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Abstract

The computational cost of preparing a quantum state can be substantial depending on the structure of
data to be encoded. Many quantum algorithms require repeated sampling to find the answer,
mandating reconstruction of the same input state for every execution of an algorithm. Thus, the
advantage of quantum computation can diminish due to redundant state initialization. We present a
framework based on quantum forking that bypasses this fundamental issue and expedites a family of
tasks that require sampling from independent quantum processes. Quantum forking propagates an
input state to multiple quantum trajectories in superposition, and a weighted power sum of individual
results from each trajectories is obtained in one measurement via quantum interference. The
significance of our work is demonstrated via applications to implementing non-unitary quantum
channels, studying entanglement and benchmarking quantum control. A proof-of-principle
experiment is implemented on the IBM and Rigetti quantum cloud platforms.

1. Introduction

Designing an efficient quantum algorithm to solve a computational task does not alone ensure a quantum
advantage over a classical counterpart, but there must also be an efficient procedure to prepare the desired initial
quantum state. Existing methods for preparing an arbitrary quantum state [ 1-9], a famous example being
quantum random access memory (QRAM) [10—14], introduce resource overheads, even though the hardware
and process complexities may scale efficiently with respect to the size of the data to be encoded. It is therefore
imperative to minimize the number of state preparation routines. An input quantum superposition state cannot
be reused for another task once measured due to the measurement postulate of quantum mechanics. Moreover,
the quantum state cannot be cloned. Hence, in general, one is forced to generate an input state in every execution
of a quantum algorithm. However, many quantum information processing tasks rely on repeating the
measurement for sampling the answer. Thus the true advantage of harnessing quantum mechanics for
information processing becomes unclear when the aforementioned redundancy is imposed. As a means to
circumvent this fundamental issue in certain applications, quantum forking (QF) was introduced in [14],
motivated by forking in classical operating systems that creates a separate address space for a child process for
multitasking [15]. In [14], the application was limited to estimating the inner product of quantum states.

In this work, we present quantum forking-based sampling (QFS) to accelerate various tasks that require
adding the results from independent quantum trajectories as a convex combination. With this framework, the
number of state preparation routines and measurements required for performing a weighted power summation
of measurement outcomes sampled from an arbitrary number of independent quantum processes remains
constant, though this is at the cost of introducing a control qudit, ancilla qubits in arbitrary states, and a series of
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Figure 1. Quantum forking circuit to create d independent processes, denoted by U, in superposition. The swap operation is
represented by two x symbols connected with a vertical line. The numbers in circles indicate the qudit state that activates the
controlled swap gate.

controlled swap gates. Moreover, QFS can be used to efficiently measure an arbitrary observable since a convex
combination of Hermitian operators is also Hermitian. This is particularly useful when directly measurable
observables are limited by experimental constraints. The weighted power summation of quantities measured in
multiple quantum processes is required in solving various problems in quantum science as we demonstrate with
examples in implementing a convex combination of quantum channels, detecting entanglement, and
characterizing quantum control. We realize a proof-of-principle experiment of a QFS on two quantum
computers in the cloud, the IBM Q 5 Tenerife [16] and Rigetti 16Q Aspen-1[17], demonstrating the feasibility of
the technique with near-term quantum hardware. QFS is fundamentally intriguing as it shows that without
violating the no-cloning theorem, a single quantum state with ancillary space suffices to accomplish tasks that
would naively require many copies of the quantum state.

Furthermore, when large-scale quantum hardware becomes available, a quantum operating system that
deploys efficient resource management and acts as an interface between qubits and quantum programs is of
fundamental importance [18]. Along with QRAM, the quantum forking algorithm developed here has the
potential to be used as a building block for such a quantum operating system.

The remainder of the paper is organized as follows. Section 2 reviews and further generalizes the quantum
forking framework which was first introduced in [14]. Next, we describe the QFS protocol for an arbitrary
weighted power summation of results from d independent quantum trajectories using a constant number of
state preparations and measurements in sections 3.1 and 3.2 for the expectation value measurement and the
projective measurement, respectively. In section 4, we illustrate how the number of state preparations can be
reduced in constructing a convex combination of quantum channels, which naturally enables the quantum
channel twirling, detecting entanglement witnesses (EWs), and purity benchmarking as example applications
for which QFS can be useful. Section 5 demonstrates the proof-of-principle implementation of a simple QFS
experiment on the cloud quantum computers, and section 6 concludes.

2. Quantum forking

Quantum forking is a process that creates an entangled state to allow a target quantum state |¢/) to undergo d
independent evolutions in superposition [14]. At the end of the computation, some measurement procedure is
employed to find the desired answer more efficiently compared to when the quantum state undergoes these
evolutions one at a time. This can be achieved by coupling the target state |/) to a control qudit (or log,(d)
qubits)andd — 1ancilla qubits in some arbitrary state | ), such that the target state undergoes independent
processes in d orthogonal subspaces. The quantum circuit for realizing QF is depicted in figure 1. The quantum
forking is initiated by the series of controlled swap (c-swap) gates controlled by the state of the qudit. These
gates evolve the total state as

) =aull) @ |¢) @ |¢) @ 9@ ... ® |dy_y)
+ ml2) ® [¢) ® [Y) @ [9)® ... @ |d,_,)

+ asl3) @ |9,) ® [¢) @ [P)® ... ® |9y 1)
+ ...
+ adld) @ |¢;_1) ® 1) ® |d,) @ ... Q@ |Ph). 6))
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(b)

Figure 2. Quantum circuits with forking for (a) linear and (b) quadratic summations of two measurement outcomes. The initial state
of the target qubit is denoted as 1), and |¢) and |¢, ,) represent an arbitrary initial state of the ancilla qubits. The target qubit
undergoes two independent processes, U; and U, in superposition via quantum forking. Performing the expectation value
(projective) measurement on the target qubit provides (a) linear or (b) quadratic sum of expectation values (probabilities) as described
in section 3.1 (section 3.2).

Hereinafter, the tensor product symbol is omitted for brevity when the meaning is clear. Equation (1) shows that
QF creates an entangled state whereby the target quantum state |¢)) is encoded in a different qubit for each
subspace referenced by the control qudit. Thus, by applying local unitaries, the target quantum state can undergo
dindependent processes simultaneously. For instance, the total state after the application of local unitary
operators becomes

[¥) = au|1) Uly) Ualdy) Usly) ... Uildy )
+ |2) Ull¢y) Unltp) Usl@y) ... Udlgy_ 1)

+ a3|3) Ullg,) Usly) Usly) ... Udld, )
+

+ agld) Ulg,_,) Ualdy) Usloy) ... Udlih). @)

The ancilla qubits can be untouched if desired, by using controlled unitary operators.

3. Quantum forking for sampling

3.1. Expectation value measurement
Quantum forking can be furnished with a measurement procedure to evaluate a weighted power sum of the
following form with only a constant number of initial state generations:

d q
2 p I (M), 3)
=1 j=1

J

where p; is a non-negative real number satisfying >~ p; = 1, qis a positive integer, and M; ; is an observable. In general,
estimating equation (3) to within e with a probability of error § requires O (q'd log(1/68) / €?) state preparations [19],
where g’ < g is the number of unique observables in the non-linear sum. QFS yields the same result with
O(qlog(1/6) /) state preparations, reducing the time complexity by about a factor of d. In the following, we explain
QFSforlinear (9 = 1) and quadratic (g = 2) sums using the cases where M; ; = M;,andd = 2.

3.1.1. Linear summation

Adding two expectation value measurement outcomes with equal weights can be done with one control qubit
and one ancilla qubit in an arbitrary state |¢), as depicted in figure 2(a). First, the control qubit is prepared in the
equal superposition state via the Hadamard gate (denoted H). The first c-swap gate then yields

ULIEESNEITE “

The two local unitaries transform the above state to

10) Uily) Ual @) + |1) Uil @) Uale)

D,) = . 5
Finally, another c-swap gate unforks, i.e. reverses the forking, such that the final state is
0)Uily) U + 1) Usly) Uy
) = |0) Uily) Ualg) + |1) Unlth) 1|<Z5>. ©)
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Now the expectation value of an observable M measured on the target qubit gives the desired average of the two
quantities:

(M) = <<I>f|ll QM® Jl|<I>f>

- §(<0|0> (M) (G1U Ul + (111) (My) (@I U] Uil))

- §(<M1> + (M), %

where M; = U]TMIJ]-.

If one performs the local measurement on both target and ancilla qubits without unforking, i.e. directly on
|®,), the measurement outcomes are (®,|1 @ M & 1|®,) = ((Y|Mi|Y) + {(d|Mi|¢)) /2 and
(D1 ® 1 ® M|®y) = (YIM]Y) + (4IM;]h)) /2. Thus if (¢|M;j|¢) is known, the linear sum shown in
equation (7) can be calculated without the reversal c- swap gate at the cost of performing the local measurement
on the ancilla qubit as well. We narrow our discussion to the general case without such a priori information, and
focus on the quantum forking with the unforking step.

There are several interesting remarks. First, the ancilla state |¢) can be arbitrary and even unknown. Asa
result, one can use any state that is the easiest to prepare in the given experimental setup, such as a thermal
equilibrium state or a leftover state from the previous algorithm. We assume that the computational cost of
preparing such states is negligible compared to the cost of |¢)) preparation. Second, the same outcome can be
obtained when the control qubit is initially prepared in |1), since this only alters the sign of the second term in
equation (4). Thus the maximally mixed state can be used as the initial state of the control qubit. This state is
more difficult to prepare, but we assume that the cost is still negligible compared to that of the preparation of [¢)).
Third, the weights p; can be manipulated by initializing the control state to either a mixed state Y~ p,|i) (il, ora
purestate 3,  /p;|i). Finally, the unitary operators can be replaced with any quantum channel. The last two
remarks are supported by the following. Let the initial state be represented as a density matrix
p; = (p10) (0] + p,|1) (1) ® p,, @ p. The full QFS protocol produces the final density matrix
P = 210) (0] ® Ai(py) @ Aa(py) + p,l H{l ® Az(pi/,,) ® Al(p¢), where A;is a completely positive trace
preserving (CPTP) map. Then the expectation value measurement gives

(M)=tr(l ® M ® lp)
= p,tr(|0) (0D tr(M Ay (p ) tr(Aa(py)) + pytr(|1) (1D tr(M Aa(p,) tr(As(py))
= pr(MAi(py) + pytr(MAx(py)). )

Since off-diagonal terms in the density matrix of the control qubit vanish in the expectation value, equation (8)
also holds for a control qubit initialized in a pure state with probability amplitudes whose absolute squares
correspond to the weights.

3.1.2. Quadratic summation

To evaluate the squared sum of expectation values with QFS, two qubits prepared in |¢)) and two arbitrary
ancillae are needed. A series of c-swap gates initiates QF, and each pair of the qubits experiences the
independent unitary evolutions denoted by U, and U,, respectively. After additional c-swap gates unfork, the
final state is given as

€
V2

Now measuring (M ® M) on the target qubits gives

V) = —=(10) Ullv)) UlY) Ul ) Ual ) + 11) Ual)) Ualeh) Uil y) Ul ). )

(M@ M)=(Ylleo M Mo 1o 1|J)
= ~(010) (VM1 (W1MI) (61U Ui (61U Uil
+ (111) (QIML]) (IML]) (9| UY Ullgy) (bl Uf Uil g,))
- %(<M1>2 + (My)?). (10)
The procedure is shown in figure 2(b). By the same argument used above, the maximally mixed state can be used

as the initial state of the control qubit, and anylocal CPTP map can be used instead of the local unitaries.
Moreover, the control qubit can be replaced with a mixed state 3, p;|i) (il, orapurestate 3,  /p; |i) in order to

assign unequal weights. Note that more general non-linear sums, such as Z;-i p; (M) (N;), can also be evaluated
by measuring (M ® N).
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3.1.3. General summation
In general, a density matrix in the following form can be used as an input to QFS circuit for evaluating
equation (3)

d
o= B i)kl @ 1@ p, 1D
jok

where p,is a density matrix for g(d — 1) arbitrary ancilla qubits. At the end of a QFS circuit, the final density
matrix is given as

d d d
pr =210 (1 ® Ajlp)™ @ p+ 320 [pipel ) (K., (12)
)

=k

where p; is the density matrix for the ancilla qubits that does not contribute to the measurement result of the
target qubit. Measuring the expectation value of a g-local observable (9 M; yields the weighted power sum in
equation (3).

3.2. Projective measurement

A QFS circuit can also be followed by the projective measurement on the target qubit with an operator I1,,,,
which projects the target state onto the mth subspace with the probability Pr(m|p,) = tr(IL,,pp). Thusif g copies
of a target qubit undergoes independent quantum channels and are measured with a g-local projector, ®;7 1L s
the probability to measure the target qubit state in the mth subspace is

q
Pr(m|p) = ZPitrl:®Hj,mAi(Pw)®q]
i j

q

i j

q
=2 [T PrimlAi(py), fl. (13)

J

Therefore, the projective measurement on the target qubit yields the weighted power sum of the probabilities of
an outcome, which would be obtained in a series of independent quantum measurements, without performing
each measurement individually.

3.3. Discussion

A general QFS for evaluating equation (3) requires O (log(1/68) / €%) experiments with g target qubits, 1 control
qudit of dimension d, g(d — 1) ancilla qubits in any arbitrary (even unknown) states, and 2q(d — 1) c-swap
gates. The control qudit can be in the mixed state where an ith diagonal element of the density matrix dictates the
weight p;. For uniform weights, i.e. p; = 1/d V i, the control qudit can be in the maximally mixed state. The
advantage of QFS becomes apparent when d is large and the preparation of the initial target state |t)) is complex.
The temporal cost of repeating the individual quantum circuits is traded for the spatial cost of having the ancilla
qubits in QF. But these ancilla qubits can be in any arbitrary state, and hence the cost of preparing them is
negligible. In fact, the same ancilla qubit can be repeatedly used for multiple QFS tasks without having to be
reinitialized. Another notable aspect is that the dephasing noise on the control qubit does not alter the result
since only the diagonal terms in the density matrix of the control qubit contribute to the measurement outcome,
and the c-swap does not propagate phase errors from the control qubit. On the other hand, QFS may be
impractical for large g when the g-local measurement is experimentally challenging to perform.

4. Applications

QFS for linear and quadratic summations can be applied to speedup various tasks in quantum science as we
demonstrate with the following examples.

4.1. Convex combination of quantum channels

When the CPTP map A, is a unitary operator, performing the linear summation (g = 1) using QFS naturally
implements a mixed unitary channel ®, which is a convex combination of unitary channels, i.e. ®(p) = 3¢ p.UpU;.
This can be seen in the following equation
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Figure 3. Quantum circuit with forking for twirling a quantum channel A with a finite set of unitaries U = {U, ..., U}. p, represents
the input density matrix that undergoes the quantum channel, and p, represents an arbitrary density matrix.

d
[l ® A ® 197 p] = 37 ptr(AUip, U))

d

= tr[A >_pUip, U,-*‘] = tu[AD(p,)], (14)
i=1

where A is a Hermitian operator and pyis given in equation (12) for ¢ = 1. Since A can be any measurement

operator, the expectation value measurement or the projective measurement preceded by a mixed unitary

channel for an arbitrary number of unitary operators can be carried out using only a constant number of state

preparations and measurements.

The QFS procedure to construct a convex combination of unitary channels can naturally extend to quantum
channel twirling. Twirling has been established as an important technique in quantum information science that
appears in a variety of contexts, such as entanglement purification [20, 21], characterizing quantum processes
[22-27], studying the performance of quantum error correcting codes [28—30], and quantum error mitigation
[31,32]. Twirling a quantum channel A with a finite set of unitaries, i = { U, ..., Uy}, gives the averaged
channel as

d
Ap) = > p, U AU pU) U (15)
i=1
The quantum circuit for twirling a quantum channel A with a single state preparation via quantum forking is
depicted in figure 3.
The target qubit initially given as p,,and d — 1 arbitrary ancilla qubits experience an identical quantum map

A in between forking and unforking steps, and the map in each qubit is conjugated by the elements of ¢/. The
final density matrix of the QFS protocol can be written as

d d d
pr=_pli) (il ® UfAUip, UDU; @ pi+ 303 Jepi1i) (jl®..., (16)
i i=j i
where p; represents the ancilla qubits that are irrelevant to the final result of our interest. The measurement on
the target qubit yields

d
[l ® A ® 1% p] = tr[A S P UIAUip, U) u—] = tr[AK(p,)], (17)

where A can be any measurement operator.

4.2. Entanglement witness

The linear summation can be utilized in the experimental measurement of EWs. This also serves as an example
in which QFS is useful for measuring an arbitrary observable. An EW is an observable that distinguishes an
entangled state from separable ones, and is generally a useful tool in quantum information science for studying
entanglement without relying on expensive quantum state tomography [33]. More formally, the expectation
measurement of an entanglement witness W gives tr(Wp,e,) = 0 for all separable state ps.p,, while there exists an
entangled state p.p, such that tr(Wpe,,) < 0. An EW can also be viewed as a hyperplane separating some
entangled states from the set of separable states [34]. Since W is a Hermitian operator, it can be written as a
convex combination of other Hermitian operators,i.e. W = Y, cjA;, A; = A; Vi,and ¢; € R Vi.Thus,an
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Figure 4. Quantum circuit with forking for measuring entanglement witness on a bipartite state |¥) for quantum teleportation.
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EW can be constructed by measuring the expectation values of experimentally available observables A;, and post-
processing the measurement outcomes with appropriate weights. With this, the benefit of QFS becomes
apparent. Instead of measuring the observables needed to construct the linear sum individually, QFS produces
the same result by measuring the expectation value of a single observable, i.e. the one that is the easiest to
measure in the laboratory, such as 0. To elucidate such a QFS application, we can consider an EW which
determines whether a given state is useful for performing quantum teleportation via QFS. The teleportation
witness operator can be writtenas W, = (1 ® 1 — oy ® oy + 0, ® 0, — 0, ® 0;) /4 interms of Pauli operators
[35]. A naive witness experiment requires measuring three two-qubit Pauli observables. Alternatively, the same
quantity can be evaluated with the QFS circuit shown in figure 4. Since there are three independent observables
tobe measured, i.e. d = 3, a qutritis needed to create three forking trajectories. Without loss of generality, the
ancilla qubits are all in the same state |¢) in the figure, but they can be in any state without altering the final
outcome. Using Ho, H = oy, S0, S" = —S70, S = 0,, where S denotes the phase gate, it is straightforward to
verify that the measurement of (0, ® o) on the target two-qubit state yields (o, ® 0, — 0, ® 0, + 0, ® o).
From this, W, can be obtained. Therefore, the use of QFS reduces the number of Pauli observables to be
measured from three to one. In practice, qutrits may not be available in a given experimental setup, and it could
be easier to prepare qubits. In the next example, we explain how to create three independent processes with equal
weights using two qubits.

4.3. Purity benchmarking for quantum control
Measuring the incoherent error rate of a quantum channel has significant implications in the development of
quantum devices. The incoherent error can be quantified using purity benchmarking [36, 37]. Purity
benchmarking can be combined with the standard randomized benchmarking protocol to distinguish coherent
and incoherent error, which is an important step to understand different types of noise affecting quantum
control. The purity benchmarking protocol requires the estimation of the purity P = Z;*”:’II(P]-Y ,of astate of n
qubits, where P; € {1, oy, 0,, 0,}*"\ 1" denotes an element in the set of #-qubit Pauli operators minus the
identity matrix. Thus, the number of expectation values to be evaluated increases exponentially with the number
of qubits. This is an example where d grows large very quickly, and g is small. Hence, this problem is well suited
for QFS. The single qubit purity benchmarking requires the quadratic summation (g = 2). Hence there must be
two target qubits provided at the beginning of the QFS protocol, and the ability to measure two-local
observables. In particular, we again assume that (0, ® o) is straightforward to evaluate. Furthermore, since one
needs to measure three observables, o, i € {x, y, z}, with equal weights, one control qutrit in the completely
mixed state and four arbitrary ancillae can be used.

In the absence of qutrits, one can use two qubits such that only three different trajectories are superposed with
appropriate weights. One way to achieve this is to prepare the control qubitsin H ® R, (6)|00) = (|00) +
[10))/~/3 + (|01) + [11))/~/6,where R,(0) is the rotation around y-axisand ) = Zarccosm. Then three
independent forkings can occur with the control states |00), |10),and (|01) + |11)) /~/2, allowing the given
trajectories to be measured with equal probabilities as desired. The QFS circuit for the single qubit purity measurement
is depicted in figure 5. As before, the ancilla qubits are all in the same state | ), but any state can be used without altering
the final outcome. The target qubits and the ancillae first undergo the same single-qubit quantum channel A. But just
before unforking, either H or HS" are applied to measure Ho, H = o,.or SHo, HS" = 0,,, as desired in the purity
measurement.
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Figure 5. Quantum circuit with forking for a quantum control benchmarking protocol to estimate the incoherence of noise in a
quantum channel A. The expectation value measurement of o, ® o, 0n two copies of a target qubit estimates the purity of a single
qubit after being transmitted through A.

(a)

0 /2 T 372 2« "0 f2 x  3m2  2n
0 0

Figure 6. (a) Quantum circuit with forking for discriminating the axis of the single qubit rotation in the Bloch sphere. Ry(f)) represents
the single qubit rotation around j by 6. The (0,) measurement on the target qubit yields ((o,) + (0ox))/2,and reduces the number of
Pauli observables to be measured for finding the unknown axis from two to one. Results from theory, IBM Q 5 Tenerife and Rigetti
16Q Aspen-1 are shown in (b)—~(d), respectively. Square, circle and diamond represent the expectation value of o, obtained when

j = x,yand z, respectively.

5. Experiment

We present the experimental results from a proof-of-principle implementation of QFS using the IBM Q 5
Tenerife [16] and Rigetti 16Q Aspen-1 [17] quantum processors. Suppose a single qubit is prepared by rotating
|0) around an unknown axis, either x, y or z, of the Bloch sphere by a known angle 6. After the state preparation,
by measuring at least two Pauli observables, the axis of rotation can be discriminated. Alternatively, the sum of
any two Pauli expectation values can be used. For example, (0,) + (o) results in cos(6), cos(f) + sin(d) or 1
for the rotation along x, y or z axis, respectively. Thus by measuring (o,) + (o) with respect to 0 reveals the
rotating axis. A simple three-qubit QFS with one Pauli expectation measurement can evaluate the same quantity.
The QFS circuit implemented with IBM and Rigetti cloud quantum computers is shown in figure 6(a). After
creating two forking paths via the first c- swap gate, a Hadamard operation is applied to the ancilla qubit for the
(0,) measurement. Then the final c-swap gate is applied to unfork, and (o,) measurement on the target qubit
yields the desired outcome.
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Theoretical calculations and experimental data obtained using the IBM and Rigetti quantum processors are
compared in figures 6(b)—(d). The square, circle and diamond symbols represent the expectation value of o,
when the rotation of an angle 0 is applied along the x, y and z axis, respectively. For each axis, three sets of
experiments are performed with a different direction of changing 6, that is varied from 0 to 2 in increments of
/8, and the results are averaged in order to suppress experimental bias in the direction of § that may arise due to
drift in calibration. In the first and second sets, § is uniformly increased and uniformly decreased, respectively. In
the last set, 8 is randomly selected between 0 and 27 in 7/8 increments. Each experiment is repeated for 8192
runs to collect measurement statistics. Thus each data shown in figures 6(c) and (d) is an average of 24576 runs.
Despite experimental deviations from theory as illustrated with the amplitudes errors of the curves, the QFS
protocol manifests successful discrimination of the initially unknown axis of the rotation with only a single
expectation value measurement using currently available cloud quantum computers.

6. Conclusion

We developed QFS as a tool to avoid redundant initial state preparations and significantly reduce the time
complexity of weighted power summation, which has wide applications in quantum science. Quantum forking
creates an entangled state that stores the quantum information in a different qubit in each subspace. Each
subspace undergoes independent quantum trajectories in superposition. Then quantum interference enables an
arbitrary weighted power summation of all outcomes from these quantum trajectories instantly in one
measurement. With this technique, the gth power summation of d measurement outcomes with arbitrary
weights can be carried out with the constant cost of initial state preparation, while requiring q(d — 1) ancilla
qubits given in arbitrary states, a control qudit with dimension d, g-local measurement and 2q(d — 1) c-swap
gates. The number of state preparation routines is reduced by O(d). Hence QFS is particularly useful when dis
large, the state preparation procedure is complex, and g is small. As examples, we showed how QFS can be
utilized to reduce the number of state preparations and measurements in the implementation of mixed unitary
channels, twirling quantum channels, EWs and benchmarking incoherence of noise in quantum control. The
proof-of-principle is demonstrated using the cloud quantum computers from IBM and Rigetti. Our results
show that for a particular family of problems, a single quantum state entangled to an arbitrary ancillary space can
be exploited to provide the result as if multiple quantum states are available without violating the no-cloning
theorem, paving the way for further research. In future work, we plan to apply QFS for quantum Monte Carlo
simulations, such as those used for quantum master equation unraveling, where the solutions of the quantum
master equation can be obtained as an ensemble average of the solutions to the stochastic Schrodinger equation
[38]. Finding other schemes with which the quantum forking can reduce the number of state preparations, even
by a constant amount, also remains an interesting open problem.
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