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a b s t r a c t

A greedy algorithm called Bayesian multiple matching pursuit (BMMP) is proposed to
estimate a sparse signal vector and its support given m linear measurements. Unlike the
maximum a posteriori (MAP) support detection, which was proposed by Lee to estimate
the support by selecting an index with the maximum likelihood ratio of the correlation
given by a normalized version of the orthogonal matching pursuit (OMP), the proposed
method uses the correlation given by the matching pursuit proposed by Davies and Eldar.
BMMP exploits the diversity gain to estimate the support by considering multiple support
candidates, each of which is obtained by iteratively selecting an index set with a size
different for each candidate. In particular, BMMP considers an extended support estimate
whose maximal size is m in the process to obtain each of the support candidates. It is
observed that BMMP outperforms other state-of-the-art methods and approaches the
ideal limit of the signal sparsity in our simulation setting.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sparse linear regression, referred to as compressed sensing (CS) [1,2], has beenwidely studied in many fields ranging from
denoising [3] to super-resolution restoration [4,5]. A signal vector x�2Rn is called k-sparse if it has at most k non-zero el-
ements. Then, the objective of sparse linear regression is to recover a k-sparse signal vector x�2Rn from the given mea-
surement vector y2Rm, such that

y¼Fx� þw;

where F2Rm�n is a known sensing matrix with m<n and a noise vector w2Rm.
To improve recovery performance of the sparse signal x� and its support U, the set of non-zero indices in x�, a method

called MAP support detection [6] to recover a partial support of x� was proposed by exploiting the maximum a posteriori
(MAP) estimation. This method determines whether the index i belongs to U by using a likelihood ratio test under the true
and null hypotheses given a correlation between the residual vector and its l2-normalized column vector fi =kfik in F :¼ ½f1;

…;fn�. By applying this method to existing algorithms such as generalized OMP (gOMP) [7], compressive sampling matching
pursuit (CoSaMP) [8], and subspace pursuit (SP) [9], some greedy methods were proposed and shown to outperform other
existing methods [6].
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We propose a new MAP-based method to estimate partial support by modifying the MAP support detection to use the
correlation term given in rank aware order recursive matching pursuit (RA-ORMP) [10]. This proposed scheme improves the
existing MAP support detection by additionally utilizing an orthogonal complement onto each column vector inF to calculate
the correlation, since the correlation can be better represented through this consideration.

Based on this method to estimate a partial support, we develop an algorithm called Bayesian multiple matching pursuit
(BMMP) to recover x� and its support U. BMMP also uses the following four techniques to enhance the performance further.
Simulation results show that BMMP outperforms other state-of-the-art methods in both noiseless and noisy cases.

1. (Generating an extended support estimate of size bounded bym) The extended support is defined by an index set whose
size is larger than the actual sparsity k of x� and includes U. gOMP [7], SP [9], and CoSaMP [8] exploited an extended
support estimate in the process to estimate U. To improve the support recovery performance, the maximum size of the
extended support estimate in BMMP is set to m while the maximum size of the extended support estimate in gOMP, SP,
and CoSaMP, is t,minðk; Pm=tRÞ , 2k, and 3k, respectively, for a constant t smaller than k. The reason for setting this to m in
BMMP is explained in the section describing BMMP.

2. (Generating multiple support candidates) BMMP utilizes the diversity gain by iteratively selecting multiple indices of
different size to generate each of multiple support candidates. In other words, BMMP generates the ith support candidate
by iteratively selecting i indices through the proposed partial support estimation. There have been related studies
generatingmultiple support candidates through a tree structure: multipath matching pursuit [11], multi-branchmatching
pursuit [12]. However, the complexity of the tree-based methods scales in the sparsity k and is higher than those of other
CS algorithms, since the number of support candidates increases exponentially with k (the depth of the tree) due to the
structural nature of the tree. In contrast with these methods, BMMP does not use the tree-based approach to reduce
complexity so that the number g of support candidates is independent of k and the complexity is linearly increased with g
in BMMP.

3. (Updating extended support estimate by replacing its subset) To improve the support recovery performance, SP [9] and
CoSaMP [8] update an extended support estimate D by selecting k indices and replacing the rest of the selected indices in D
at each iteration. BMMP modifies this technique by selecting k =2 indices in a given extended support estimate D and
updating its complement in D at each step.

4. A ridge regression proposed by Wipf and Rao [13] is used to improve robustness to noise.
We use the following notations. The set f1;2;…; ig is denoted by f1 : ig. The submatrix of a matrix A :¼ ½a1;…; an�2Rm�n,
where ai is its ith column, with columns indexed by J⊆f1 : ng is denoted by AJ. AQ denotes the submatrix of A with rows
indexed by Q⊆f1 : mg.R ðAÞ denotes the range space spanned by the columns of A. Au denotes the transpose of A. PR ðAÞ :¼
AðAuAÞ�1Au and P⊥R ðAÞ denote the orthogonal projection onto R ðAÞ and its orthogonal complement, respectively. k , k
denotes the Frobenius norm. For a set D⊆f1 : ng and a spaceR ðADÞ of Rd, _aiðDÞ :¼ P⊥R ðADÞai=

������P⊥R ðADÞai
������, and _ai :¼ ai= jjaijj.

Similarly, aiðDÞ :¼ P⊥R ðADÞai.
2. Partial support estimation by MAP

The proposed MAP-based algorithm for estimating a partial true support is introduced in this section. We assume the
following.U is uniformly distributed on f1 : ng. Each nonzero element u of x� is i.i.d and follows an arbitrary distribution fx� ðuÞ
whosemean and variance aremx and s2x , respectively. Each element inF andw follows the Gaussian distributionwhosemean
is 0 and variance is s2 and s2w, respectively.

Suppose that D⊆f1 : ng such that jDj ¼: d<m is a given partial support estimate. The goal of the proposed partial support
detection is to find an index set belonging to U y D by using the inner product used in RA-ORMP, giðDÞ :¼ rðDÞu _fiðDÞ for i2
f1 : ng y D, where rðDÞ :¼ P⊥R ðFDÞy is the residual vector, and _fiðDÞ :¼ P⊥R ðFDÞfi=

���P⊥R ðFDÞfi

���. giðDÞ represents the correlation
between the residual vector and i.

Although MAP support detection [6] estimates a partial true support from the likelihood ratio of the inner product hiðDÞ :
¼ rðDÞu _fi, where _fi :¼ fi=kfik, the proposed method uses the likelihood ratio of giðDÞ for i2f1 : ng y D. Note that giðDÞ and
hiðDÞ use _fiðDÞ and _fi, respectively. hiðDÞ can be interpreted as the correlation term in a normalized version of OMP since the
normalized vector _fi is used in hiðDÞ, whereas OMP uses fi in its correlation term ðP⊥R ðFDÞyÞ

u
fi. This indicates that the

proposed method additionally considers the orthogonal complement P⊥R ðFDÞ of FD for the column vector fi to represent the
correlation compared to MAP support detection. Since each vector space R ð _fiðDÞÞ for i2U y D is guaranteed to belong to a
space ∪j2U y DR ðP⊥R ðFDÞfjÞ, which is extended from the residual space R ðP⊥R ðFDÞyÞ, the index selection based on giðDÞ may
more successfully find the index in U y D compared to that based on hiðDÞ. This is because it is not guaranteed that each
vector spaceR ðhiðDÞÞ for i2Uy D belongs to the extended residual space ∪j2U y DR ðP⊥R ðFDÞfjÞ. The study [10] showing that
RA-ORMP improves the simultaneous OMP (SOMP) indicates that the index selection using giðDÞ is a better approach than
hiðDÞ. Thus, it also supports our claim.

The proposed partial support detection uses an estimate of jUy Dj. This is obtained by the following derivations.
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q
, (a) follows from the independence assumption, and (b) follows from Lemma 1 (with A ¼F and b ¼
x x x D

fl or w) in that E½kflðDÞk2� ¼ s2,ðm� dÞ and E½kwðDÞk2� ¼ s2w,ðm� dÞ. Then, the estimate JðDÞ for jUy Dj is given as

JðDÞ :¼
max

�
krðDÞk2

.
ðm� dÞ � s2w; 0

�
s2,v2x

: (1)
Note that the following equalities hold for i2f1 : ngy D

giðDÞ¼
ðaÞ _fiðDÞu

� X
l2U y D

flðDÞxl þwðDÞ
�

¼ jjfiðDÞjjxi þ
X

l2U y ðD∪figÞ
_fiðDÞuflðDÞxl þ _fiðDÞuwðDÞ; (2)

� P

where xi is the ith element of x and (a) follows from rðDÞ ¼

l2U y D
flðDÞxl þwðDÞ. Our derivation in the rest of this section is

based on [6]. From the equalities in (2), giðDÞ becomes the right-side terms in (3) and (4) under the null and true hypoth-
esesdT 0 and T 1, respectively. For T 0, i does not belong to U, and xi ¼ 0. For T 1, i belongs to U, and xi ¼ u.

T 0 : giðDÞ¼
X

l2U y D

_fiðDÞuflðDÞxl þ _fiðDÞuwðDÞ (3)

T 1 : giðDÞ¼ kfiðDÞkuþ
X

_fiðDÞuf ðDÞx þ _fiðDÞuwðDÞ (4)

l2U y ðD∪figÞ

l l
From (2) and (3), the expectation and variance of zi :¼ giðDÞ under the null hypothesis can be respectively approximated as
follows:
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JðDÞ,s2v2x þ s2w ¼: ~s20;

(6)

where (a) and (b) follow from the circular symmetry of the Gaussian distribution and (1), respectively. Similarly, by (4) and
Lemma 1 (with A ¼ FD and b ¼ fi), the expectation and variance of zi under the true hypothesis are obtained respectively as

E½zijxi ¼ u� ¼E
�jjfiðDÞjj2u


 ¼ stu (7)

and

E½ðzi � E½zi�Þ2jxi ¼ u�
x

X
l2UyðD∪figÞ

E½ð _fiðDÞuflðDÞÞ2�v2x þ E½ð _fiðDÞ
u
wðDÞÞ

2
�
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(8)

where t : ¼
ffiffiffi
2

p
,G
�
1þm�d

2

�
G
�
m�d
2

�
, and Gð,Þ is the Gamma function.

Then, using (5)e(8), we obtain the log-likelihood ratio QðziÞ :¼ lnðPði2UjziÞ=Pði;UjziÞÞ as follows.
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where (a) follows from the Gaussian approximation of the conditional distributions of zi given xi ¼ 0 (T 0) by using (5) and (6)
and given xi ¼ u (T 1) by using (7) and (8).

Therefore, the proposed method estimates a partial true support as an index set L by selecting the jLj largest ratios QðziÞ
for i2f1 : ng y D in ð9Þ. Note that QðziÞ is propotional to (10) when each nonzero element of x� follows the uniform dis-
tribution fx� ðu; a;bÞ ¼ 1=ðb� aÞ for a� u � b
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!!
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where erfðxÞ :¼ 2ffiffiffi
p

p
R x
0 e�t2dt.

3. Algorithm description

Algorithm 1. BMMPðy;F;k;g; ε;l;pÞ

The proposed method, BMMP (Algorithm 1), for estimating x� and U is introduced in this section. BMMP returns (bx; bU) as
estimates of (x�;U) given the tuple (y;F;k;g;ε), where g is the number of support candidates fromwhich the final support is
estimated, and ε is a threshold used to terminate BMMP when the residual error is smaller than this value. The estimate bU is



Fig. 1. Description of BMMP: bU is the support estimate obtained from BMMP and g is the number of multiple support candidates among which bU is selected. We
note that the tth support candidate Ut is obtained by selecting k incides from an extended support estimate Dt whose size is smaller than or equal to m, which is
generated by iteratively selecting t indices of the t-largest log-likelihood ratios QðgiðDtÞÞ for i2f1 : ngy Dt and adding them to Dt .
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obtained in Steps 23e24 by selecting one of g support candidates ( _Ut for t2f1 : gg) with the minimum residual error. The tth
support candidate _Ut in Step 23 is obtained by the iteration in Steps 3e18 consisting of the following four stages.

In the first stage (generate an extended support estimate D) in Steps 4e10, a set L of t indices in Step 8 is iteratively
obtained through the proposed partial support estimation1 and added to a set D in Step 9 until its size jDj is equal tom or the
residual error obtained from the estimate is smaller than ε, i.e.

������P⊥R ðFDÞy
������ � ε. In the second stage (generate a temporary

estimate x of x�) in Step 11, an estimate x of the signal vector supported on D is obtained by the ridge regression described in
Step 11. In the third stage in Steps 12e15, a temporary support estimate Uiþ1 is obtained by selecting the k-largest elements in
xD. The fourth stage in Steps 16e17 generates a subset of D by selecting k =2 indices from D. Then, the extended support
estimate D is reinitialized as the subset in the next iteration step. This iteration terminates and the tth support candidate _Ut is
obtained in Step 19 when the residual error obtained from the temporary support estimate Uiþ1 in Step 15 does not decrease
further in Step 3.

To enhance the robustness to noise, a ridge regression proposed byWipf and Rao [13] is used in Step 11 with the following
parameters ðg; hÞ obtained by minimizing the cost Lð,Þ in (11).

ðg; hÞ¼ argmin
g2Ra;h2R

LðF; yÞ :¼ log
���S���þ yuS�1y; (11)

where F :¼ FD2Rm�a is a submatrix of F with columns indexed by D, S ¼ ðh�2F
u
Fþ DðgÞÞ�1, and DðgÞ is the diagonal

matrix whose ith diagonal element is gi in g ¼ ðg1;…;gaÞu. We obtain an appoximated solution of ð11Þ by using sparse
bayesian learning (SBL) [13] to reduce the complexity.

In the noiseless case, the parameters ðg; hÞ in the ridge regression are set to zero so that the ridge regression becomes the
least-square regression (argmin

x2Rn
jjFDxD � yjj). The least-squares method has a lower complexity than SBL and it is well-known

that the least-squares method provides a unique solution as x� in the noiseless case if jDj � m, D⊇U, and FD has the full
column rank. If D⊇U holds, the inversion problem of CS can be simplified as an easier problem where F is replaced by its
submatrixFD compared to the original problem.When D has a larger size, the probability of satisfying D⊇U is greater. For this
reason, we set the maximal size of the extended support estimate D asm. Besides, it is guaranteed from Lemma 2 that in the

noiseless case, U is a subset of D (D⊇U) if jDj<m and
������P⊥R ðFDÞy

������ is equal to zero. Based on this fact, to minimize the size of D

satisfying D⊇U, we increase the size of D from 0 to m and find D satisfying the criterion
���P⊥R ðFDÞy

��� � ε in Steps 4e10. Fig. 1

illustrates the procedure of BMMP.
1 We note that QðziÞ in (10) is calculated by using the following values: ðy;D;s;mx;sx;swÞ. Step 6 in Algorithm 1 specifies these values as inputs of Qð,Þ.



Fig. 2. Performance comparison of BMMP and related algorithms.
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4. Numerical experiments

We compare the performance of BMMP and existing state-of-the-art algorithms such as MAP-gOMP,2 MAP-SP, MAP-
CoSaMP, MAP-OMP [6], RegL1 (l1 norm minimization with a nonnegative constraint).3 We note that MAP-SP, MAP-CoSaMP,
MAP-OMP are algorithms based on MAP support detection [6]. Each entry of F is i.i.d. and follows the Gaussian distribution
N ð0;1=mÞ with mean zero and variance 1 =m. The elements of ðx�ÞU are independently and uniformly sampled from 0 to 1.
Then, ðs;mx; sxÞ is ð1=

ffiffiffiffiffi
m

p
;1=2;1=

ffiffiffiffiffiffi
12

p
Þ.

The rate of successful support recovery, i.e., bU ¼ U, and the execution time of each algorithms in the noiseless case are
shown in Fig. 2(a) and Fig. 2(b), respectively. (m;n) is set to (128;256) in Fig. 2.We evaluate BMMPwhose input ðg; ε; lÞ is set to
ð4;kyk,10�SNRdB=20;ε2=mÞ, where SNRdB is the signal-to-noise ratio (SNR :¼ E

��FUxU0
��2= Ejjwjj2) in decibels. It has been shown
2 Two indices are selected at each step in MAP-gOMP.
3 RegL1 outputs the signal estimate bx ¼ ðx1 ;…; xnÞu by minimizing

P
i

��xi�� such that xi � 0 for i2f1 : ng and jjy� Fbxjj � twhere t is the noise magnitude.



Fig. 3. Performance comparison of the proposed partial support detection and the MAP support detection.

Fig. 4. Reconstruction performance comparison of a sparse image with compressed and noisy measurements.
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[14] that in the noiseless case, the maximal sparsity k required for an ideal approach to recover any signal vector x� such that��U�� � k is equal tom =2 givenm, where U is the support of x�; the l0 bound is denoted by this ideal limit of the signal sparsity
(m =2). Fig. 2(a) and (b) show that BMMP has a lower complexity than RegL1, outperforms other state-of-the-art methods, and
approaches the l0 bound, i.e., m =2 ¼ 64.

Fig. 2(c) illustrates the mean squared error Ekbx � x�k2 of each algorithmwhen SNR is varied from 20 to 40 dB,4 the sparsity
k is fixed to 60. It is observed that the signal reconstruction performance of BMMP is better than those of other methods in the
noisy case.

Fig. 2(d) shows how each of the following three techniques used in BMMP contributes to the performance improvement of
BMMP: exploiting the extended support estimatewith its maximal size equal tom (E ), usingmultiple support estimates (M ),
and iteratively updating the support estimate by replacing its subset (U ). BMMPyfU g refers to BMMPwithout U by setting
the value Pk=2R to 0 in step 16 in Algorithm 1. BMMPyfU ;M g denotes BMMP without fU ;M g by setting g to 1 in
BMMPyfU g. Similarly, BMMPyfU ;M ;E g indicates BMMP without fU ;M ;E g such that m (the maximum size of the
extended support estimate D) shown in steps 4e10 in Algorithm 1 is set to k and the remaining settings follow BMMPyfU ;

M g. It is shown that the performance improves in the order of BMMPyfU ; M ; E g, BMMPyfU ; M g, BMMPyfU g, and
BMMP; This demonstrates that the joint consideration of E ;M ; and U enhances the performance of BMMP.

To compare performance of the proposed partial support estimation and MAP support detection [6], we compare per-
formance of MAP-gOMP and its variant, which is obtained by replacing the MAP support detection with the proposed partial
support estimation inMAP-gOMP; the rest remains the same. Fig. 3 shows the rate of successful support recovery of these two
algorithms in the noiseless case where m is varied from 32 to 256 with k ¼ Pm=1:8R and n ¼ 2m. It is observed that the
proposed partial support estimation outperforms the MAP support detection [6].

To demonstrate the superiority of BMMP even in the real application, we shows the performance for reconstructing a
grayscale sparse image with size of 16� 16 pixels and sparsity k ¼ 248 in the noisy case when SNR¼ 25 dB in Fig. 4. This
image is compressed by using F2R138�256, whose elements are i.i.d. and sampled from the Gaussian distribution N ð0;
1 =138Þ with mean 0 and variance 1 =138. It is observed in Fig. 4 that BMMP recovers the image better than other methods.
5. Conclusion

We presented BMMP, which updates multiple extended support estimates with each size equal to m and performs a
likelihood ratio test given the correlation term in RA-ORMP. The numerical results show that BMMP achieves an improvement
in performance compared to existing state-of-the-art methods, even with noisy measurements. Future related studies will
consider the application of a technique for estimating themoments ofF,w, and x� to BMMP and the development of BMMP in
the case where the distribution of x� is designable or the a priori information of x� is available, i.e., a communication system
for nonorthogonal multiple access [15,16].
4 In the noisy case, x� is randomly sampled such that each of its non-zero elements is ranged from 0.1 to 1.
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Appendix A. Lemmas

Lemma 1. Let b2Rm be a vector such that its elements are i.i.d. and follow the Gaussian distribution N ð0; bs2Þ, and let
A :¼ ½a1;…; ad�2Rm�d be a matrix A with rank d<m. Then, it is guaranteed that E½

������P⊥R ðAÞb
������� ¼ bs,t and E½

������P⊥R ðAÞb
������2� ¼ bs2,

ðm� dÞ, where t :¼
ffiffiffi
2

p
,G
�
1þm�d

2

�
G
�
m�d
2

�
, and Gð,Þ is the Gamma function.

Proof. Let fe1;…; em�dg be an orthonormal basis of R ⊥ðAÞ. Then, P⊥R ðAÞb ¼ Pm�d
j¼1 ðbuejÞej. Note that each buej for j2

f1 : m� dg follows N ð0; bs2Þ by the isotropic property of the Gaussian vector [17]. Since it follows that

������P⊥R ðAÞb
������ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼1

m�d �
buej

	2vuut ;

������P⊥R ðAÞb
������ =bs follows the chi distributionwithm� d degrees of freedom. Then, the proof is completed by averaging the chi and

chi-squared distributions. ∎

Lemma 2. Suppose that every m columns in F exhibit full rank, y is uniformly sampled from R ðFUÞ, and the sparsity k is smaller
than m, i.e., jUj<m. Then, in the noiseless case, the following statements (a) and (b) hold for any set D⊆f1 : ng such that jDj<m.

(a) DSU holds if
���P⊥R ðFDÞy

���>0.
(b) D⊇U holds almost surely if

������P⊥R ðFDÞy
������ ¼ 0.

Proof. The following subspace E is defined as

E :¼ ∪G∢f1:ng s:t: jG∩Uj< jUj and jGj<mR ðFGÞ: (A.1)

For any setD⊆f1 : ng such that jDj<m, y;R ðF Þ holds if
������P⊥ y

������>0. IfD⊇U,R ðF Þ includesR ðF Þ so that y2R ðF Þ.
D R ðFDÞ D U D

Thus, y;R ðFDÞ implies that DSU so that the statement (a) is satisfied.
Given that from the assumption for F, the rank of R ðFUÞ is strictly larger than that ofR ðFGÞ∩R ðFUÞ for any index set G⊆

f1 : ng such that jG∩Uj< jUj and jGj<m, the event region satisfying y2R ðFUÞ∩E has Lebesgue measure zero on the range
spaceR ðFUÞ. Thus, the condition y2R ðFUÞy E holds almost surely. Given that the condition

������P⊥R ðFDÞy
������ ¼ 0 implies that y2

R ðFDÞ, y2R ðFDÞ∩ðR ðFUÞ y EÞ holds almost surely. And this condition y2R ðFDÞ∩ðR ðFUÞ y EÞ implies thatD⊇U from the
definition of E. Thus, the statement (b) is satisfied. ∎
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