(Ho). Suppose that there exists a collection of
simple closed curves ci ∈ A0, i ∈ Z, so that for any end neighborhood of S0 there is
a component of S0 − ci in it. Then S0 − Ã0 cannot have infinitely many components.

Proof Suppose not. Then Ã0 is an open planar surface with infinitely many ends.
Giving an arbitrary complex structure on A0, the cover Ã0 admits a Koebe general
uniformization asCP1−Λ for a Cantor setΛ. (See Simha 1989.) That is A0 = Ã0/G1
is homeomorphic to a closed Schottky Riemann surface (CP1 − Λ)/Γ1 where Γ1 is
a group in PSL(2, C) isomorphic to G1. (See p. 77 of Marden (2007) for the proof.)
The set of the pairs of fixed points of elements of G1 are dense in Λ × Λ − Δ(Λ) for
the diagonal Δ(Λ) of Λ. (See Kulkarni 1978 or Theorem 2.14 of Apanasov 2000).
We can find a closed curve c in the surface Ã0/Γ1 so that c lifts to a curve c̃ ending at
two points k1 and k2 in Λ fixed by an element of Γ1.

On Ã0, simple closed curves bound end neighborhoods. We may assume that k1
corresponds to an end of Ã0 whose end neighborhood is bounded by a simple closed
curve d1, and k2 corresponds to an end of Ã0 whose end neighborhood is bounded by
a simple closed curve d2. We can choose ki for i = 1, 2 so that devh(di ) bounds an
open disk Di whose closure is compact in S0 since we can choose k1 and k2 arbitrarily.
We can choose disjoint disks D1 and D2.

Choose an orientation-preserving element gc ∈ Γ1 acting on c̃. Then

hh(g
n
c )(devh(d1)) ⊂ D2 for some n.
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By orientation considerations of how c̃ meets d1 and gnc (d1), we obtain

hh(g
n
c )(D − D1) ⊂ D2.

Since gc acts on ∂H , D − D1 has limit points in ∂H , and D2 has no limit points in
∂H , this is a contradiction. �


3.3.5 Case (B)

Again, we keep assuming that M is not an affine Hopf 3-manifold. Now suppose that
Λ(R) contains no triple of mutually overlapping bihedral 3-crescents Si , i = 1, 2, 3,
with devh(ISi ) in general position.

By induction on overlapping pairs of bihedral 3-crescents, we obtain that devh(IS)
for a bihedral 3-crescent S, S ∼ R, share a common point q ∈ ∂H and hence its
antipode q− ∈ ∂H . Then Λ(R) is a union of segments whose developing images
end at q, q−. The interior of such segments in Λ(R) is called a complete q-line. Also,
q-lines are subarcs of complete q-lines. bdΛ(R)∩Mh is foliated by subsets of q-lines.

Suppose that devh(IS) for S, S ∈ R, always have the same boundary circle. Then
Λ(R) is a union of bihedral 3-crescents S so that S ⊃ R or S ⊂ R by Proposition 5. It
is straightforward to show dev|Λ(S) is a diffeomorphism to a 3-bihedron, and hence
Λ(S) is a bihedral 3-crescent since we do not have hemispherical 3-crescent by the
premise of Theorem 8.

The premises of Lemma 11 are satisfied. By Lemmas 11, 12, and 13, we obtain a
toral bihedral 3-crescent. By Lemma 17, we obtain a toral π -submanifold from the
bihedral 3-crescent T .

Now assume otherwise. Then q is determined by Λ(R) uniquely, and hence the
group of deck transformations acting onΛ(R)∩Mh acts on {q, q−}. Let S2

q denote the
sphere of directions of complete affine lines from q, and let S

2
q have a standard Rie-

mannian metric of curvature 1. The space of q-lines inΛ1(R)∩Mh whose developing
image go from q to its antipode q− is an open surface SR with an affine structure. We
have a fibration

l → Λ1(R) ∩ Mh
ΠR→ SR (3.4)

where fibers are q-lines. The developing map devh induces an immersion devh,q :
SR → S

2
q . The surface SR develops into a 2-hemisphere Hq ⊂ S

2
q whose interior Ho

q
is identifiable with an affine 2-space. Denote by Πq : Ho → Ho

q the projection.

We give S
2
q a Fubini-Study metric. The Kuiper completion ŠR of SR has an ideal

subset c′ that is the image of bdΛ(R) ∩ Mh and a geodesic boundary subset corre-
sponding to δ∞Λ(R) and is mapped to ∂Hq . We denote the extension by the same
symbol devh,q : ŠR → S

2
q .

The subspace Nh := Λ(R) ∩ Mh covers a concave affine manifold in Mh . If each
component of ∂Nh = bdΛ(R) ∩ Mh is simply connected, then it is incompressible
by Theorem 5. Thus, there is a component A1 of bdΛ(R) ∩ Mh containing a simple
closed curve c that is not null-homotopic in A1.
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We will use the same notation devh for the extension of devh |Nh to Ňh . Let Lq

denote the set of complete q-lines l such that

l ⊂ R′′′ for R′′′ ∼ R, R′′′ ⊂ Ňh, and l ∩ A1 �= ∅.

We define

A1+ :=
⋃

l∈Lq

l.

We claim that A1+ is homeomorphic to the injective image of a topologically open
surface: recalling the surface SR above, we obtain a fibrationΠR : Λ1(R)∩Mh → SR
extending to Ňh → ŠR , to be denoted by ΠR again. ΠR maps A1+ to a set a1+ in the
ideal boundary of ŠR of SR . Since

– q-complete lines pass the open surface A1 foliated by q-arcs,
– devh,q |a1+ maps locally injectively to an embedded arc in Ho

q , and
– A1 is a surface,

it follows that a1+ is a locally injective open arc.
Suppose that two leaves l1 and l2 of A1+ go to the same point of an open arc α in

a1+ where devh,q |α is an embedding. Since l1 and l2 are fibers, there is a point ΠR(l)
in SR of d-distance < ε from the images ΠR(l1),ΠR(l2) of these lines in ŠR . Inside
Λ1(R), there exist paths of d-length < ε from l1 and l2 to any point of a common line
l in Λ1(R) corresponding to ΠR(l) by spherical geometry. Taking ε → 0 and l closer
to li , we obtain l1 = l2. Hence, we showed that A1+ fibers over a1+ locally.

This implies that A1+ is the image of an open surface. We give a new topology on
A1+ by giving a basis of A1+ as the set of components of the inverse images of open
sets in M̌h . Then A1+ is homeomorphic to a surface with this topology.

As above, A1 contains a simple closed curve c not homotopic to a point in A1.

c′′′ := ΠR(c) ⊂ a1+

is either a compact arc, i.e., homeomorphic to an interval or a circle (Fig. 6).
We divide into two cases:

(i) c′′′ is homeomorphic to an interval.
(ii) c′′′ is homeomorphic to a circle.

3.3.6 Case (B)(i)

Then c bounds an open disk D′ in the fibered space A1+. Let Γ1 be the subgroup of
ΓN acting on A1.We can use a similar argument to (II)(A)(ii): first, there exists g ∈ Γ1
so that g(c) is in D′ ∩ A1 by Lemma 7. Hence g fixes a point x in D′o that is a fixed
point on A1+ by the Brouwer fixed-point theorem. A1+ is either homeomorphic to
an annulus or a disk since A1+ is foliated by q-lines. We have g(D′ ∪ c) ⊂ D′ since
exactly one component of A1+ − g(c) is homeomorphic to a disk.
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Fig. 6 The diagram for two
cases (B)(i) and (B)(ii) where the
gray area indicates A1, and the
dotted lines the fibers of A1+. In
(B)(ii) we drew c partially but it
should be a closed curve and
A1+ should be an annulus

Let xq denote the complete q-line containing x in a1+. Let gq : ŠR → ŠR be the
induced map of g : Λ(R) → Λ(R). Recall the affine plane Ho

q . Consider xq as the
origin. Since the induced affine transformation

h(g)q |Ho
q : Ho

q → Ho
q

is not trivial,

– h(g)q has an isolated fixed point or
– has a line l of fixed points in Ho

q .

We consider the first case. Since g(c) is in the open disk in A1+ bounded by
c, a compact arc neighborhood of xq in a1+ goes into itself strictly under gq . It
must be that devh,q(xq) is the attracting fixed point under h(g)q . Thus, the local arc
devh,q(a1+) is the union

⋃
i≥0 h(g)−i

q (I ) for a small embedded open arc I in α1+
containing devh,q(xq). Since I is embedded, devh,q(a1+) is also an embedded arc.
By the classification of the infinite cyclic linear automorphism groups of Ho

q , we can
show that devh,q(a1+) is a properly embedded convex arc in Ho

q .
In the second case, h(g)q acts on lines parallel to l, or acts on a parallel set of lines

transversal to the line l as can be deduced from elementary linear algebra. The action
on devh,q(a1+) of h(g)q , its fixed point xq in Ho

q is locally isolated, or there is a
geodesic subarc of fixed points forming a neighborhood or a one-sided neighborhood
of xq in the local arc devh,q(a1+). A similar argument to the above paragraph will
show devh,q(a1+) is a properly embedded convex arc in Ho

q . We obtain the same fact
where we replace I with an ε-d-neighborhood of in the above paragraph.

123



S. Choi

Consider the commutative diagram

A1+
ΠR−→ a1+

↓ devh devh,q ↓
Ho Πq−→ Ho

q .

Since the left arrows of the above commutative diagrams are fibrations,

devh |A1+ : A1+ → Ho

is a proper embedding to Ho. Since devh,q(a1+) is a properly embedded convex arc,
A1+ is a properly embedded surface bounding a convex domain K in Ho.

We claim thatdevh : Λ1(R) → H is an embedding:devh |Ro∪αR is an embedding.
We can choose a crescent S so that

– S overlaps with R and devh(IS)o,
– S contains a generically chosen y ∈ A1, and
– the closure of the arc devh,q(αS) does not contain the endpoint of a1+.

Then for any crescent T overlapping with S, dev|So ∪ αS ∪ T o ∪ αT is an embedding
by Proposition 5. For any crescent T1 overlapping with T , since devh(αT1) is not
antipodal to devh(αS) by our choice,

devh |T o ∪ αT ∪ T o
1 ∪ αT1

is injective, T1 overlaps with S also. This implies that

devh |So ∪ αS ∪ T o ∪ αT ∪ T o
1 ∪ αT1

is injective. By induction, we obtain that devh |Λ1(R) is an embedding into H .
We obtain bdΛ1(R)∩ Mh = bdΛ(R)∩ Mh by Lemma 11. By Lemmas 13 and 17,

we obtain a toral π -submanifold from the bihedral 3-crescent T . This completes the
proof of Theorem 8 for case (B)(i).

3.3.7 Case (B)(ii)

This case does not occur; we show that Λ(R) is not maximal here:
The open surface A1+ is homeomorphic to an annulus foliated by complete affine

lines. Here, c is an essential simple closed curve. There exists an element g ∈ Γ1
sending c into a component U1 of A1 − c by Lemma 7. Replacing U1 by gi (U1) if
necessary, we may assume that g(U1 ∪ c) ⊂ U1. Then g is of infinite order.

We will use the many results of Sect. 3.3.5 in Sect. 3.3.7. We outline this Sect. 3.3.7
since it is complicated.

(a) First, we will show that ŠR is essentially Λ1(S) for a bihedral 2-crescent S, and
dev|Λ1(R) ∩ Mh is finite-to-one. (See Lemma 15.)
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(b) We will now determine the affine form of g to be a “translation with a transverse
orthogonal part”.

(c) We show A1+ = A1. Then we show that there is a 〈g〉-invariant neighborhood in
Mh using the property of g from (b). We show that Λ(R) is not maximal showing
us a contradiction.

(a) We can embed c′′′ into ŠR . Recall a fibration (3.4):

l → Λ1(R) ∩ Mh
ΠR→ SR (3.5)

where fibers are q-lines. ΠR extends to Λ1(R) → ŠR .
Step (a) is the following:

Lemma 15 We have SR = Λ(S) ∩ SR for a bihedral 2-crescent S in ŠR. Also, ŠR is
homeomorphic to a compact annulus with a boundary component c′′′ and a closed
curve in an arc δ∞Λ(S). Furthermore, devh |Λ1(R)∩Mh is finite-to-one to its image.

Proof The map ΠR sends the interior of a bihedral 3-crescent R′ to an open lune B ′
developing into a 2-hemisphere Hq ⊂ S

2
q as we discussed in Sect. 3.3.5 after (3.4).

Let S′ be the closure of B ′ in SR , which is a bigon with the union of two segments as
its boundary. (See Choi 1994.) Since S′ develops into Hq and one edge goes to ∂Hq ,
it follows that an edge of S′ is in the ideal boundary of the Kuiper completion. Hence,
S′ is a bihedral 2-crescent.

Let us choose one which we denote by S. We defineΛ(S) in ŠR as usual in Chapter
7 of Choi (1999) for the dimension two. Since ΠR(Λ1(R) ∩ Mh) = SR , every point
of SR is in a bihedral 2-crescent equivalent to S, we obtain the first equality.

The next step is showing that ŠR is compact:
We take for each point z of c′′′ a 2-dimensional crescent Sz so that z ∈ ISz , which

exists sincewe can go back toΛ(R) and corresponding points of c. Then
⋃

z∈c′′′ Sz∩SR
is a closed subset of Λ(S) ∩ SR since we can use a sequence argument and c′′′ is
compact. Using the fact that devh,q |c′′′ is a closed convex curve, we perturb the
crescent Sz by choosing different z, z ∈ c′′′. Consider developing images of crescents
of form Sz′ , z′ ∈ c′′′ and that of open disks in SR meeting Λ(S). We can show that
Λ(S) ∩ SR is also open in SR Hence, we have

⋃

z∈c′′′
Sz ∩ SR = Λ(S) ∩ SR and hence

⋃

z∈c′′′
Sz = Λ(S) = ŠR .

Recall that devh,q sends ŠR into a 2-hemisphere Hq . Since c is a compact arc,
devh,q |c′′′ is a map to a compact arc in Ho

q . For each Sz , we choose a segment sz in

Sz connecting z to a point of αSz . The complement ŠR − ⋃
z∈c′′′ sz is a disjoint union

of properly convex triangles each of which has a vertex in c′′′ and two edges from the
vertex to points of the closure of δ∞Λ(SR) and an edge in δ∞Λ(SR).

We cover each triangle by maximal segments from the vertex in c′′′. This corre-
sponds to blowing up c′′′ for the vertices of the triangles so that the segments are now
disjoint. The blown-up c′′′ is still homeomorphic to a compact circle since the set of
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directions of the segments from c′′′ form a compact set. We obtain a surface S′ foliated
by segments mapped to segments or segments for the triangles. Since c′′ is compact,
S′ is a compact surface. Hence, the image ŠR = Λ(S) of S′ is a compact surface.

The final step is as follows: since ŠR = Λ(S), it follows that ŠR is a compact surface
with two boundary components c′′′ and another simple closed curve in δ∞Λ(S). For
each point t ∈ ŠR , there is a neighborhood where devh,q : ŠR → H restricts to
a homeomorphism to an open disk with possibly an embedded arc as the boundary.
Since ŠR is compact with a finite covering by such charts, devh,q is finite-to-one.

Hence devh,q |SR is a finite-to-one map to its image in Ho
q by above. Therefore,

devh : Λ1(R) ∩ Mh → Ho is finite-to-one to its image. �

(b) Now, 〈hh(g)〉 acts on a nontrivial closed curve devh,q(c′′′) bounded in an affine

space Ho
q of S

2
q . Thus, 〈hh(g)〉 acts as an isometry group on S

2
q with respect to a

standard metric corresponding to a choice of coordinates on S
2
q . Let L(g) denote the

linear part of hh(g) considered as an affine transformation of the affine space Ho. We
obtain an affine transformation form

hh(g)(x) = L(g)x + v(g)

where v(g) is a 3-vector. We identify it in the matrix form with

hh(g) =
(
L(g) v(g)
0 1

)

.

Let vq ∈ R
3 denote the vector in the direction of q in the boundary of R

3. By the
classification of elements of SL±(4, R), the following hold:

– hh(g) induces an orthogonal linear map on Ho
q := R

3/〈vq〉 up to a choice of
coordinates of Ho

q since hh(g) acts as an isometry on S
2
q preserving Ho

q .
– There is a fixed point of hh(g) in Ho

q .We replace the coordinate system if necessary
so that the fixed point is the origin.

– Since hh(g) acts on a complete affine line in R
3 passing the origin and in the

direction of vq , the linear map L(g) has vq as an eigenvector corresponding to a
positive eigenvalue by taking a power of g if necessary,

– Hence, the affine form of g is obtained by post-composing L(g) with a translation
in the direction of vq . Thus, v(g) is parallel to vq .

Suppose that hh(g) is unipotent with eigenvalues all equal to 1. By the second
property above, hh(g) acts as the identity on Ho

q , and g is a translation on each q-line
in A1+. Since 〈g〉 acts on A1+, and as the identity on Ho

q , hh(g) is of form

⎛

⎜
⎜
⎝

1 α β γ

0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ for α, β, γ ∈ R. (3.6)

If α, β are not all zero, then we can find a plane Pg of fixed points given by αy +
βz + γ = 0 in R

3. The inverse image P ′
g of Pg in Λ1(R) ∩ Mh is not empty. Also,
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devh : P ′
g → Pg is finite-to-one onto its image by Lemma 15. Then g acts P ′

g with a
finite order since hh(g)|Pg is the identity map. This contradicts our choice of g in the
beginning of (B)(ii). Thus,

α = 0, β = 0. (3.7)

Finally, γ �= 0 since g �= I. Hence, g is a translation in the direction of vg as we
desired.

Otherwise, the only possibility is that hh(g) acts on a one-dimensional subspace
parallel to vq and a complementary subspace, and hh(g) has the form

⎛

⎝
λ 0 γ

0 μOg 0
0 0 μ

⎞

⎠ , λμ3 = 1, λ, μ > 0

for an orthogonal 2 × 2-matrix Og .
Recall that A1+ ∩Mh has a component A1 containing c. Suppose that μ �= λ. Then

gi (c) geometrically converges to a compact closed curve in the interior of A1+ as
i → ∞ or i → −∞. The limit of devh(gi (c)) must be on a totally geodesic subspace
P by the classification of elements of SL±(4, R) passing dev(A1+). Recall (3.4). By
Lemma 15, the annulus ŠR has c′′′ as a boundary component.

– SR contains an annulus A1,R with boundary c′′′.
– The inverse image P ′ of P under devh contains an annulus A′

1,R embedding to
A1,R under ΠR .

– Then devh |A′
1,R is a finite-to-one map by Step (a). We may assume that g acts on

A1,R , and hence g acts on A′
1,R .

Since gi is represented as a sequence of uniformly boundedmatrices on A′
1,R for every

i ∈ Z, and g is of infinite order, this is a contradiction to the properness of the action
of 〈g〉. Therefore, we obtain

μ = λ = 1. (3.8)

Since hh(g)(q) = q, and hh acts on Ho, it follows that hh(g) restricts to an affine
transformation in Ho acting on the set of a parallel collection of lines. hh(g) acts as a
translation composed with a rotation on Ho with respect to a Euclidean metric since
the 3×3-matrix of L(g) decomposes into an orthogonal 2×2-submatrix and the third
diagonal element equal to 1.

Thus, in all cases as indicated by Eqs. (3.7) or (3.8), g is of form

⎛

⎝
1 0 γ

0 Og 0
0 0 1

⎞

⎠

for a trivial or nontrivial orthogonal 2×2-matrix Og under a coordinate system. Since
g(c) ⊂ U1 from the beginning of Sect. 3.3.7, g does not act on a parallel collection of
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circles in A1+. Hence, γ �= 0. Thus, g is either a nontrivial translation in the direction
of v(g) or of above form with nonzero γ , which is the desired conclusion for the step
(b).

(c) Let L be an annulus bounded by c and g(c) in A1+. Since g acts on A1, we have
gi (c) ⊂ A1 for every i ∈ Z. Now gi (c) and g−i (c) bound an annulus Ai . For any
bounded subset K of A1+, the set K is contained in Ai for sufficiently large i since g
acts as above. Since there is no bounded component of L ∩ Mh by Lemma 9, A1 is the
unique component of Mh . By Lemma 14, A1+ − A1 has finitely many components.
By the action of 〈g〉, the planar surface A1 has only one or two ends or infinitely many
ends. Hence, A1+ = A1. Thus, we conclude A1+ ⊂ Mh .

There exists an open neighborhood N of L in Mh , and
⋃

i∈Z gi (N ) ⊂ Mh covers
A1+. By restricting a Euclidean metric Ho, we obtain a Euclidean metric on an open
set in Mh containing Λ(R) ∩ Mh and

⋃
i∈Z gi (L). We obtain a closed set

Λ′ ⊂
⋃

i∈Z
gi (N ) ∪ Λ(R) ∩ Mh,

that is foliated by complete q-lines and

Λ(R) ∩ Mh ⊂ Λ′

properly. Also,Λ′ contains an ε-neighborhood ofΛ(R)∩Mh in the Euclidean metric.
The subspaceΛ′ fibers over the surfaceΣ of complete q-lines inΛ′ as before in the

beginning of (B). Then the Kuiper completion Σ̌ has an affine structure. We extend
the above fibration

ΠR : Λ1(R) ∩ Mh → SR to ΠR : Λ′ → Σ

to be denoted by ΠR again.
Recall from Lemma 15 that SR ⊂ Σ denote the image of Λ1(R) ∩ Mh under ΠR .

Let Σ̌ denote the Kuiper completion of Σ . Each point of αR′ for R′ ∼ R maps to an
ideal point of Σ since we can consider path in Λ1(R) converging to this point which
maps to finite length path in Σ under ΠR and cannot end at a point of Σ under ΠR .
Hence, ΠR extends to Λ1(R) → Cl(SR) ⊂ Σ̌ . Also, for each crescent R′, R′ ∼ R,
ΠR(R′o) has the closure that is a bihedral 2-crescent which we showed in the proof
of Lemma 15. We denote this closure by S(R′). The image of Λ1(R) under πR is
the union of S(R′) − IS(R′) for a bihedral 2-crescent S(R′) in Σ̌ . We denote this by
Λ1(S(R)).

Since c′′′ is closed and not geodesic, we can take a short geodesic k inΣ connecting
the endpoints of the short subarc α1 in c′′′ so that they bound a disk in Σ . k can be
extended in Λ1(S(R)) until it ends in the ideal set of Σ̌ corresponding to complete
q-lines in δ∞Λ(R). We choose a 2-dimensional crescent S′′ in Σ̌ bounded by k
containing a 2-dimensional crescent S2 in ŠR , and containing α1. (See the maximum
property in Section 6.2 of Choi 1994). The inverse image Π−1

R (So2 ) ⊂ Λ′ has the
closure S′ in M̌h . SinceΛ1(R)∩Mh has the ideal boundary in the open hemisphere in
the boundary of S′ considering the developing image in ∂H , we may verify that S′ is a
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bihedral 3-crescent. This contradicts the maximality ofΛ(R), which is a contradiction
to how we defined Λ(R) in (2.1). �


3.4 The Irreducibility of Concave Affine Manifolds

Theorem 9 Let N be a concave affine 3-manifold in a connected compact real projec-
tive 3-manifold M with convex boundary. Suppose that M is neither complete affine
nor bihedral. Assume that M has no two-faced submanifold. Then N is irreducible, or
M is an affine Hopf 3-manifold and M = N. Consequently, N is a prime 3-manifold.

Proof Let N be a concave affine 3-manifold of type I, and let Nh denote a component of
the inverse image of N inMh . Then we have Nh = Ro∪ I oR where R is a hemispherical
3-crescent. Hence, Nh is irreducible.

We assume that M̌h has no hemispherical 3-crescent now. Let N be a concave affine
3-manifold of type II. We follow the proof of Theorems 7 and 8 in Sect. 3.3. We divide
into cases (A) and (B).

Let R be a bihedral 3-crescent so that Nh ⊂ Λ(R).

(A) Suppose that there are three mutually overlapping bihedral 3-crescents R1, R2,

and R3 with {IRi |i = 1, 2, 3} in general position.
We can have two possibilities:

(i) Suppose that there exists a pair of opposite bihedral 3-crescents S1, S2 ∼ R. (See
Sect. 3.3.2.)

(ii) There is no such pair of bihedral 3-crescents. (See Sect. 3.3.3.)

By Lemma 10, (i) implies that M is an affine Hopf manifold. In this case, M̌ equals
a closed hemisphere and equals Λ(R) for a crescent R. Thus, M = N for a concave
affine manifold N . By Proposition 3, N is a prime 3-manifold.

We now work with (ii). By Theorem 5, bdΛ(R)∩Mh has no sphere boundary. Any
2-sphere inΛ(R)∩Mh can be isotopied into the dense open submanifoldΛ1(R)∩Mh .
(See (2.1)). Recall K from (3.1) where K is the complement of the image dev(Λ1(R))

in an 3-hemisphere H . We showed using Lemma 9 in the beginning of (A)(ii) in the
proof of Theorem 8 that K cannot be bounded in Ho (see Sect. 3.3.3). We obtain
K ∩ ∂H �= ∅. Since H − K deformation retracts to ∂H − K by projection from
a point of Ko, H − K is contractible. Thus, Λ1(R) ∩ Mh is contractible, and every
immersed sphere is null-homotopic.

Now we go to the case (B) in the proof of Theorem 8 where Λ(R) is a union of
the segments whose developing image end commonly at the antipodal pair q, q− (see
Sect. 3.3.5). Since the interior of Λ(R) ∩ Nh fibers over an open surface with fiber
homeomorphic to real lines, N is irreducible. �


3.5 Toral�-Submanifolds

Lemma 16 A toral π -submanifold N of type I is homeomorphic to a solid torus or a
solid Klein-bottle and is a concave affine 3-manifold of type I.
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Proof ByTheorem 5, there is no boundary component of N homeomorphic to a sphere
or a real projective plane.

By Definition 5, N is covered by Ro ∪ I oR − {x} for a hemispherical 3-crescent R
and x ∈ I oR , and N hence is a concave affine 3-manifold of type I.

Since the deck transformation group acts on the annulus I oR − {x} properly discon-
tinuously and freely, the deck transformation group of Ñ is isomorphic to a virtually
infinite-cyclic group by Lemma 3. By Lemma 2, we are done. �

Lemma 17 Let M be a connected compact real projective 3-manifold with convex
boundary. Suppose that M̌h has no hemispherical 3-crescent. Let N be a concave
affine 3-manifold of type II in M covered by Λ(R) ∩ Nh for a bihedral 3-crescent R.
We suppose that

– TheKuiper completion Ňh of some cover Nh of the holonomy cover of N contains a
toral bihedral 3-crescent S where a deck transformation g acts on So∪ I oS −{x} ⊂
Nh, fixing a point x ∈ I oS as an attracting fixed point.

– The deck transformation group of N is virtually infinite-cyclic.
– devh |Λ(R)∩Nh : Λ(R)∩Nh → Ho−Ko is an embedding to its image containing

Ho − K for a compact convex domain K in the 3-hemisphere H with nonempty
interior in Ho.

Then N contains a unique maximal toral π -submanifold of type II, homeomorphic to
a solid torus or a solid Klein-bottle, and the interior of every bihedral 3-crescent in
Ňh meets the inverse image of the toral π -submanifold in Nh.

Proof ByTheorem 5, there is no boundary component of N homeomorphic to a sphere
or a real projective plane. By definition, Nh = Λ(S) ∩ Mh for a bihedral 3-crescent
S. We obtain a toral bihedral 3-crescent R in Ňh .

(I) The first step is to understand the intersections of two toral bihedral crescents:
by assumption, ΓN is virtually infinite-cyclic. Two bihedral 3-crescents R1 and R2 are
not opposite since Ko �= ∅ holds. Let R1 and R2 be two toral bihedral 3-crescents
such that R1, R2 ∼ R. Let R′

i denote Ro
i ∪ I oRi − {xi } for a fixed point xi of the action

of an infinite order generating deck transformation gi acting on Ri so that R′
i/〈gi 〉 is

homeomorphic to a solid torus. Here, gi is the deck transformation associated to Ri .
Let Fi , i = 1, 2, denote the compact fundamental domain of R′

i . Then the set

Gi := {g ∈ ΓN |g(Fi ) ∩ Fi �= ∅}, i = 1, 2,

is finite. We can take a finite index normal subgroup Γ ′ of the virtually infinite-cyclic
group ΓN so that Γ ′ ∩Gi := {e} for both i . Then a cover of the compact submanifold
R′
i/〈gi 〉 ∩ Γ ′ is embedded in Nh/Γ

′. Thus, there is some cover N1 of N so that these
lift to embedded submanifolds.

We denote these in N1 by T1 and T2. We may assume that Ti = R′
i/〈g′

i 〉. xi is the
fixed point of Ri and g′

i acts on R′
i .

Suppose that they overlap. Then R1 ∩ R2 is a component of R1 − IR2 by Theorem
5.4 of Choi (1999). Considering T1 ∩ T2 that must be a solid torus not homotopic to
a point in each Ti , we obtain that a nonzero power of g′

1, and a nonzero power of g′
2

are equal. Therefore, x1 = x2, and g′
i fixes the point x1 = x2.
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(II) The second step is to build invariant subsets from the union of overlapping toral
bihedral 3-crescents and build a toral π -submanifold from it:

We say that two toral bihedral 3-crescents R1 and R2 are equivalent if they overlap
in a cover of a solid torus in Nh . This relation generates an equivalence relation of
toral bihedral 3-crescents. We write R1 ∼= R2.

Let S be a toral bihedral 3-crescent in Ňh . By this condition, x = xi for every fixed
point xi of a toral bihedral 3-crescent Ri , Ri ∼= S where x is fixed by g′

i associated
with Ri . We define

Λ̂(S) :=
⋃

R′∼=S

R′, δ∞Λ̂(S) :=
⋃

R′∼=S

αR′ .

Weclaim that Λ̂(S)∩Nh covers a compact submanifold in N : letT be anybihedral 3-
crescent in Ňh where g actswith x as an attracting fixed point. Then T−Cl(αT )−{x} ⊂
Nh as in cases (II)(A)(ii) or (II)(B)(i). (See Sects. 3.3.3, 3.3.5).

Since there are no two-faced submanifolds, we see that either

Λ̂(S) = g(Λ̂(S)) or Λ̂(S) ∩ g(Λ̂(S)) ∩ Nh = ∅ for g ∈ ΓN .

(This follows as in Lemma 7.2 of Choi 1999). We can also show that the collection

{g(Λ̂(S) ∩ Nh)|g ∈ ΓN }

is locally finite in Mh as we did for Λ(S) ∩ Mh in Chapter 9 of Choi (1999). Hence,
the image of Λ̂(S) ∩ Nh is closed in Mh , and it covers a compact submanifold in M .

Since Λ̂(S) is a union of segments from x to

δ∞Λ̂(S) := δ∞Λ(R) ∩ Λ̂(S),

bdΛ̂(S)∩ Nh is on a union L of such segments from x to Cl(δ∞Λ̂(S)) passing the set.
The open line segments are all in Nh as they are in toral bihedral 3-crescents. Since
Λ̂(S) is canonically defined, the virtually infinite-cyclic group ΓN acts on the set.
Also, Λ̂(S) ∩ Nh is connected since we can apply the above paragraph to 3-crescents
in Λ̂(S) also.

The interior of Λ̂(S) ∩ Mh is a union of open segments from x to an open surface
δ∞Λ̂(S). The surface cannot be homeomorphic to a sphere or a real projective plane
since a toralπ -submanifold has nonempty boundary. Since δ∞Λ̂(S) is the complement
of ∂H of a compact convex set, it is thus homeomorphic to a 2-cell. Therefore, the
interior of Λ̂(S)∩Mh is homeomorphic to a 3-cell. We showed that Λ̂(S)∩Mh covers
a compact submanifold in N . We call this TN .

Suppose that TN ⊂ T ′
N for any other toral π -submanifold T ′

N . We showed that in
the above part of the proof that every toral bihedral 3-crescent in a universal cover
of T ′

N overlapping with ones in Λ̂(S) must be in Λ̂(S). By considering chains of
overlapping bihedral 3-crescents, we obtain T ′

N ⊂ N and T ′
N = TN . This shows that

TN is a maximal toral π -submanifold.
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Since N has a virtually infinite-cyclic holonomy group by a premise, and devh |Nh

is injective, we obtain that the holonomy group image of the deck transformation group
acting on Λ̂(S) ∩ Mh is virtually infinite-cyclic. Since the holonomy homomorphism
is injective, the deck transformation group acting on Λ̂(S) ∩ Mh is virtually infinite-
cyclic. By Lemma 2, the toral π -submanifold is homeomorphic to a solid torus or a
solid Klein bottle.

(III) Now, we go to the final part: we assumed that devh |Λ(R) ∩ Nh is an injective
map into the complement of a convex domain Ko in Ho. Thus

devh(Λ̂(S) ∩ Nh) = H − K ′

for a domain K ′ in H where K ′ ⊃ Ko. The closure of K ′ is convex and is a union of
segments from devh(x) to a convex domain in ∂H .

Given any bihedral 3-crescent R1 in Λ(S), suppose that the open 3-bihedron
devh(Ro

1) does not meet devh(Λ̂(S)). Then devh(αR1) and devh(αT ) for a toral bihe-
dral 3-crescent T , T ∼= S, have to be 2-hemispheres in ∂H antipodal to each other.
Let gT denote the deck transformation acting on T o ∪ I oT − {x} for an attracting fixed
point x of gT . Then

giT (R1) ⊂ g j
T (R1) for i < j

by Proposition 3.9 of Choi (1999) since their images overlap, the image of the latter set
contains the former one, and devh |Nh is injective. Hence, the closure of

⋃
i∈N giT (R1)

is another toral bihedral 3-crescent since gT acts on it. Then T and R are opposite. This
is a contradiction since K then has to have the empty interior. We assumed otherwise
in the premise. �


3.6 Proof of Theorem 2

Proof Let M be a connected compact real projective 3-manifold with empty or convex
boundary. If M has a non-π1-injective component of the two-faced totally geodesic
submanifold of type I, then M is an affine Hopf manifold by Theorem 6.

Now suppose that M is not an affine Hopf manifold. We split along the two-faced
totally geodesic submanifolds of type I now to obtain Ms . Theorem 7 implies the
result.

Now assume that there is no hemispheric 3-crescent. To complete, we repeat the
above argument for the two-faced totally geodesic submanifold of type II, andTheorem
8 implies the result. �


4 Toral �-Submanifolds and the Decomposition

We now prove a simpler version of Theorem 3.

Theorem 10 Let M be a connected compact real projective 3-manifold with empty or
convex boundary. Suppose that M is neither complete affine nor bihedral, and M is

123



Convex and Concave Decompositions of Affine 3-Manifolds

not an affine Hopf 3-manifold. Suppose that M has no two-faced submanifold of type
I, and M has no concave affine 3-manifold of type I with incompressible boundary.
Then the following hold :

– each concave affine submanifold of type I in M with compressible boundary con-
tains a unique toral π -submanifold T of type I.

– There are finitely many disjoint toral π -submanifolds

T1, . . . , Tn

obtained by taking one from each of the concave affine submanifolds of type I
in M with compressible boundary.

– We remove
⋃n

i=1 intTi from M. Call M ′ the resulting real projective manifold with
convex boundary. Suppose that M ′ has no two-faced submanifold of type II, and
M ′ has no concave affine 3-manifold of type II with incompressible boundary.

– Each concave affine submanifold of type II in M ′ with compressible boundary
contains a unique toral π -submanifold T of type II where T has compressible
boundary.

– There are finitely many disjoint toral π -submanifolds

Tn+1, . . . , Tm+n

obtained by taking one from each of the concave affine submanifolds in M ′.

– M − ⋃n+m
i=1 intTi is 2-convex.

Proof If N is a concave affine 3-manifold of type I with compressible boundary, then
its universal cover is in a hemispherical 3-crescent, and N is homeomorphic to a solid
torus and is a toral π -submanifold by Lemma 16. These concave affine 3-manifolds
are mutually disjoint.

We remove these and denote the result by M ′. Then M − ⋃n
i=1 intTi has totally

geodesic boundary. The cover M ′
h of M ′ is given by removing the inverse images of

T1, . . . , Tn from Mh . We take a Kuiper completion M̌ ′
h of M

′
h . Now, we consider when

N is a concave affine 3-manifold arising from bihedral 3-crescents in M̌ ′
h . We obtain

toral π -submanifold II in N by Lemma 17.
From M ′, we remove the union of the interiors of toral π -submanifolds

Tn, . . . , Tn+m . ThenM−⋃n+m
i=1 intTi has a convex boundary as Pi has concave bound-

ary.
We claim that this manifold M − ⋃n+m

i=1 intTi is 2-convex. Suppose not. Then by
Theorem 1.1 of Choi (1999), we obtain again a 3-crescent R′ in the Kuiper completion
of Mh − p−1

h (
⋃n+m

i=1 intTi ). The 3-crescent R′ has the interior disjoint from ones we
already considered. However, Theorem 8 shows that R′o must meet the inverse image
p−1
h (

⋃n
i=1 intTi ), which is a contradiction.

Lemma 17 shows that each Ti is homeomorphic to a solid torus or a solid Klein
bottle. �
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Proof of Theorem 3 Wemay assume that M is not complete or bihedral since then M is
convex and the conclusions are true. As stated, M̌h does not contain any hemispherical
3-crescent. By Theorem 10, M either is an affine Hopf 3-manifold, or Ms decomposes
into concave affine 3-manifolds with incompressible boundary, toral π -submanifolds
of type I, and M (1).

Now M (1)s decomposes into concave affine manifolds of type II with compressible
or incompressible boundary. Theorem 0.1 of Choi (2000) shows that a 2-convex affine
3-manifold is irreducible. Toral π -submanifolds and concave affine 3-manifolds of
type II with incompressible boundary are irreducible or prime by Lemma 17 and
Theorem 9. �

Proposition 6 Let M be a connected compact real projective manifold with convex
boundary. Suppose that M is not an affine Hopf manifold. Then the following hold:

– A toral π -submanifolds of type I in Ms is disjoint from the inverse images in Ms

of the two-faced submanifolds in M of type I. Hence, it embeds into M.
– A toral π -submanifolds of type II is disjoint from the inverse images in M (1)s of
the two-faced submanifolds in M (1) of type I.

– The image of a toral π -submanifold of type II in Ms is also disjoint from the
two-faced submanifolds in M of type I. Hence, it embeds into M.

Proof Suppose that Ms contains a toral π -submanifold N of type I. Then No embeds
into M , and No is disjoint from the two-faced submanifold F of type I in M by the
definition of concave affine manifolds of type I. Suppose that the unique boundary
component ∂N of N meets the submanifold F ′ in Ms mapped to F . Then since F ′
is totally geodesic and ∂N is concave, it follows that ∂N ⊂ F ′. Now, F is non-π1-
injective since ∂N is compressible in N . Theorem 6 shows that M is an affine Hopf
3-manifold. Hence ∂N is disjoint from F ′, and N embeds into M .

Suppose that M (1)s contains a toral π -submanifold N of type II. Then No embeds
into M (1). Suppose that ∂N meets the submanifold F ′

2 in M (1)s mapped to the two-
faced submanifold F2 of type II in M (1). As above, ∂N ⊂ F ′

2 for the inverse image
F ′
2 in M (1)s of F2, and ∂N covers a component F3 of F2. Since ∂N is compressible

in N , Theorem 6 shows that M is an affine Hopf 3-manifold. Hence, F ′
2 ∩ ∂N = ∅,

and N embeds into M (1). Call the image by the same name.
Again No is disjoint from F ′. As above N is disjoint from F ′ or ∂N ⊂ F ′. In the

second case, Theorem 6 shows that M is an affine Hopf 3-manifold. Thus, N embeds
into M . �

Proof of Corollary 1 First, if a 3-hemisphere or a 3-bihedron covers M , then M is
irreducible. So, we assume that this is not the case from now on in this proof.

Assume that M is not an affine Hopf 3-manifold. By Proposition 6, if there exists a
toral π -submanifold in M (1)s or in Ms , then there is a projectively embedded image
in M . Thus, the premise implies that there is no toral π -submanifold in Ms and M (1)s .

Hence, M (1)s decomposes into concave affine 3-manifolds of type II with incom-
pressible boundary and 2-convex affine 3-manifolds. Since these are irreducible and
each boundary component is not homeomorphic to a sphere by Theorem 5, it follows
that M (1)s is irreducible. Any embedded sphere S in M (1) meets F2 in a disjoint union
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of circles after perturbations. Since two-faced submanifold F2 is π1-injective by The-
orem 6, any disk component of S − F2 can be isotopied away since such a disk lifts
to one in M (1)s with boundary in the incompressible surface F ′

2 which are the inverse
images of F2 under the splitting process. (See Hempel 2004). By induction, we may
assume that S is in M (1) − F2. Hence, it bounds a 3-ball. Thus, we obtained that M (1)

is irreducible as well.
Now, Ms is a union of M (1) and a concave affine manifold of type I with incom-

pressible boundary. Similar argument shows that Ms and M are irreducible and M .
�

Proof of Corollary 2 Suppose that M has an embedded sphere S. The connected open
set Ω contains a lift S′ of S. If S is nonseparating, then Corollary 4 shows that M is
an affine Hopf manifold.

Suppose that S is separating. Then S bounds a 3-ball B in M by Theorem 1.1 of
Wu (2012). �


Appendix A: ContractionMaps

Here, we will discuss contraction maps in R
n . A contracting map f : X → X for a

metric space X with metric d is a map so that d( f (x), f (y)) < d(x, y) for x, y ∈ X .

Lemma 18 A linear map L has the property that all the norms of the eigenvalues are
< 1. if and only if L is a contracting map for the distance induced by a norm.

Proof See Corollary 1.2.3 of Katok and Hasselblatt (1995). �

Proposition 7 〈g〉 acts on R

n −{O} (resp. U −{O} for the upper half space U ⊂ R
n)

properly if and only if the all the norms of the eigenvalues of g are > 1 or < 1.

Proof Suppose that 〈g〉 acts on R
n − {O} properly. Fix a standard norm on R

n . For a
unit sphere S with center 0, the image gi (S) is inside a unit ball B for some integer
i by the properness of the action. This implies that gi (B) ⊂ B, and the norms of the
eigenvalues of gi are< 1 by Lemma 18. Hence the conclusion follows for g. The case
of the half space U is similar.

For the converse, by replacing g with g−1 if necessary, we assume that all norms
of eigenvalues < 1. Lemma 18 shows that g(B) ⊂ B for a unit ball corresponding to
a norm. This implies the result. �


Given two subsets A, B in an affine subspace R
n , we denote by A ∗ B the union of

all segments with end points in A and B respectively.

Proposition 8 Let D be a connected open set in S
n in an affine patch R

n. Let g be a
projective automorphismacting on D andanaffine patchR

n.Weassume the following :

– S is a compact connected smoothly embedded submanifold of codimension-one of
D so that D− S has two components D1 and D2 where D1 is bounded in an affine
patch R

n in S
n.
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– g acts with a fixed point x ∈ R
n in the closure of D1.

– g(Cl(D1)) ⊂ D1.
– Every complete affine line containing x meets S at at least one point.
– D1 ⊂ {x} ∗ S where {x} ∗ S is the union of all segments from x ending at S.

Then x is the global attracting fixed point of g in R
n.

Proof Choose the coordinate system on R
n so that x is the origin. Let L(g) denote

the linear part of the g in this coordinate system. Suppose that there is a norm of the
eigenvalue of L(g) greater than or equal to 1. Then there is a subspace V of dimension
1 or 2 so that V ⊗ C is an eigenspace in C

n associated with an eigenvalue of norm
≥ 1. We obtain SV := V ∩ S �= ∅ by the above paragraph. Let Θ(SV ) denote the
set of directions of SV from x . L(g) acts on the space of directions from x . Since
{x} ∗ g(S) ⊂ {x} ∗ S, we obtain L(g)(Θ(SV )) ⊂ Θ(SV ). Hence, Θ(SV ) is either
the set of a point, the set of a pair of antipodal points, or a subset of a circle where
every point or its antipode are in it. Now, V has a Riemannian metric where g acts as
a rotation times a scalar map. There is a point t of SV where a maximal radius of SV
takes place under this metric. Then g(t) ∈ g(SV )must meet D2 ∪ SV , a contradiction.

Thus, the norms of eigenvalues of L(g) are < 1. By Lemma 18, L(g) has a fixed
point x as an attracting fixed point. �


Now, we prove without a g-invariant affine subspace.

Proposition 9 Let D be a connected open set in S
n in an affine subspace R

n. Let g be
a projective automorphism of S

n acting on D. We assume the following :

– S is a compact connected smoothly embedded (n − 1)-sphere of D so that D − S
has two components D1 and D2 where D1 is bounded in an affine path R

n in S
n.

– g(Cl(D1)) ⊂ D1.

Then g acts on an open affine subspace R
n containing D1, and g has the global

attracting fixed point x in R
n, and

Proof By the Schoenflies theorem, a component of S
3 − S is a 3-cell D′

1 bounded in
R
n . So, D′

1 is in a cell in R
n . Then g(D′

1) ⊂ D′
1 since g(S) ⊂ D′

1 and the external
component of S

2−g(S) is not contained in a properly convex domain. By the Brouwer
fixed-point theorem, g fixes a point in the interior of D′

1.
The convex hullC ′ of D1 is still in an affine patch and is a properly convex domain.

An easy argument shows that g(C ′) is a compact subset of the interior of C ′ since
every pair of points of g(D1) has a pair of convex open neighborhoods in the interior
of D1 useful for taking segments.

Then C ′′ := ⋃∞
i=1 g

−n(C ′) is a convex open subset of S
n , and hence is in an open

hemisphere by Proposition 2.3 of Choi (1999) since C ′′ cannot be a great sphere. We
claim that C ′′ is an open n-hemisphere. Suppose that C ′′ is not an open n-hemisphere.
C ′′ has a family of open i-hemispheres foliatingC ′′ for 1 ≤ i < n or is properly convex
byProposition 2.4 ofChoi (1999). The space of i-hemispheres forms a properly convex
open domain K of dimension n− i < n as shown in Section 1.4 of Chae et al. (1993).
Let ΠK denote the projection C ′′ → K . When C ′′ is properly convex, we let ΠK be
the identity map. Again g acts on K with a fixed point x ′ in the interior of ΠK (C ′)
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so that g(ΠK (C ′)) into the interior of ΠK (C ′). By the existence of Hilbert metric
Kobayashi (1984) for a properly convex domain, if g fixes an interior point, then
g(ΠK (C ′)) cannot go into the interior of ΠK (C ′) by the existence of the points of
maximal distance from x at ΠK (C ′). Hence, C ′′ is an affine patch where g acts on.

Since S is a separating sphere, every complete affine ray starting from x meets S
at at least one point. Since every point of D1 is on a complete affine ray starting from
x , D1 ⊂ {x} ∗ S where {x} ∗ S is the union of all segments from x ending at S. Since
g acts on an affine patch C ′′, and D1 ⊂ C ′′, Proposition 8 in Appendix 1 implies that
x is an attracting fixed point of g on C ′′. �


AppendixB: TheBoundaryof aConcaveAffineManifolds isNotStrictly
Concave

The following is the easy generalization of the maximum property in Section 6.2 of
Choi (1994). Let N be an affine manifold with boundary. Hence, each boundary point
has a chart going to an affine space where the boundary subset of the open set where
the chart is defined maps to a submanifold of codimension-one. A strictly concave
boundary point of an affine manifold N is a boundary point y where a totally geodesic
open disk D contains y, y ∈ Do, and D − {y} ⊂ No.

Theorem 11 Let N be a concave affine 3-manifold of type II in a compact real pro-
jective manifold M with convex boundary. Then ∂N has no strictly concave point.

Proof Let Mh be a cover as in the main part of the paper. Let Nh be a component of
the inverse image of N in Mh .

Suppose that the conclusion does not hold. Then there is a boundary point y of
Nh with a disk D as above. Then if y is a boundary point of Mh , then D must be in
∂Mh since ∂Mh is convex: we can use a chart of a point of ∂Mh to a convex subset
of S

n mapping into an affine patch and deduce by looking these as graphs of convex
functions. This contradicts the premise since D − {y} ⊂ No.

Now, N is covered by Λ(R) ∩ Mh for bihedral 3-crescent R in M̌h . Since y is not
a boundary point of Mh , we take a convex compact neighborhood B(y) of the convex
point y so that devh(B(y)) is an ε-d-ball for some ε > 0. Then B(y) − Λ(R) is a
properly convex domain with the image devh(B(y) − Λ(R)) is properly convex. For
each point z ∈ bdΛ(R) ∩ B(y), let Sz , Sz ∼ R, be a bihedral 3-crescent containing z.
Since Λ(R) is maximal, devh(ISz ) is a supporting plane at devh(z) of devh(B(y) −
Λ(R)).

We perturb a small convex disk D ⊂ ISy containing y away from y, so that the
perturbed convex disk D′ is such that the closure of D′ ∩ B(y) − Λ(R) is a small
compact disk D′′ with

∂D′′ ⊂ bdΛ(R) ∩ Mh and D′′o ∩ Λ(R) = ∅.

Moreover, ∂D′′ bounds a compact disk B ′ in bdΛ(R)∩ B(y). Choose a point z0 in the
interior of D′′. For each point z ∈ B ′, I oSz is transversal to z0z since z0 /∈ Sz . Since Soz is
further away from z0 than z, we can choose a maximal segment sz ⊂ Sz starting from
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z0 passing z ending at a point δ+sz of αSz . We obtain a compact 3-ball Bz0 = ⋃
z∈B′ sz

with its boundary in δ∞Λ(R). The boundary is the union of Dz0 := ⋃
z∈∂D′′ sz , a

compact disk, and an open disk

αz0 :=
⋃

z∈Bo
z0

δ+sz ⊂ δ∞Λ(R).

The injectivity of devh |Bz0 is clear since we are using maps devh |sz , z ∈ B ′ which
are radiant from devh(z0). Hence, Bz0 is a bihedral 3-crescent.

Since Bz0 is a union of segments from z0 passing points of B ′ containing a segment
passing y and transversal to I oSy , it overlaps with Sy . Since Bz0 is a bihedral 3-crescent

∼ Sy, Sy ∼ R, we obtain Bz0 ⊂ Λ(R). This contradicts our choice of y and D′′. �
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