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ABSTRACT

Hematopoietic stem cells (HSCs) in bone marrow are pluripotent cells that can constitute the 
hematopoiesis system through self-renewal and differentiation into immune cells and red 
blood cells. To ensure a competent hematopoietic system for life, the maintenance of HSCs 
is tightly regulated. Although autophagy, a self-degradation pathway for cell homeostasis, 
is essential for hematopoiesis, the role of autophagy key protein Atg5 in HSCs has not been 
thoroughly investigated. In this study, we found that Atg5 deficiency in hematopoietic cells 
causes survival defects, resulting in severe lymphopenia and anemia in mice. In addition, the 
absolute numbers of HSCs and multiple-lineage progenitor cells were significantly decreased, 
and abnormal erythroid development resulted in reduced erythrocytes in blood of Vav_Atg5−/− 
mice. The proliferation of Lin−Sca-1+c-Kit+ HSCs was aberrant in bone marrow of Vav_Atg5−/− 
mice, and mature progenitors and terminally differentiated cells were also significantly 
altered. Furthermore, the reconstitution ability of HSCs in bone marrow chimeric mice 
was significantly decreased in the presence of Atg5 deficiency in HSCs. Mechanistically, 
impairment of autophagy-mediated clearance of damaged mitochondria was the underlying 
cause of the HSC functional defects. Taken together, these results define the crucial role of 
Atg5 in the maintenance and the reconstitution ability of HSCs.
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INTRODUCTION

Hematopoietic stem cells (HSCs) are pluripotent cells that reside in the bone marrow 
and can differentiate into all blood cell lineages. The maintenance of HSCs is essential 
to ensure hematopoiesis is viable for the life of the organism. The HSC niche, a specific 
microenvironment where these cells form and reside, plays a pivotal role in maintaining 
HSCs via cell–cell contact and/or production of chemokines and cytokines (1,2). 
Furthermore, cell-intrinsic factors, such as GATA-2 (3) and Bim-1 (4,5) regulate HSC 
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self-renewal and quiescence, and the anti-apoptotic Bcl-2 family proteins are required 
for survival of HSCs under stress conditions (6,7). Recently, several studies revealed that 
autophagy is related to the maintenance of HSCs attributing to its pivotal role in cellular 
homeostasis and cell survival. Autophagy is a highly conserved lysosome-dependent 
degradation pathway in eukaryotes and is used to maintain homeostasis by degrading 
old or damaged cellular proteins and organelles (8-10). mTOR complex 1, which is 
negative regulator of autophagy, is essential for regulation of HSC quiescence (11,12), 
and autophagy-regulating transcription factor Forkhead box O3a induces autophagy 
to protects HSCs from metabolic stress (13). Previously, it has been suggested that the 
essential autophagy machinery component Atg7 is required for the maintenance of HSC 
integrity, production of both lymphoid and myeloid progenitors, and for suppression of 
myeloproliferation (14). Also, hematopoietic cell specific Atg7 deficiency lead to altered 
erythroid developmental stages and lethal anemia (15). Furthermore, another essential 
autophagy molecule Atg5 plays an important role in B cell development (16), plasma cell 
differentiation (17), development of innate lymphocytes (18) and is associated with acute 
myeloid leukemia (19); however, the role of Atg5 in the self-renewal and differentiation of 
HSCs has not been investigated thoroughly.

Here, we demonstrated the role of Atg5 as a regulator for maintaining the number and 
proliferation of HSCs. Atg5 deficiency in HSCs resulted in a survival defect with severe 
lymphopenia and anemia. The absence of Atg5 results in aberrant proliferation of Lin−Sca-
1+c-Kit+ (LSKs) and significant reduction of HSCs, mature progenitors, and terminally 
differentiated cells. Furthermore, the reconstitution ability of HSCs was significantly 
decreased following hematopoietic cell-specific Atg5 deficiency. Our findings suggest that 
Atg5 plays a crucial role in the maintenance and reconstitution ability of HSCs.

MATERIALS AND METHODS

Mice
Mice were housed in a specific pathogen-free facility at Korea Advanced Institute of Science 
and Technology (KAIST). Vav-iCre mice were purchased from Jackson Laboratories (Bar 
Harbor, ME, USA), and Atg5flox/flox mice (20) were gifted from Akiko Iwasaki (Yale University, 
New Haven, CT, USA). Vav_Atg5-/- mice were obtained by crossing the Vav-iCre mice and 
Atg5flox/flox mice, and their genotypes were confirmed using tail genomic DNA. Littermate 
Atg5flox/flox mice were used as control mice. In all experiments, sex- and age-matched 
mice between 7–14 weeks of age were used. All animal procedures were approved by and 
performed according to the standards of the Institutional Animal Care and Use Committee 
of KAIST (KA2016-18).

Bone marrow, spleen, lymph node, and blood isolation
Mice were euthanized with carbon dioxide gas, and bone marrow cells were isolated from 
tibias and femurs of hind legs from WT and Vav_Atg5−/− mice using a syringe with DMEM 
containing 1% FBS (Welgene, Daegu, Korea). The lymph nodes were removed, minced 
using a razor, and incubated in PBS containing 1% FBS with 2 mg/ml of collagenase IV 
(Worthington Biochemical Corporation, Lakewood, NJ, USA) and 30 μg/ml of DNase I 
(Roche, Basel, Switzerland) for 30 min at 37°C. Then cells were centrifuged at 1,500 rpm for 
5 min at 4ºC and treated with HBSS buffer containing 5% FBS and 5 mM EDTA for 5 min at 
37°C. Lymph nodes and spleens were disrupted through a 70-μm cell strainer and plunger 
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using a syringe. After isolation, all cells were treated with ammonium-chloride-potassium 
lysis buffer for 5 min at room temperature to remove the RBCs. Whole blood cell samples 
were obtained from hearts using a syringe in 4% trisodium citrate buffer to prevent blood 
solidification. The isolated cells were counted using a hematocytometer following staining 
with 1% trypan blue (SPL Life Sciences, Pocheon, Korea) for exclusion of the dead cells.

Flow cytometry
For flow cytometry analysis, cells were stained with the indicated antibodies. FITC anti-
mouse CD3 (17A2; BD Bioscience, Franklin Lakes, NJ, USA), CD11b (M1/70; BD Bioscience), 
B220 (RA3-6B2; BD Bioscience), Ly6C (AL-21; BD Bioscience), and Ly6G (1A8; BD 
Bioscience) antibodies were used as lineage markers. PE anti-mouse CD48 (HM48-1; BD 
Bioscience), PerCPCy5.5 anti-mouse Sca-1 (D7; BioLegend, San Diego, CA, USA), PECy7 anti-
mouse c-Kit (CD117, 2B8; eBioscience, San Diego, CA, USA), APC anti-mouse CD150 (TC15-
12F12.2; BioLegend), biotin anti-mouse Flt3 (A2F10; BioLegend), APC anti-mouse CD127 
(IL-7Rα, A7R34; BioLegend), Alexa Fluor 647 anti-mouse CCR9 (CW-1.2; BioLegend), PE 
anti-mouse CD122 (TM-β1; BioLegend), PECy7 anti-mouse NK1.1 (PK136; eBioscience), APC 
anti-mouse DX5 (CD49b, DX5; BD Bioscience), PE anti-mouse CD105 (MJ7/18; BioLegend), 
PECy7 anti-mouse CD41 (MWReg30; BioLegend), APCCy7 anti-mouse CD16/CD32 (93; 
BioLegend), biotin anti-mouse c-Kit (2B8; BD Bioscience), streptavidin-PE (BD Bioscience), 
and streptavidin-Alexa Fluor 700 (Life Technologies, Carlsbad, CA, USA) antibodies as well as 
DAPI were used to characterize the hematopoietic progenitor cells. PerCPCy5.5 anti-mouse 
F4/80 (BM8; eBioscience), APCCy7 anti-mouse CD11b (M1/70; BD Bioscience), Alexa Fluor 
647 anti-mouse MHC class II (M5/114.15.2; BD Bioscience), APC anti-mouse CD11b (M1/70; 
BD bioscience), PE anti-mouse Siglec-F (E50-2440; BD bioscience), PerCPCy5.5 anti-mouse 
Ly6G (1A8; BD bioscience), PECy7 anti-mouse CD11c (N418; BioLegend), APCCy7 anti-
mouse Ly6C (AL-21; BD Bioscience), FITC anti-mouse CD3, PE anti-mouse CD8a (53-6.7; 
BioLegend), PerCPCy5.5 anti-mouse B220 (RA3-6B2; BD Bioscience), and APC anti-mouse 
CD4 (GK1.5; BioLegend) antibodies as well as DAPI were used to analyze immune cell 
populations according to previously described methods (21).

For intracellular staining, cells were stained with biotin anti-mouse lineage markers (CD3e, 
CD11b, Gr-1, B220 (BD Bioscience), FITC or PerCPCy5.5 anti-mouse Sca-1 (BioLegend), PECy7 
anti-mouse c-Kit, and streptavidin-APCCy7 (BD Bioscience) antibodies. After washing by FACS 
buffer, the cells were stained with FITC labeled Annexin V (BD Bioscience), or cells were fixed 
and permeabilized with Fixation/Permeabilization Solution Kit (BD Biosciences) and stained 
with PE anti-mouse 53BP1 (Novus Biologicals, Centennial, CO, USA) or Ki-67 (eBioscience) 
antibodies. For mitochondrial staining, MitoTracker Green, MitoTracker Red, and MitoSox 
(Thermo Fisher, Waltham, MA, USA) were used according to manufacturer's instructions. Flow 
cytometry experiments were performed on a FACS Fortessa (BD Biosciences), and data were 
analyzed using FlowJo software (Tree Star, Inc., San Diego, CA, USA).

BrdU incorporation assay
Mice were injected intraperitoneally with 1 mg/ml of BrdU (BD Biosciences) in 200 μl DPBS. 
After 24 h, the mice were sacrificed, and bone marrow cells were isolated. BrdU staining 
was performed according to the manufacturer's instructions. For surface staining, 2×106 
bone marrow cells were stained with PE anti-mouse CD11b, CD3, B220, Ly6C, and Ly6G 
antibodies (BD bioscience), PerCPCy5.5 anti-mouse Sca-1 antibodies, and PECy7 anti-mouse 
c-Kit antibodies for 30 min on ice. Cells were examined using FACS Fortessa, and data were 
analyzed with FlowJo software (Tree Star, Inc.).
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Bone marrow reconstitution
A total of 2×106 bone marrow cells were transplanted intravenously into lethally irradiated 
CD45.1+ mice. Eight wk after transplantation, reconstitution of recipient bone marrow cells 
was confirmed in peripheral blood using PE anti-mouse CD45.1 (A20; BD Bioscience) and 
APC anti-mouse CD45.2 (104; BD Bioscience) antibodies.

Statistics
All data are presented as the mean ± SEM. Statistical significance was determined by the 
Student's t-test using GraphPad Prism (GraphPad Inc., La Jolla, CA, USA).

RESULTS

Atg5 deficiency in hematopoietic cells causes survival defects in mice
Because Atg5 deficiency in mice is neonatally lethal, we generated hematopoietic cell-specific 
Atg5 knockout mice to elucidate the role of Atg5 during hematopoiesis. As Vav, one of the 
guanine nucleotide exchange factors, is expressed in hematopoietic cells regardless of 
lineage or developmental stage, we crossed Atg5flox/flox mice with Vav-iCre animals to generate 
Vav_Atg5−/− mice and monitored the survival of newborn pups. Vav_Atg5−/− mice died within 
11 wk (Fig. 1A) and exhibited body weights that were lower than control mice (Fig. 1B). 
These results indicated that deficiency in Atg5 in hematopoietic systems leads to a survival 
defect. We hypothesized that the decreased survival of Vav_Atg5−/− mice is attributable to the 
impairment of hematopoiesis, because hematopoietic cell-specific Atg7 deficiency developed 
severe anemia and lymphopenia (14). To determine the effect of Atg5 on hematopoiesis, 
we assessed total cell numbers in bone marrow, spleen, and lymph nodes. As predicted, 
Vav_Atg5−/− mice displayed significantly diminished total cell numbers in these compartments 
compared to control mice (Fig. 1C).

Hematopoietic cell-specific Atg5-deficient mice suffer from severe 
lymphopenia
Next, we analyzed the immune cell populations in Vav_Atg5−/− mice. T cells were significantly 
reduced in spleens (Fig. 2A and B) and lymph nodes (Fig. 2C and D), while B cells were 
diminished only in spleens (Fig. 2A and B). Myeloid cells were slightly increased in spleens 
(Fig. 2A and B) and lymph nodes (Fig. 2C and D) compared to control mice, but these 
differences failed to reach statistical significance except for the neutrophils in lymph nodes 
(Fig. 2C and D). These results indicated that Atg5 is crucial for the development of lymphoid 
cells and that hematopoietic cell-specific Atg5 gene deletion causes severe lymphopenia.

Atg5 deficiency results in defective erythropoiesis
Next, we examined erythropoiesis in Vav_Atg5−/− mice, because the overall hematopoiesis 
includes lymphopoiesis, myelopoiesis, and erythropoiesis. Previous study has reported that 
Atg5 was highly expressed in the pro-erythroblast and the expression levels were gradually 
reduced depending on the stage of erythropoiesis (15), suggesting that Atg5 is potentially 
associated with erythroid maturation. RBCs in peripheral blood were counted using a 
hemocytometer, and bone marrow and spleen samples were stained with CD71 and Ter119 
to assess the developmental stage of the erythrocytes. Vav_Atg5−/− mice showed a reduced 
number of RBCs in peripheral blood compared with control animals (Fig. 3A), indicating that 
Vav_Atg5−/− mice suffer from anemia. The distribution of erythrocyte developmental stages 
was also altered in Vav_Atg5−/− mice compared with controls (Fig. 3B). Specifically, basophilic 
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erythroblasts were decreased concomitant with an increase in the proportions of other stages 
(Fig. 3C). These results indicate that Atg5 deficiency in hematopoietic cells leads to altered 
erythroid differentiation and causes RBC reduction.

Atg5 is essential for the HSCs maintenance and reconstitution ability
In bone marrow, hematopoietic cells are divided into Lin−c-Kit+ (LK) cells enriched for 
myeloid progenitors and megakaryocyte-erythroid progenitors and LSK cells comprising 
long-term HSCs, short-term HSCs, and multipotent progenitors (22,23). Therefore, we 
analyzed LK and LSK populations to clarify the developmental impairment of HSCs and 
hematopoietic progenitor cells in Vav_Atg5−/− mice. LSKs in bone marrow were increased 
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in Vav_Atg5−/− mice, while LKs were significantly decreased in these mice compared with 
controls (Fig. 4A). We then analyzed HSCs and other hematopoietic progenitors in bone 
marrow. HSCs were characterized as LSK CD48−CD150+ cells. Interestingly, HSCs in bone 
marrow of Vav_Atg5−/− mice were significantly reduced compared with controls, indicating 
that reduced HSC numbers were not attributable to the LSK expansion (Fig. 4B).

For the lymphoid progenitor compartment, lymphoid-primed multipotent progenitors 
(LMPPs), common lymphoid progenitors (CLPs), and NK cell progenitors (NKPs) were 
analyzed, while megakaryocyte progenitors (MkPs) and granulocyte-macrophage progenitors 
(GMPs) were analyzed for the myeloid progenitor compartment. In Vav_Atg5−/− mice, NKPs, 
and GMP were significantly reduced (Fig. 4B), while CLPs, CCR9+ LMPPs, and MkPs were 
diminished but without statistical significance. These results indicate that Atg5 is crucial for 

7/13https://doi.org/10.4110/in.2019.19.e12

Atg5 Regulates Hematopoietic Stem Cell Maintenance

https://immunenetwork.org

*

0

8

10
RB

C 
co

un
t (

10
6 /m

m
3 )

Control

Blood

Vav_Atg5−/−

A

6

4

2

0

20

40

Er
yt

hr
oi

d
de

ve
lo

pm
en

ta
l s

ta
ge

 (%
)

Pro
_ery

Baso
_ery

Chro
_ery

Orth
o_ery

Bone marrow

30

10

0

40

80

Er
yt

hr
oi

d
de

ve
lo

pm
en

ta
l s

ta
ge

 (%
)

Pro
_ery

Baso
_ery

Chro
_ery

Orth
o_ery

Spleen

60

20 **

* **

C

Control

Vav_Atg5−/−

Pro_ery
Baso_ery

Chro_ery

Ortho_ery

B

Ter119

CD
71

101

101 102 103 104100

102

103

104

101

101 102 103 104100

102

103

104

101

101 102 103 104100

102

103

104

101

101 102 103 104100

102

103

104

0.101

33.7

2.4

14.1

1.96

18.4

12.6

33.1

8.03e-3 0.0588

9.49

0.906

30

6.08

17.9

62.8

Control

Bone marrow

Vav_Atg5−/− Control Vav_Atg5−/−

Spleen

Figure 3. Erythropoiesis is altered following Atg5 deficiency. (A) The number of RBCs in peripheral blood were counted in control and Vav_Atg5−/− mice. 
(B) Erythroid developmental stages in bone marrow and spleen were assessed by flow cytometry. Pro-erythroblasts (Pro_ery; Ter119−CD71High), basophilic 
erythroblasts (Baso_ery; Ter119+CD71High), chromatophilic erythroblasts (Chro_ery; Ter119+CD71Med), and orthochromatophilic erythroblasts (Ortho_ery; 
Ter119+CD71−) were characterized (n=4). Data are representative of three independent experiments and presented as mean ± SEM. 
*p<0.05 and **p<0.01 as calculated by Student's t-test.

https://immunenetwork.org


8/13https://doi.org/10.4110/in.2019.19.e12

Atg5 Regulates Hematopoietic Stem Cell Maintenance

https://immunenetwork.org

A

Control

Vav_Atg5−/−
LK

LSK

Co
nt

ro
l

Va
v_
At
g5

−/
−

Lin

SS
C

Sca-1

c-
ki

t

CD150

CD
48

CCR9

Fl
t3

Co
nt

ro
l

Va
v_
At
g5

−/
−

IL7Ra

Fl
t3

FSC

CD
12

2

DX5

N
K1

.1

CD41

CD
15

0

CD150

Fc
gR

II/
III

p=0.06 *

**
*

B

0

400

800

Ce
lls

/m
ou

se
 (×

10
4 )

HSC CLP NKP MkP GMP

HSC & progenitors

200

600

Control

Vav_Atg5−/−

0 10
3

10
4

10
5

0

102

103

104

105

4.74
0 10

2
10

3
10

4
10

5

0

50K

100K

150K

200K

250K

4.25

0 102 103 104 105
0

50K

100K

150K

200K

250K 4.3

0 102 103 104 105

0

3

4

5 15.1 17.9

0 103 104 105

0

102

103

104

10

10

10

10

10

10

10

5

1.5

0 10
2

10
3

10
4

10
5

0

3

4

5 26.2 5.77LK

LSK

HSC

LSK

LK

LSK

HSC

LSK

LKLin− Lin−

0 103 104 105

0

102

103

104

105

0.866

0 10
3

10
4

10
5

0

102

103

104

105

9.67

CCR9+

LMPP

CCR9+

LMPP

10

10

10

10

10

10

0 103 104 105

0

102

103

104

105

1.93

0 103 104 105

0

102

103

104

105

5.45
CLP

0 103 104 105

0 50K 100K 150K 200K 250K

0

102

103

104

105

0.643

0 103 104 105

0

3

4

5

12.6

0 50K 100K 150K 200K 250K

0

102

103

104

105

3.29

0

3

4

5

7.28
NKP

CLP

NKP

0 103 104 105

0

103

104

105

97.3 1.73

0 103 104 105

0

103

104

105

91.1 5.33

0 103 104 105

0

103

104

105

35.7

0 103 104 105

0

103

104

105

47.6

MkP

GMP

MkP

GMP

p=0.07

0

1.5

2.0

Ce
lls

/m
ou

se
 (×

10
4 )

CCR9+ LMPP

HSC & progenitors

1.0

0.5

Sca-1

c-
ki

t

−103

−103

103

103

0

0

104

104

105

105

−103

−103

103

103

0

0

104

104

105

105

16.5

1.83

10.6

5.7

Control Vav_Atg5−/−

0

2

5

Fr
eq

ue
nc

y 
(%

)

LK LSK

Bone marrow

4

3

1

*

*

0

1.5

2.5

Ce
lls

/m
ou

se
 (×

10
6 )

LK LSK

Bone marrow

2.0

1.0

0.5

*

p=0.07

Figure 4. Atg5 deficiency leads to defective maintenance of HSCs and developmental impairment of hematopoietic progenitor cells. (A, B) Bone marrow 
cells isolated from 11-wk-old from control and Vav_Atg5−/− mice were analyzed. (A) Frequency and absolute number of LK and LSK cells were assessed by flow 
cytometry (n=4–5). (B) HSCs were characterized as LSK CD48−CD150+, and multiple progenitor cells were characterized in CLPs (Lin−IL-7Ra+Flt3+), CCR9+ LMPPs 
(LSK Flt3+), NKPs (Lin−CD122+NK1.1−DX5−), MkPs (LK CD41+CD150+), and GMPs (LK CD41−FcgRII/III+) (n=3). Data are representative of three independent experiments 
and presented as mean ± SEM. 
*p<0.05, **p<0.01, ***p<0.001 as calculated by Student's t-test.

https://immunenetwork.org


the maintenance of HSCs and that a defect in HSCs results in developmental impairment of 
hematopoietic progenitor cells in Vav_Atg5 mice.

Next, we assessed proliferation and apoptosis in Atg5-deficient hematopoietic cells. Bone 
marrow cells were stained with anti-Ki67, BrdU antibodies and Annexin V. As shown in Fig. 5A, 
the LSK compartment in Vav_Atg5−/− mice exhibited enhanced resistance to apoptosis and higher 
proliferation rates compared with controls. Specifically, the Annexin V+ populations in LSK cells 
were reduced in Vav_Atg5−/− mice. As Annexin V binds phosphatidylserine on the apoptotic cell 
surface, the reduction of Annexin V+ populations suggests that LSK apoptosis was decreased 
in Vav_Atg5−/− mice. Furthermore, BrdU+ populations and Ki67 levels were enhanced in LSKs of 
Vav_Atg5−/− mice, suggesting that hematopoietic cell-specific Atg5 deficiency results in aberrant 
proliferation of LSKs.
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In addition, we assessed the reconstitution ability of HSCs with Atg5 deficiency. 
Approximately 2×106 bone marrow cells from control and Vav_Atg5−/− (CD45.2+) mice were 
injected via tail vein into lethally irradiated CD45.1+ congenic mice. After 8 wk, more than 
90% of cells were reconstituted in peripheral blood from the recipients transplanted with 
control bone marrow cells, while the Vav_Atg5−/− bone marrow cells led to reconstitution 
of about 70% of the cells in the hematopoietic system of recipients (Fig. 5B). These results 
indicate that Atg5 affects not only the maintenance but also the reconstitution ability of HSCs.

Autophagy contributes to the maintenance of intracellular homeostasis via removal of 
damaged mitochondria, and the absence of autophagy leads to accumulation of dysfunctional 
mitochondria and ROS. Therefore, we hypothesized that Atg5 deficiency in hematopoietic 
cells results in mitochondrial disturbance. We analyzed LSK populations in bone marrow to 
determine whether Atg5 deficiency mediates mitochondrial dysfunction in hematopoietic cells. 
We assessed the mitochondrial functions in bone marrow LSK cells using MitoTracker Green, 
MitoTracker Red, and MitoSox. As expected, LSK cells showed enhanced mitochondrial mass 
and membrane potentials in Vav_Atg5−/− mice, while mitochondrial superoxide levels were 
slightly, but not significantly, increased (Fig. 5C). These results indicate that Atg5 deficiency 
causes unregulated accumulation of mitochondria in LSKs.

DISCUSSION

Autophagy is crucial for the maintenance of cellular homeostasis via elimination of impaired 
cytosolic components, such as damaged mitochondria and misfolded proteins, and this 
process therefore plays an essential role in cell survival (24). During the early neonatal 
starvation period, autophagy promotes survival of newborn pups by degrading self-proteins 
to supply amino acids (25). In mesenchymal stromal/stem cells, autophagy is induced under 
hypoxic condition and promotes proangiogenic activity via enhancing angiogenin and VEGF 
production (26). Furthermore, autophagy and autophagy-related proteins have been reported 
as crucial regulators for hematopoiesis. For example, Atg7 is known to play an important role 
in the maintenance of HSCs, and Atg7 deficiency in hematopoietic cells causes severe anemia 
and lymphopenia in vivo (14,15). Also, Atg5 is required for the development and survival of 
innate lymphoid cells and NK cells, as this factor facilitates lymphocyte survival following 
homeostasis proliferation during lymphopenia (18); however, the role of the autophagy 
protein Atg5 in HSCs has not previously been thoroughly investigated.

In this study, we found that hematopoietic cell-specific Atg5 deficiency causes severe 
lymphopenia, anemia, and survival defects. Immune cell populations in spleens and lymph 
nodes were significantly altered in Vav_Atg5−/− mice, due to the developmental impairment 
of hematopoietic progenitor cells. Specifically, Vav_Atg5−/− mice showed defective HSC 
maintenance and lower reconstitution capacity following disrupted differentiation of 
hematopoietic progenitor cells. Also, abnormal distribution of erythrocyte developmental 
stages resulted in decreased RBCs in blood in Vav_Atg5−/− mice, and hematopoietic cell-
specific Atg5 deficiency led to aberrant proliferation of LSKs. Although LSK cells displayed 
enhanced proliferation and diminished apoptosis, absolute number of HSCs were 
significantly decreased in Vav_Atg5−/− mice. We propose that defective reconstitution ability 
of bone marrow cells from Vav_Atg5−/− mice are attributed to the lower HSC numbers. Also, 
autophagy is required for the DNA damage responses and loss of autophagy facilitate the 
accumulation of damaged DNA inducing genetic instability (27-30), therefore, enlarged LSK 
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cells do not necessarily reflect the abundance of functional HSCs. Finally, we found that Atg5-
deficient LSKs displayed unregulated accumulation of mitochondria. Mitochondria mass 
and membrane potentials were enhanced in LSKs of Vav_Atg5-/- mice. Because autophagy 
eliminates damaged organelles, such as mitochondria, these findings suggest that loss of 
Atg5 causes impairment of autophagy function and ultimately enhances the intracellular 
stress in hematopoietic cells. Mitochondria, which is the main producer of ROS in cells (31), 
continuously repeat fusion and fission during the life cycle to control mitochondrial quality 
(32), and mitochondrial fusion helps to redistribute metabolites and proteins and to dilute 
damage materials to reduce mitochondrial stress (33). Despite disruption of mitochondrial 
membrane potential results in release of cytochrome C into the cytosol and apoptosis, 
mitochondrial hyperpolarization also lead to cellular abnormalities. For example, patients 
with systemic lupus erythematosus exhibited mitochondrial hyperpolarization (34,35). 
Therefore, we suggest that increased mitochondrial mass and membrane potential indicates 
enhanced mitochondrial stress accumulation that inhibits cellular function and survival. 
Further, although the differences were not statistically significant, ROS levels were increased 
in Atg5-deficient LSKs compared to controls, suggesting that impairment of autophagic 
clearance of damaged mitochondria causes functional defects of HSCs and results in disturbed 
differentiation of mature progenitors and terminally differentiated cells. Because ROS have 
normally harmful effect on cell survival, reduced apoptosis in Atg5-deficient LSKs seems 
paradoxical. However, as overall proliferation was also improved following Atg5 deficiency, we 
propose that this aberrant proliferation compensate the harmful effect of ROS that mediates 
apoptosis. Collectively, these findings demonstrate that Atg5 plays a critical role as a regulator to 
maintain HSCs and its reconstitution function, while future studies are needed to address the 
relationship between autophagy and other maintenance factors in HSCs.
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