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Synergistic mechanisms 
of Sanghuang–Danshen 
phytochemicals on postprandial 
vascular dysfunction in healthy 
subjects: A network biology 
approach based on a clinical trial
Yeni Lim   1, Woochang Hwang2, Ji Yeon Kim   3, Choong Hwan Lee4, Yong-Jae Kim5, 
Doheon Lee   2 & Oran Kwon   1

With the increased risk of cardiovascular disease, the use of botanicals for vascular endothelial 
dysfunction has intensified. Here, we explored the synergistic mechanisms of Sanghuang–Danshen 
(SD) phytochemicals on the homeostatic protection against high-fat-induced vascular dysfunction in 
healthy subjects, using a network biology approach, based on a randomised crossover clinical trial. 
Seventeen differential markers identified in blood samples taken at 0, 3 and 6 h post-treatment, 
together with 12SD phytochemicals, were mapped onto the network platform, termed the context-
oriented directed associations. The resulting vascular sub-networks illustrated associations between 
10 phytochemicals with 32 targets implicated in 143 metabolic/signalling pathways. The three key 
events included adhesion molecule production (ellagic acid, fumaric acid and cryptotanshinone; VCAM-
1, ICAM-1 and PLA2G2A; fatty acid metabolism), platelet activation (ellagic acid, protocatechuic acid 
and tanshinone IIA; VEGFA, APAF1 and ATF3; mTOR, p53, Rap1 and VEGF signalling pathways) and 
endothelial inflammation (all phytochemicals, except cryptotanshinone; 29 targets, including TP53 and 
CASP3; MAPK and PI3K-Akt signalling pathways, among others). Our collective findings demonstrate 
a potential of SD to protect unintended risks of vascular dysfunction in healthy subjects, providing a 
deeper understanding of the complicated synergistic mechanisms of signature phytochemicals in SD.

Under normal homeostatic conditions, the vascular endothelium plays a critical role in maintaining normal vas-
cular tone and blood fluidity, by regulating leukocyte adhesion, platelet activity and thrombosis1,2. However, 
vascular epithelial homeostasis is continuously challenged by various life risk factors, such as obesity, smoking, 
dietary high-fat intake and ageing, resulting in unintended endothelial dysfunction. Vascular endothelial dys-
function is characterised by a decrease in nitric oxide availability and exaggeration of pro-inflammatory and 
pro-coagulation activities, which are coupled with alterations in various endothelial cell signal transductions3–5. 
These features will eventually lead to the development of cardiovascular disease if not correctly managed at an 
early disease stage1,6. As an initial preventive measure for controlling unintended vascular endothelial dysfunc-
tion, botanical phytochemicals may provide a health benefit.
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Our previous in vitro and in vivo studies demonstrated that a botanical food supplement, consisting of edi-
ble mushroom Sanghuang (Phellinus baumii) and the rhizome of Danshen (Salvia miltiorrhiza Bunge) (i.e., 
Sanghuang–Danshen, SD), effectively suppressed the development and progression of vascular endothelial dys-
function in a rat model injected with a collagen–epinephrine mixture, to induce platelet activation7. This obser-
vation motivated us to assess the efficacy of SD in a clinical trial. However, a traditional clinical setting has limited 
applicability in realising this intention. The first limitation is from the fact that the subtle and early changes that 
occur in response to botanical intervention can be easily masked due to the robust homeostasis and big inter-
personal differences of healthy subjects. Therefore, the differences in measured efficiency cannot be captured by 
measuring statistical significance between groups at P = 0.05. This issue can be resolved by combining emerging 
nutrigenomic technologies, specifically metabolomics, in a current clinical setting, allowing analysis of physiolog-
ical processes related to homeostatic protection against unintended damages confronted in daily life8. The other 
shortcoming is that traditional clinical trials are not designed to explain how botanical phytochemicals exert 
synergistic actions in the human body. This limitation can be overcome by applying emerging computational 
network biology to a traditional clinical setting9. Several computational network approaches are already available 
to the scientific community, for exploring the potential synergistic mechanisms involved in the modulation of dis-
ease by botanical products, including an anatomical context-specific network platform, termed context-oriented 
directed associations (CODA), recently constructed by our research group10–12.

Our present investigation aimed to explore how multiple phytochemicals in SD confer homeostatic protection 
against endothelial dysfunction in healthy subjects, by integrating clinical data and a content-rich biological net-
work. To this end, we conducted a randomised crossover clinical trial of SD in healthy subjects, to identify critical 
biochemical, molecular and metabolomic markers related to postprandial lipemia-induced epithelial dysfunc-
tion. The resulting data and signature phytochemicals of SD were then mapped onto the CODA. Furthermore, 
the signalling and metabolic pathways associated with SD administration were extracted from the CODA, to 
decipher the underlying mechanisms.

Results
Subject characteristics.  The flow diagram of the Consolidated Standards of Reporting Trials (CONSORT) 
for this study is shown in Fig. 1. Fifty-six subjects were enrolled for a specific administration sequence encom-
passing four dose levels (0, 300, 600 and 900 mg) of SD, which contains 12 signature phytochemicals7. There were 
five withdrawals: two on the second visit, and three on the fourth visit, due to personal reasons. Therefore, 215 
samples were analysed per protocol. Demographic and baseline clinical characteristics of the subjects demon-
strated that the participants were healthy adults aged 31–64 years (Table 1).

Identification of differential markers in the clinical setting.  The effects of SD on biochemical mark-
ers in blood over 6 h are shown in Fig. 2A. A high-fat intake yielded significant variations in the triglyceride (TG) 
and insulin levels in plasma, and the collagen/epinephrine (Col/Epi)-induced closure time (CT) in whole blood. 
SD consumption suppressed the extent of the TG fluctuations, resulting in a decrease in the areas under the 
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Figure 1.  CONSORT flow diagram of the study, including enrolment of the subjects through to data analysis, as 
well as the primary reasons for exclusion. All subjects who completed the study were analysed.
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curves (AUCs) (P < 0.0001). A similar tendency was shown in the insulin level, but this did not reach statistical 
significance because of the large variations within the groups. Consumption of the high-dose SD also effectively 
suppressed high-fat-induced platelet defects, as evidenced by the increase in the AUCs of the Col/Epi-induced 
CT (P = 0.0207).

Anti-platelet activation properties of SD were further analysed, by determining the changes in cyclooxygenase 
(COX)-1, COX-2, intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 gene 
expressions in peripheral blood mononuclear cells (PBMCs) over 6 h. A high-fat load produced consistently 
high expression levels of the COX-1, ICAM-1 and VCAM-1 genes. In contrast, SD consumption suppressed high 
fat-induced COX-1 (P = 0.0063, at a high-dose only) and VCAM-1 (P = 0.0021) gene expressions (Fig. 2B).

Finally, the metabolic profiles were determined in the placebo and high-dose groups at 6-h, using gas chro-
matography–time-of-flight–mass spectrometry (GC–TOF–MS). Both principal component analysis (PCA) and 
orthogonal partial least squares-discriminant analysis (OPLS-DA) exhibited a significant separation of the clus-
ters between the two groups, suggesting a considerable modification of plasma metabolites by SD administration 
(Fig. 2C). The heat map demonstrated the top 13 metabolites were significantly different between the two groups 
(Fig. 2D). The 7 metabolites (oleamide, cholesterol, oleonitrile, stearic acid, pyrophosphate, tryptophan and pro-
line) were significantly increased, and the 6 metabolites (aspartic acid, 9,12-octadecadienoic acid, glucose, gly-
cine, arachidonic acid and 5-oxoproline) were significantly decreased in the SD group compared with the placebo 
group (Supplementary Table S1).

Identification of component-target-phenotype associations in vascular subnetwork.  To under-
stand the synergistic actions of SD phytochemicals against vascular endothelial damages from a network per-
spective, we first constructed a correlation network, by mapping 17 different markers obtained from the clinical 
setting, and 12 signature phytochemicals analysed from SD (Supplementary Fig. S1), onto the CODA. The result-
ing four-layered network consisted of 281 nodes and 1008 edges (Fig. 3A and Supplementary Table S2). Target 
proteins were further grouped by the three key functional events in adhesion molecule production (PLA2G2A/
VCAM-1/ICAM-1, the triangle symbol), platelet activation (VEGFA/APAF1/ATF3, the hexagonal symbol) and 
endothelial inflammation (TP53/AKT1/BCL2/BCL2L1/CASP3/CD14/CDK2/CSNK2A1/CYP1B1/CYP2E1/
FOS/GSK3B/HNRNPK/JUN/MET/NFKB1/NFKB2/PCNA/RECK/RELA/RXRB/SIRT1/STAT3/TGFBR1/
TGFBR2, the round symbol). The resulting vascular subnetwork (Fig. 3B) identified that 10 out of 12 phytochem-
icals interacted directly with the above 32 target proteins (the target protein names are detailed in Supplementary 
Table S3).

Most of the phytochemicals, except danshensu and tanshinone I, had multiple numbers of target proteins, 
offering insight into their diverging results. Ellagic acid presented the broadest target scope (degree = 23), fol-
lowed by salvianolic acid B (degree = 6), tanshinone IIA and protocatechuic acid (degree = 5), caffeic acid, fuma-
ric acid and salvianolic acid A (degree = 3), and cryptotanshinone (degree = 2). Similarly, some targets were 
linked with more than two phytochemicals, implicating synergistic actions of phytochemicals on specific tar-
get proteins. CASP3 displayed a particularly high number of phytochemical connections (degree = 6), followed 
by BCL2 and RELA (degree = 4), BCL2L1 (degree = 3) and AKT1/APAF1/ATF3/CYP2E1/ICAM-1/TGFBR1/
TGFBR2/TP53/VCAM-1 (degree = 2).

Construction of the target-specific metabolic/signalling pathways associated with the vascular 
endothelial function.  To explore the underlying mechanisms, we further analysed the metabolic/signalling 
pathways related to vascular endothelial dysfunction, using the CODA network platform. A total of 143 meta-
bolic/signalling pathways, involving 32 targets and 10 SD phytochemicals were identified (Fig. 4). The functional 
annotation and pathway enrichment analysis revealed that α-linolenic acid metabolism was implicated in adhe-
sion molecule production with PLA2G2A while arachidonic acid metabolism and linoleic acid metabolism were 

Characteristics Value

Gender (male/female) 10/41

Average age (years) 44.5 ± 1.1

Alcohol consumption (n, current drinker/non-drinker) 29/22

Cigarette smoking (n, current smoker/non-smoker) 6/45

Total energy expenditure (kcal/day) 1694.1 ± 211.9

Waist (cm) 79.2 ± 1.0

Height (cm) 163.6 ± 1.0

Body weight (kg) 59.7 ± 1.3

Body mass index (kg/m2) 22.2 ± 0.4

Body temperature (°C) 36.5 ± 0.0

Systolic blood pressure (mmHg) 115.5 ± 2.0

Diastolic blood pressure (mmHg) 72.1 ± 1.5

Pulse (beats/min) 68.7 ± 1.7

Fasting blood glucose (mg/dL) 95.3 ± 1.4

Recommended food score 24.2 ± 1.0

Table 1.  Demographic and baseline characteristics of the participants. Values are expressed as mean ± SEM.
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involved either in adhesion molecule production with PLA2G2A or in endothelial inflammation with CYP2E1. 
The mTOR, p53, PI3K-Akt, Rap1 and VEGF signalling pathways were closely related either to platelet activation 
with VEGFA/APAF1 or endothelial inflammation with AKT1/BCL2/CASP3/NFKB1/RELA/TP53. Of the meta-
bolic/signalling pathways speculated to be involved in endothelial inflammation, the MAPK signalling pathway 
had the most number of target proteins (AKT1/CASP3/CD14/JUN/NFkB1/NFkB2/RELA/TGFBR1/TGFBR2/
TP53), followed by the PI3K-Akt (AKT1/BCL2/BCL2L1/GSK3B/MET/NFkB1/RELA/TP53), Toll-like receptor 
(AKT1/CD14/FOS/JUN/NFkB1/RELA), TNF (AKT1/CASP3/JUN/NFkB1/RELA) and cAMP (AKT1/FOS/
JUN/NFkB1/RELA) signalling pathways (Supplementary Table S4).

Discussion
To the best of our knowledge, this is the first attempt to apply emerging analytical technologies and computa-
tional network biology to the traditional clinical setting, to overcome the current limitations in understanding 
how botanical phytochemicals exert homeostatic control against unintended damages confronted in daily life. 
As a result, we were able to provide a detailed description of the synergistic actions of SD phytochemicals against 
postprandial-lipaemia-induced vascular endothelial dysfunction in healthy adults.

The first hurdle facing botanical research in the traditional clinical setting of healthy adults is that subtle and 
early changes cannot be captured by testing the statistical significance of individual biomarkers between groups. 
Therefore, we employed a high-fat challenge model, to magnify the responses to botanical intervention. This 
strategy was based on a growing body of evidence suggesting that an extended postprandial state in daily life 
may result in a temporary and reversible perturbation of platelet hyperactivity in the bloodstream, along with 
hyperlipaemia, hyperglycaemia and hyperinsulinaemia13–17. We then adopted the analysis of metabolites and gene 
expressions, for understanding the physiological processes potentially affected by SD consumption, using a sub-
tle and holistic approach18–20. Owing to the inherent sensitivity of metabolomics and gene expression, we could 
detect subtle alterations in biological pathways that might be useful for mining the underlying mechanisms in the 
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Figure 2.  Biochemical, genetic and metabolic changes over 6 h, in blood samples taken after consumption 
of placebo (○) or SD (● 300, ▲ 600 and ■ 900 mg) together with a high-fat-load in healthy subjects. (A) 
Triglyceride and insulin levels in plasma, and the collagen/epinephrine-induced closure time in whole blood; 
(B) COX-1, COX-2, VCAM-1 and ICAM-1 gene expressions in PBMCs; (C) PCA and OPLS-DA score plots 
derived from GC–TOF–MS metabolites in plasma; and (D) heat map of differentially changed metabolites. 
COX, cyclooxygenase; ICAM-1, intercellular adhesion molecule-1; OPLS-DA, orthogonal partial least squares-
discriminant; PBMCs, peripheral blood mononuclear cells; PCA, principal component analysis; analysis; SD, 
Sanghuang–Danshen; VCAM-1, vascular cell adhesion molecule-1. Values are expressed as mean ± SEM. The 
different letters indicate significant differences at P < 0.05.
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following network analysis21. For the gene expression experiment, we decided to use PBMCs because over 80% 
of the gene expression in PBMCs is shared with most genes expressed in different human tissues, thereby serving 
as genetic “footprints” in blood22. Our recent animal study7 also confirmed that gene expression in PBMCs was 
remarkably compatible with that in the aorta, demonstrating that it can be applied to understand the events in 
the vascular endothelium.

The next hurdle encountered in a traditional clinical trial is that it is not designed to explain the synergistic 
actions of botanical phytochemicals. To date, preclinical studies have been carried out to investigate the synergis-
tic effect of phytochemicals using more than two compounds individually and in combination23. More recently, 
high-throughput screening has been used in the identification of potential targets, bioactive components in 
botanicals and their synergistic interactions. However, these approaches are rarely successful in screening all 
possible cases, due to component diversity and target complexity11. The computational network approach is now 
available, providing increased opportunities to understand complex interactions between multiple phytochemi-
cals in botanicals and multi-targets in the human body24. In our study, we constructed a vascular subnetwork to 
expand our knowledge on the synergistic effects of SD phytochemicals and fundamental biological mechanisms, 
by mapping the observed impact and omics data obtained from a comprehensive clinical trial to the CODA net-
work platform.

The vascular subnetwork constructed in this study captured platelet activation, adhesion molecule produc-
tion and endothelial inflammation, as key biological events related to the effects of SD against postprandial 
lipaemia-induced vascular dysfunction. The network demonstrated that fumaric acid in Sanghuang, together 
with cryptotanshinone in Danshen, were directly connected with VCAM-1 and ICAM-1, related to adhesion 
molecule production25. Meanwhile, ellagic acid (in Sanghuang) was also involved in adhesion molecule pro-
duction, by regulating PLA2G2A, implicated in arachidonic acid, α-linolenic acid and linoleic acid metabolism. 
PLA2G2A, a member of the phospholipase A2 family, hydrolyses membrane phospholipids to fatty acids, which 
activate NF-kB activation and, ultimately, ICAM-1 expression26,27. In this way, fumaric acid, cryptotanshinone 
and ellagic acid would exert a synergistic influence on vascular health, by regulating adhesion molecule produc-
tion, using common or separate mechanisms.

The protocatechuic acid in Sanghuang was recognised to bind to VEGFA, implicated in the mTOR, PI3K-Akt, 
Rap1 and VEGF signalling pathways. VEGFA is released during platelet activation, as a growth factor involved 
in microvascular development via its phosphorylation of downstream targets of Akt and mTOR in endothelial 
cells28. Also, VEGFA stimulation induces activation of Rap1, which regulates endothelial cell growth, migra-
tion, proliferation and tubule formation, by triggering Akt-eNOS signalling29. Concurrently, ellagic acid (in 
Sanghuang) and tanshinone IIA (in Danshen) were linked to APAF1, implicated in the p53 signalling pathway. 

Figure 3.  Component–target–phenotype network. (A) Overview of the four-layered network, and (B) 
the associations between phytochemicals and targets related to endothelial inflammation (round), platelet 
activation (hexagonal) and adhesion molecule production (triangle). Phytochemicals from Sanhuang (green) 
include CA, caffeic acid; EA, ellagic acid; FA, fumaric acid; PCA, protocatechuic acid. Those from Danshen 
(red) include CT, cryptotanshinone; DA, danshensu; SA, salvianolic acid A; SB, salvianolic acid B; TI, 
tanshinone I; TIIA, tanshinone IIA.
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In human platelets, APAF1, cytochrome c, and caspases-3 and -9 cooperate as an essential element of the mito-
chondrial death pathway30,31.

All phytochemicals, except cryptotanshinone in Danshen, were linked to 29 different target proteins related 
to endothelial inflammation. Among them, ellagic acid, in Sanghuang, was highly integrated with many differ-
ent signalling pathways in endothelial inflammation, and thereby presented the broadest impact. This finding is 
compatible with previous studies that report protective effects of ellagic acid against oxidant-induced endothelial 
inflammation and atherosclerosis32,33. Conversely, the target interacting the greatest number of phytochemicals 
(ellagic acid, fumaric acid and protocatechuic acid in Sanghuang, and danshensu, salvianolic acid A, salvianolic 
acid B and tanshinone IIA in Danshen) was TP53, which is a transcriptional factor inducing cell cycle arrest, 
apoptosis or changes in metabolism in response to cellular stress34. Activation of TP53 is speculated to be influ-
enced by several mechanisms, including MAPK, PI3K-Akt, sphingolipid, thyroid hormone, p53 and Wnt signal-
ling pathways, suggesting its role as a hub. The next rank was CASP3. Ellagic acid, caffeic acid and protocatechuic 
acid in Sanghuang, and salvianolic acid A, salvianolic acid B and tanshinone IIA in Danshen, were connected to 
CASP3, mediated by the MAPK, TNF and p53 signalling pathways. CASP3 is involved in the sequential activation 
of caspases responsible for the execution of cell apoptosis35.

In summary, we demonstrated that the strategy of applying a high-fat challenge with metabolite and gene 
analyses to a traditional crossover clinical trial allowed detecting subtle and early effects of SD on maintaining 
vascular homeostasis in healthy subjects. Also, subsequent mapping of the outcomes observed in a clinical trial 
onto an in silico network model (CODA), enabled a deep understanding of the complicated synergistic mecha-
nisms of SD phytochemicals. However, it is worth mentioning the limitations of our study. This study describes 
the acute outcomes after a single administration of SD. The results of another clinical trial has been recently 
published by our research group to report the vascular endothelial effects of 4-week SD consumption at 900 mg/
day in healthy chronic smokers36. In addition, the contribution of this study is limited to provide a qualitative 
description of the relationship between the phytochemicals and targets. An extensive statistical analysis is cur-
rently under way to quantify. Even with these limitations, our approach is a novel and useful tool to overcome the 
inherent limitations of traditional clinical trials, for evaluating the effectiveness of botanicals in healthy subjects, 
although further refinement is necessary. This in silico model may also be used reversely, to find botanicals con-
taining bioactive phytochemicals.

Figure 4.  Target–pathway network. Targets related to endothelial inflammation (round), platelet activation 
(hexagonal), and adhesion molecule production (triangle) were linked with metabolic/signalling pathways ( ).
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Subjects and Methods
Study products.  The SD and a colour-matched placebo were provided by Pulmuone Foods Co., Ltd. (Seoul, 
Korea). Details on the preparation of SD are described in our previous publication7. The following 12 signature 
phytochemicals were quantified using a high-performance liquid chromatograph coupled with a diode array 
detector and MS/MS: caffeic acid, ellagic acid, fumaric acid, hispidin and protocatechuic acid from Sanghuang, 
and cryptotanshinone, danshensu, rosmarinic acid, salvianolic acid A, salvianolic acid B, tanshinone I and tan-
shinone IIA from Danshen (Supplementary Fig. S1)7. For standardisation purposes, protocatechuic acid (0.45–
1.5 μg/g) and tanshinone IIA (50 μg/g) were chosen as marker components. The gelatine capsules were used for a 
double-blind challenge.

Subjects and study design.  Based on a previous study37, the estimated sample size of 56 subjects per 
group provides a statistical power of 80% to detect a difference in platelet aggregation, using a two-sided sig-
nificance level of α = 0.05 and assuming a 20% attrition rate. The study followed a randomised, double-blinded, 
placebo-controlled crossover design. Subjects were recruited through poster advertisements. Eligible subjects 
were apparently healthy adults aged between 30 and 65 years old. Subjects were excluded if any of the following 
criteria were present: (1) body mass index >35 kg/m2; (2) a history of body weight change ≥10% in the previous 
8 weeks; (3) exercising >10 h/week; (4) cigarette smoking >1 pack/day; (5) alcohol consumption >140 g/week; 
(6) use of medication or dietary supplements in the previous 4 weeks; (7) a history of platelet dysfunction, hyper-
tension, stroke, diabetes and thyroid disease; (8) a history of hypersensitivity in test material; and (9) pregnancy 
or breastfeeding. Written informed consents were received from all participants before their participation in this 
study.

Fifty-six eligible subjects were enrolled in the trial and randomly assigned to receive one of the test samples in 
four sequences (placebo, 300, 600 or 900 mg SD), using computer-generated block randomisation (block size of 
four), performed by an independent researcher. Each session began with the collection of venous blood at fasting 
(t = 0) and 3 and 6 h after consuming each a high-fat-loaded test sample (total 900 kcal; 58.9% energy from fat, 
33.3% energy from carbohydrate, and 7.6% energy from protein). Treatment visits were scheduled 1 week apart. 
During the entire trial, the subjects were advised to maintain their regular diet and lifestyle, which were monitored 
through a mobile phone app. The study was conducted according to the Declaration of Helsinki and approved by 
the Institutional Review Board of Ewha Womans University Medical Centre (EUMC 2014-04-012-014) and Ewha 
Womans University (79-1). The study was also registered in the World Health Organisation (WHO) International 
Clinical Trials Registry Platform, under the following identification: KCT0001193 (05/08/2014).

Biochemical analysis of plasma.  Plasma TG was measured by an automatic analyser (Hitachi 7600, 
Hitachi Co., Tokyo, Japan). Plasma insulin was determined by a human insulin enzyme-linked immunosorbent 
assay kit (Abcam, Cambridge, UK). CT was measured in whole blood collected in 3.8% trisodium citrate, by using 
a Col/Epi cartridge in a PFA-100 instrument (Siemens Healthcare Diagnostics, Marburg, Germany).

Target gene analysis in PBMCs.  Total RNA was extracted from PBMCs using TRIzol (Invitrogen, San 
Diego, CA, USA). The concentration and quality of the RNA were measured using a BioSpec-nano (Shimadzu 
Corp., Tokyo, Japan), and total RNA was reverse-transcribed using a high-capacity cDNA reverse transcription 
kit (Applied Biosystems, Foster City, CA, USA). The TaqMan method was used to quantify the expression of 
COX-1 (Ptgs1; Hs00377726_m1), COX-2 (Ptgs2; Hs00153133_m1), ICAM-1 (Icam; Hs00164932_m1), VCAM-1 
(Vcam; Hs01003372_m1) and β-actin (Actb; Hs01060665_g1). The relative amounts of these mRNAs were nor-
malised to the amount of β-actin, and the relative amounts of the RNAs were calculated using the comparative 
CT method.

Metabolomic analysis in plasma.  Each plasma sample of the placebo and high-dose SD groups 
was treated with ice-cold MetOH (containing 2-chloro-l-phenylalanine as an internal standard), soni-
cated, left at 4 °C for 1 h and then centrifuged (13,500 g/4 °C/10 min). The supernatant was filtered, dried, 
oximated (30 °C/90 min) with methoxyamine hydrochloride in pyridine, and trimethylsilylated with 
N-methyl-N-trimethylsilyl-trifluoroacetamide (37 °C/30 min). The GC–TOF–MS analysis was performed by 
using an Agilent 7890 gas chromatograph system (Agilent Technologies, Palo Alto, CA, USA) coupled with 
an Agilent 7693 auto-sampler (Agilent Technologies) and equipped with a Pegasus® HT TOF–MS (LECO, St. 
Joseph, MI, USA) system. An Rtx-5MS column (30 m × 0.25 mm, 0.25 μm particle size; Restek Corp., Bellefonte, 
PA, USA) was used with a constant flow (1.5 mL/min) of helium as carrier gas. One microliter of the sample was 
injected into the GC. The oven temperature was initially maintained at 75 °C for 2 min and then ramped at 15 °C/
min to 300 °C, and held for 3 min. The temperatures of the front inlet and transfer lines were 250 and 240 °C, 
respectively. The electron ionisation was carried out at −70 eV and full-scan data were acquired over a range of 
50–1000 m/z.

Statistical analysis.  The postprandial time-series data for each subject were normalised to the respec-
tive t = 0 baseline value before the mean values were computed. The response of each marker was quantified 
as the AUC, using the trapezoidal method38. Data were analysed by one-way ANOVA for repeated measures, 
followed by Tuckey’s multiple comparison test. Data were analysed using the SAS version 9.4 (SAS Institute, Cary, 
NC, USA), and a significance was assumed at a two-tailed P < 0.05. The quantitative GC–TOF–MS data were 
subjected to multivariate statistical analysis using SIMCA-P ver. 14.1 (Umetrics, Umea, Sweden). The overall 
effect was visualised by the PCA and OPLS-DA, followed by variable importance in the projection analysis, to 
identify significant and important variables. A heat map was generated based on differential metabolites, using 
MetaboAnalyst 3.0 (http://metaboanalyst.ca).
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Network analysis.  Two visual networks (component–target–phenotype, component–target–pathway) were 
constructed using the CODA. The first was designed in the following steps: (1) searching targets of signature 
components of SD, (2) searching related phenotypes and biological markers of vascular endothelial dysfunction, 
and (3) linking the components, targets and phenotypes, using the shortest paths between SD phytochemicals 
and markers of vascular endothelial dysfunction39. The biological marker–phenotype network is constructed by 
manual curation. The component–target–pathway was assembled in the following steps: (1) collecting all genes 
and metabolites that consisted of the above vascular subnetwork, (2) performing pathway enrichment analysis 
in a group of genes and metabolites, by Fisher’s exact test combined with a false discovery rate of <0.01, and (3) 
linking the component, targets, metabolites and enriched KEGG pathways http://www.genome.jp/kegg/pathway/
html). Both networks were visualised using Cytoscape 3.6.1 (http://cytoscape.org/).

Data Availability
The datasets generated and analysed during the current study are available from the corresponding authors on 
reasonable request.
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