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ABSTRACT 

The Time Delay Control with Switching Action (TDCSA) 
method, which consists of Time Delay Control(TDC) and a 
switching action of sliding mode control(SMC), has been 
proposed as a promising technique in the robust control 
area, where the plant has unknown dynamics with 
parameter variations and substantial disturbances are preset. 
When TDCSA is applied to the plant with saturation 
nonlinearity, however, the so-called windup phenomena are 
observed to arise, causing excessive overshoot and 
instability. The integral element of TDCSA and the 
saturation element of a plant cause the windup phenomena. 
There are two integral effects in TDCSA. One is the 
integral effect occurred by time delay estimation of TDC. 
Other is the integral term of an integral sliding surface. In 
order to solve this problem, we have proposed an anti-
windup scheme method for TDCSA. The stability of the 
overall system has been proved for a class of nonlinear 
system. Experiment results show that the proposed method 
overcomes the windup problem of the TDCSA. 
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1 INTRODUCTION 
Recently the Time Delay Control with Switching 
Action(TDCSA) method[1][6][7] has been proposed as a 
promising technique in the robust control area, where the 
plant has unknown dynamics with parameter variations and 
substantial disturbances are preset. More specifically, 
TDCSA consists of TDC, which estimates the amounts of 
an unknown nonlinear dynamics and unexpected 
uncertainties and cancels it, and a switching action based on 
sliding mode control. The switching action, the 
discontinuous input of sliding mode control, keeps the 
tracking errors, which is occurred by the time delay 
estimation error, on the predefined sliding surface, thereby 
improving the robustness. Its effectiveness has been 
demonstrated through the successful application to a 21-ton 
robotic excavator[6], a DC motor[1] and a linear motor[7]. 

We have observed, however, that in the presence of the 
saturation, TDCSA using an integral sliding surface reveals 
some problems commonly found in other methods like PID 
control. More specifically, we have observed the following 
problems: as we increase the command input or the 
response speed, there arise large overshoots, limit cycles, or 
even unstable responses. For this reason, we have 
investigated on their causes and tried to find out effective 
remedies. As will be explained in Section 3, we found that 
this phenomenon comes from the inherent integral effect in 
TDCSA using an integral sliding surface due to the time-
delay term and an integral term of sliding surface. 
Specifically, the large overshoot arises from the integral 
effect combined with a saturation element in the system. 
Incidentally, this phenomenon, widely known as windup 
phenomenon, has been observed in the PI or PID control 
systems. 

This windup phenomenon is occurred in the sliding mode 
control(SMC) using an integral sliding surface[3][5][8], 
like TDCSA using an integral sliding surface. In the 
presence of the saturation, SMC using an integral sliding 
surface reveals same problem found in the TDCSA using an 
integral sliding surface. More specially, as the command 
input or the response speed is increased, there arise large 
overshoots and oscillation because the integral term of the 
sliding surface is increased excessively. For remedy, Cho, 
et al. use a small integral gain[3]. For SMC using the 
saturation function or boundary layer, Slotine proposed the 
stopping integration method[8], which maintains the 
integral term constant as long as the system is outside the 
boundary layer. This method has a demerit that this method 
must know exactly the magnitude of the boundary layer. 

We observed the windup phenomenon in TDC control 
system[1][2]. However, there have been no researches 
reporting this phenomenon in TDCSA, nor any addressing 
this causes, not to mention any proposing this remedy. 
Therefore, in this study, we provide remedy against this 
problem, by proposing compensator specifically designed 
for TDCSA using an integral sliding surface. Accordingly, 
the contribution we attempt to make is threefold: 

● to report the existence of the windup problem and will be 
demonstrated through simulations and experiments; 
● to provide the analysis on the causes of this; and 
● to provide remedy to overcome this. 

2 TIME DELAY CONTROL WITH 
SWITCHING ACTION 
In this section, the TDCSA will be briefly introduced and 
the stability of TDCSA using an integral sliding surface is 
analyzed. 

2.1 TDCSA 

A class of plants we are concerned with can be expressed in 
the following nonlinear differential equation. 

t t t t tx( ) = f(x, ) + B(x, )u( ) + d( )�  (1) 

where nt R∈x( ) denotes state vector of plant; rt R∈u( ) the 

control input vector; 1nt R ×∈f(x, ) nonlinear function in 
companion form, which may be unknown; 

1nt R ×∈d( ) unknown disturbances; n rt R ×∈B(x, ) the control 
distribution matrix, the range of which should be known. In 
this plant, it is assumed that the states and their derivatives 
are measurable. If we select a constant matrix B  which is 
located within the known range of tB(x, )  and use B , Eq. 
(1) is rearranged into the following: 

t t tx( ) = Bu( ) + H( )�   (2) 

where tH( ) consists of terms representing uncertainties and 
time-varying factors, which are expressed as 
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t t t t tH( ) = f(x, ) + {B(x, ) - B}u( ) + d( )  (3) 

a) Time Delay Control (TDC) [4][11] 

In TDCSA control system, the control objective of TDC is 
to make the plant in Eq. (2) follow accurately a desired 
error dynamics in the presence of unknown dynamics and 
unexpected disturbance. The desired error dynamics is 
defined with a reference model, an asymptotically stable 
linear invariant system as the following: 

t tme( ) = A e( )�   (4) 

where nt t t R∈de( ) = x ( ) - x( ) is tracking error vector, 
nR∈dx is desired trajectory vector. And n nR ×∈mA  is a 

constant matrix of the desired error dynamics.. 

The TDC law that meets the desired error dynamics(Eq. 
(4)) is obtained as 

ˆt t t t+
tdc d mu ( ) = B [x ( ) - H( ) - A e( )]�        (5) 

where +B  denotes a pseudo-inverse of B  

( 1( )T TB B B B+ −= ); ˆ tH( ) the estimate of tH( ) .  If L is very 

small and tH( )  does not vary largely during the L times, 

the estimated ˆ tH( )  can be obtained by using both Eq. (2) 

and the fact that tH( )  is usually a continuous function. 
More specifically, when L is small enough, then 

ˆ - - -t t L t L t L≈H( ) H( ) = x( ) - Bu( )�  (6) 

Combining Eq. (6) with Eq. (5), the TDC law is obtained as 
follows: 

- -t t L t t L t+
tdc tdc d mu ( ) = u ( ) + B [x ( ) - x( ) - A e( )]� �   (7) 

More details about the stability condition and the design of 
TDC can be found in [4][11]. More specifically, if the 

constant matrix B  is satisfied with +I - BB < 1 , the 

system is stable.
 

L should be sufficiently small for TDC to meet the desired 
error dynamics of Eq. (4). The value used for L, however, is 
set to be that of the sampling time, when TDC is 
implemented in a real-time controller. The variation of 
system nonlinearities and disturbances, occurred during the 
time delay(L), cause time delay estimation(TDE) error as 
follows: 

ˆ -t t t t L tH( ) - H( ) = H( ) - H( ) = ∆H( )  (8) 

b) Switching action [8] 

Switching action is discontinuous input used at sliding 
mode control and keeps the tracking error on predefined 
sliding surface. The switching action used at TDCSA keeps 
the tracking error, which is occurred by the TDE error, on 
the sliding surface so that the effect of the TDE error is 
reduced and also the controller becomes robust. 

Why selecting the integral sliding surface for switching 
action is to match the desired error dynamics of TDC with 
the derivative of the sliding surface. In order to match the 
desired error dynamics(Eq. (4)) with the sliding 
surface( 0t =s( ) ), we use the integral sliding surface as 
follows: 

t
t τ τ τ∫+

m0
s( ) = B [e( ) - A e( )]d�       (9) 

where the sliding surface has the initial value of zero 
( 0) 0t = =s( ) and its derivative(Eq. (10)) is equal to the 
desired error dynamics(Eq. (4)).  

[ ]t t t+
ms( ) = B e( ) - A e( )� �                     (10) 

c) TDCSA 
Finally, the TDCSA is proposed by adding the switching 
action to TDC, as follows: 

- -

( )

t t L t t L t

t

+
d mu( ) = u( ) + B [x ( ) - x( ) - A e( )]

+Ksgn(s )

� �
 (11) 

where r rR ×∈K  denotes a switching gain matrix, which is 
obtained from the following stability condition; rR∈s the 

sliding surface vector.  

2.2 Stability Analysis of TDCSA 

For the stability analysis of the overall system, the second 
method of Lyapunov is used. If the Lyapunov function is 
selected as / 2TV = s s , its time derivative is as follows, 

ˆ

t t

t t t t

t t t t

t t

t t t

t

t

T T +
m

T +
d m

T + +
d d m

m

T + +
d m

+

T +

V = s s = s B [e( ) - A e( )]

= s B [x ( ) - Bu( ) - H( ) - A e( )]

= s B [x ( ) - B{B (x ( ) - H( ) - A e( ))

+Ksgn(s)} - H( ) - A e( )]

= s B [(I - BB ){x ( ) - A e( ) - H( )}

-BB ∆H( ) - BKsgn(s)]

= s [-B ∆H( ) - Ksgn(s)]

� � �
�

� �

�
     (12) 

Therefore, the following condition is needed so that the 
time derivative of the Lyapunov function should be 
negative definite: 

( ) ( )  for 1, ,ii iK B H i r+> ∆ = …  (13) 

In other words, the magnitude of the switching gain( K ) 
must be larger than that of the term due to the TDE error. 

3 WINDUP PHENOMENON 
In this section, we will explain the windup phenomenon of 
TDCSA using an integral sliding surface in the presence of 
the saturation. Firstly, the integral element of the controller 
will be examined and this phenomenon occurred at linear 
second order system will be considered. Secondly, the 
action of TDC and the switching action will be examined in 
the presence of the saturation. Finally, the compensator for 
anti-windup scheme will be proposed. 

3.1 The Integral elements of TDCSA 

Two kind of an integral element exist in TDCSA using an 
integral sliding surface. One is the integral effect occurred 
by the time delay estimation of TDC. Other is the integral 
term of an integral sliding surface. 

a) The integral effect occurred by time delay estimation 
[1][2] 

As shown in Eq. (11), TDCSA needs the time delay values 
of control inputs and the derivative of states for 
compensating unknown dynamics and unexpected 
disturbance. Fig. 1 shows the block diagram of TDCSA 
with a saturation element in actuator. A close observation 
reveals important points worth mentioning: When the input 
is accumulated through the integral action, the control 
input( u ) is taken for *u  owing to the saturation effect, 
resulting in erroneous accumulation. This erroneous 
accumulation of input is caused by the integration of u  

instead of *u . This phenomenon also appears in TDC[1][2]. 
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Therefore, the windup phenomenon occurred by the time 
delay estimation is compensated by using the anti-windup 
scheme for TDC[1][2]. This idea leads to a simpler system, 
the block diagram of which is shown in Fig. 2. Clearly, the 
input to the actuator is made limited to *u  in advance, so 
that it may stay within the actuator saturation limit. In the 
meantime, the time-delayed value of *u  is used to 
produce u , thereby preventing the erroneous accumulation. 

b) The integral term of the sliding variable 

Several researchers reported that, in sliding mode control 
using an integral sliding surface, the windup phenomenon is 
occurred by the integral term of the sliding variable [3][8]. 
More specifically, if the control input saturates, the sliding 
variable continues to integrate the tracking error and 
increases largely, thereby resulting in undesirable 
performance in the form of overshoot and oscillation. 

We examined the two integral effects in TDCSA using an 
integral sliding surface. Fist of all, the anti-windup scheme 
for TDC compensates the windup phenomenon occurred by 
the time delay estimation. However, some new method is 
needed for compensating the windup phenomenon occurred 
by the integral term of the sliding variable. Now we will 
analyze the windup phenomenon and then propose the anti-
windup scheme.  

Plant
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Actuator

Lsse− I

Lsse+ −B I

+BmA

sI

0
( )

t
dme - A e τ+Β ∫ �
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+
+ +−

−

−

s
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Fig.1-TDCSA TDCSA block diagram with saturation 
element in actuator 
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−

−

tu( )

Limit

Limit

0
( )

t
dme - A e τ+Β ∫ �

sgn( )K s

s

Fig.2-TDCSA block diagram with TDC anti-windup scheme 

3.2 Analysis of the windup phenomenon 

If the abovementioned anti-windup scheme of TDC is 
applied for compensating the windup problem, the 
oscillation of the control input occurred by the integral 
effect of time delay estimation disappears, but the sliding 
variable increases initially because the integral term of the 
sliding variable. Therefore, the windup phenomenon 
occurred by the time delay estimation is compensated by 
using the anti-windup scheme of TDC, but the windup 
phenomenon occurred by the integral term of the sliding 
variable remains.  

After the control input leaves the saturation limit, we will 
examine how TDC and the switching action work. 

a) Time Delay Control 

The control objective of TDC is to make the plant follow 
accurately a desired error dynamics(Eq. (4)). The general 
solution of Eq. (4) is obtained as follows: 

( ) ,    for all ,tt e tτ τ τ−mAe( ) = e( )  (14) 

where ( )te τ−mA  denotes a state-transition matrix. In ideal 
situation having no saturation element, the tracking error of 
TDC is to be as Eq. (15). 

0tt e mAe( ) = e( )   (15) 

Namely initial tracking error( e(0) ) goes to zero with 
following the desired error trajectory.  

When the system has any saturation element in actuator, 
however, the error dynamics does not be to be as Eq. (15). 
In that case, after the saturation is finished ( et t> ), TDC 

makes the plant follow as like Eq. (16).  

( )et t
et e t−mAe( ) = e( )   (16) 

where et is the time that the saturation limit is 

finished; et
*e ( )  is an error vector at et . From the Eq. (16), 

TDC makes et
*e ( )  follow the desired error dynamics and 

moves it to zero after the saturation is finished. As shown in 
Fig. 3, the tracking error does not follow the desired error 
dynamics ((a) trajectory), but (b) trajectory. If there is not 
any saturation element, the tracking error becomes ete( )  

at et t= . When there is a saturation element, however, the 

tracking error becomes et
*e ( )  smaller than ete( )  

at et t= . 

After the saturation is finished ( et t> ), TDC makes the 

tracking error follow (c) trajectory of Fig. 3 as like Eq. (16). 

( )e t

( )e t�

( )ee t

*( )ee t

 
Fig.3-Phase portrait 

b) Switching action 

However, regardless of the saturation element, the 
switching action always keeps the tracking error on the 
sliding surface which is selected on the basis of the initial 
error ( ( 0)e t = ). More specifically, the switching action 
makes the tracking error become as Eq. (15)((a) trajectory 
of Fig. 3). As stated above, however, TDC makes the 
tracking error follow (c) trajectory of Fig. 3 as like Eq. (16). 
This means that the switching action works differently from 
the TDC in presence of the saturation.  

In conclusion, the windup phenomenon results from the 
time delay estimation and the integral term of the sliding 
variable. In spite of the anti-windup scheme of TDC, TDC 
and the switching action operate differently each other so 
that the windup problem can not be compensated perfectly. 

3.3 Anti-Windup scheme for TDCSA 

a) Anti-windup scheme 

In the presence of saturation element, we studied the 
windup problem resulting from the two integral effects of 
TDCSA using an integral sliding surface. Now, we will 
propose the two anti-windup methods for TDCSA; one is 
the abovementioned anti-windup scheme of TDC and the 
other is the reset sliding surface method. 

The reset sliding surface method is newly proposed for 
compensating the effect of the integral term of sliding 
surface. After the saturation is finished, this method equals 
the sliding surface of the switching with the desired error 
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dynamics of TDC. During the saturation, this method newly 
reconstructs the sliding surface for the switching action. 
More specifically, the reconstructed sliding surface is 
obtained from the relationship between the desired error 
dynamics and the sliding surface(Eq. (17)). 

( ) [ ( ) ( )]t t t= −+
ms B e A e� �   (17) 

By integrating the both side terms of Eq. (17) with respect 
to time(t), the sliding surface is obtained as follows: 

*

0
( ) [ ( ) ( ) ]

t
t t t dτ= − −∫+

ms B e A e C  (18) 

where nR∈C  is a constant vector which is selected freely. 
In this section, we calculate it by setting the value of 

*( )t L−s  to zero as follows: 

*

0

0

( ) [ ( ) ( ) ] 0

( ) ( )

t L

t L

t L t L t L d

t L d

τ

τ τ

−

−

− = − − − − =

= − −

∫
∫

+
m

m

s B e A e C

C e A e
 (19) 

Fig. 4 shows the flowchart of the reset sliding surface 
method. The process of calculating the value of C  only 
works on the saturation. After the saturation is finished, the 
value of C  is to be a constant. 

By adding the above two anti-windup method to TDCSA, 
the control law of TDCSA is as follows: 

*

*

- -

( )

t t L t t L t

t

+
d mu( ) = u ( ) + B [x ( ) - x( ) - A e( )]

+Ksgn(s )

� �
 (20) 

where *u  is the control input applied to the plant through 
the saturation element. 

max
( ) ,  for 1i iu t L u i r− ≥ = "

0
( ) ( )

t L
t L t L dτ

−
= − − −∫ mC e A e

0
( ) ( ) ( ) ]

t
t t t dτ= − −∫+

ms B [e A e C

0t =

( 0)t =e

 
Fig.4-Flowchart of Reset sliding surface method 

b) Stability Analysis of the overall system 

We will analyze the stability of the overall system that has 
saturation elements in actuators and also is applied with 
TDCSA and the abovementioned two anti-windup methods. 

For analyzing the stability, we divide the saturation 
function(

max
sat( ( ), )i iu t u ) into a linear function( ( )iu t ) and a 

dead-zone function(
max

dzn( ( ), )i iu t u ). So the control input 

applied to the system through the actuator is expressed as 
follows: 

[ ]

max max

*
max

1

max 1 1

( ) ( , )

where ( ) sat( ( )) sat( ( )) ,  

( , ) ( ( ), ) ( ( ), )

T

r

T

r r

t t t t

t u t u t

t dzn u t u dzn u t u

= = −

=

 =  

u ( ) sat u( ) u( ) dzn u( ) u

sat u( )

dzn u( ) u

"

"

(21) 

where ( )dzn ⋅ is dead-zone function; tu( ) the control input 

vector; maxu the maximum bound of the control input 

vector.  

Combining Eq. (21) with Eq. (20), the closed error 
dynamics of TDCSA is as follows: 

*t t t

t+

+
m

max

e( ) = A e( ) - BB ∆H( ) - BKsgn(s )

Bdzn(u( ),u )

�
 (22) 

Note that t maxBdzn(u( ),u )  results from the saturation 

element of actuator.  

From the relationship (Eq. (17)) between the sliding surface 
and the desired error dynamics, Eq. (22) is rearranged as 
follows: 

*t t t= ++
maxs( ) -B ∆H( ) - Ksgn(s ) dzn(u( ),u )�  (23) 

Lemma 1. ⋅dzn( ) is satisfied with the following 

condition: 

maxt t

t t L

β β

β β

≤

−
max

+

dzn(u( ),u ) u + s( )

+ B (x( ) - x( )) + K

�

� �
 (24) 

where ⋅  means the Euclidean norm. 

Proof: 

max
( ( ), )i idzn u t u

maxiu ( )iu t

max
max{ ( )}i iu t u−

( )i iu tβ

max{ ( )}iu t

max
max{ ( )}

where 1
max{ ( )}

i i

i
i

u t u

u t
β

−
= <

Fig.5-Linear bound of dzn() function 

If ( )iu t exists within [ max{ ( )}iu t− ,max{ ( )}]iu t and iβ  

becomes
max

1 / max{ ( )}i iu u t− , 
max

( ( ), ) ( )i i i idzn u t u u tβ≤  is 

satisfied by Fig. 5. From the Fig. 5, t maxdzn(u( ),u ) is 

bounded as the following inequality: 

maxwhere max 1 1
( )

i

i
i

t t

u

u t

β

β

≤

  = − < 
  

maxdzn(u( ),u ) u( )

 (25) 

where β  is a constant which always has the value small 
than 1. 

By adding t t−+ +B x( ) B x( )� �  to the right side of Eq. (20), a 
TDCSA law is rearranged as follows: 

*

*

*

*

*

- -

( )

-

( )

( )

t t L t t L t

t t t

t L t t t

t t L t

t L t t t L

t

+ −
= −

−
= − −

+
d m

+ +

+
d m

+

* +

u( ) = u ( ) + B [x ( ) - x( ) - A e( )]

+Ksgn(s ) B x( ) B x( )

u ( ) + B [x ( ) x( ) - A e( )]

+B (x( ) - x( )) + Ksgn(s )

u ( ) + s( ) + B (x( ) - x( ))

+Ksgn(s )

� �
� �

� �
� �

� � �

 (26) 

Here, the maximum value of t L−*u ( )  is maxu  because the 

input to the actuator is made limited to t L−*u ( )  in 
advance(Fig. 2), so the magnitude of the control input is 
bounded as follows: 
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maxt t t t L≤ −+u( ) u + s( ) + B (x( ) - x( )) + K� � �  (27) 

From Eq. (25) and Eq. (27), ⋅dzn( )  is satisfied with the 

following condition: 

max

t t

t t t L

β

β β β β

≤

≤ −
max

+

dzn(u( ),u ) u( )

u + s( ) + B (x( ) - x( )) + K� � �
 (28) 

 

Lemma 2. If ii iK B H η+= ∆ +  and t t L L− ≤x( ) - x( ) k� � , 

ts( )�  is satisfied with the following inequality: 

max

1
[ ]

1
t Lη β β β

β
≤ + ≤

−
+s( ) u + B k + K r�  (29) 

Proof: 

From Eq. (23) and Lemma 1, the following inequality is 
obtained: 

max

t t t

t t

t t L

β β

β β

+

+

≤ +

≤ +

−

max

+

s( ) -B ∆H( ) - Ksgn(s) dzn(u( ),u )

-B ∆H( ) - Ksgn(s) u + s( )

+ B (x( ) - x( )) + K

�

�

� �

 (30) 

If ii iK B H η+= ∆ +  , t t L L− ≤x( ) - x( ) k� � and β  is 

smaller than 1, the following inequality is obtained: 

max

1
[ ]

1
t Lη β β β

β
≤ + ≤

−
+s( ) u + B k + K r�  (31) 

 
Theorem. The stability of the overall system 

When TDCSA using an integral sliding surface applies the 
system having saturation elements in actuators with the 
proposed two anti-windup schemes, if the following 
assumptions are satisfied:, 

1. B is satisfied with +I - BB < 1 , 

2. The switching gain is selected to be ii iK B H η+= ∆ +  

and 

3. t t L L− ≤x( ) - x( ) k� � , 

then the overall control system is Input-to-Output Stable. 

Proof : 

By multiplying B to the both sides of Eq. (17), Eq. (17) is 
arranged into the following equation: 

t t t= +me( ) A e( ) Bs( )� �   (32) 

The general solution of Eq. (32) is obtained as follows: 

t = ∫m m

t
A t A (t-τ)

m
0

e( ) e e (0) + e Bs(τ)dτ�  (33) 

where mA is a constant matrix of the desired error 

dynamics and tmAe  satisfies the inequality.  

t tα≤mA -
1e k e   (34) 

where α is the real part of the eigenvalue that lies nearest 
to the imaginary axis ( min{Re[ ( )]}iλ− mA ) and 1 0k > .  

Because ts( )�  is bounded by lemma 2, we obtain the 

following equation from Eq. (33). 

[0, ]

[0, ]

t

t

t

τ

τ

∈

∈

≤

≤

≤

≤

∫

∫

m

t
A t -α(t -τ)

1
0

t
-αt -α(t -τ)

1 1
0

-αt -αt1
1

-αt -αt1
1

e( ) e e(0) + B s(τ) k e dτ

k e e(0) + B sup s(τ) k e dτ

k
k e e(0) + B sup s(τ) (1 - e )

α
k

k e e(0) + B r (1 - e )
α

�

�

�
 (35) 

From Eq. (35), regardless of time, the tracking error is 
bounded so that the overall system is Input-to-output stable 
[9][10]. 

 

4 EXPERIMENTS 
To verify the effectiveness of the proposed compensators, 
experiments have been made on 2 degree of freedom 
SCARA-type robot, where the link lengths are l1=350mm 
and l2=200mm and the link weights are m1=11.17kg and 
m2=6.87kg. At each joint, a Harmonic Drive (with gear 
reduction ratio of 100:1 for joint 1 and 80 : 1 for joint 2) is 
used. For implementing the proposed control algorithm, we 
used the MC68040 controller installed with real-time OS, 
VxWorks. Here, the sampling frequency is selected as 250 
Hz. 

4.1 Controller Design 

The dynamics of the planar robot is as follows: 

t tM(θ)θ( ) + V(θ,θ) + D(θ,θ) = τ( )�� � �  (36) 

where [ ]1 2

Tθ θ=θ  denotes the joint vector; 

[ ]1 2( )
T

t τ τ=τ joint torque vector.  

From Eq.(36), a TDCSA law is obtained for the planar 
robot as follows: 

2

( ) ( ) { ( ) 2

      } sgn( ),  for 1,2

i i i di i i ni i

ni i i i

t t L M t L w e

w e K s i

τ τ θ θ ς= − + − − +

+ + =

�� �� �
 (37) 

The value of the gains was selected to be 

1 2 8[ / ],n nw w rad s= = 1 2 1,ς ς= = 1 0.05,K = 2 0.01,K =

1 0.005,M = 2 0.001M = .  

4.2 Experimental Setup 

Fig. 6 shows the experimental setup for each axis. The 
saturation limit is set 1| ( ) | 3.0 0.5751t V Nmτ ≤ =  for joint 1 

and 2| ( ) | 1.5 0.1356t V Nmτ ≤ =  
for joint 2.  
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Fig.6-Experimental setup for each axis 
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4.3 Experimental Results 

For observing the windup phenomenon of TDCSA using an 
integral sliding surface, first of all, we experiment on the 
step input trajectory : 1 245[degree], 90[degree]d dθ θ= = .  

Fig. 7 shows the experimental results in situation of 
applying the only anti-windup scheme of TDC for 
compensating the windup phenomenon. As shown in Fig. 7, 
the windup effect is increased as the desired response speed, 
which is expressed in terms of nw , is increased. To be more 

specific, as the desired response speed( nw ) is increased, 

the integral term of sliding variables is increased so that the 
windup effect is increased, thereby causing overshoot in the 
response. 

Fig. 8 shows the experimental result with TDC anti-windup 
scheme and the reset sliding surface method for 
compensating the windup effect. As shown in Fig. 8, 
regardless of the nw , the sliding variable does not 

increased excessively so that any overshoot does not appear 
in the response. This means that the reset sliding surface 
compensates well the windup effect occurred by the 
integral term of the sliding surface well. 

Through the above experiments, we examined that the 
windup phenomenon appears in TDCSA using an integral 
sliding surface and the proposed anti-windup schemes 
compensate it well. 

 
Fig.7-Experimental result with only anti-windup scheme of 

TDC 

 
Fig.8-Experimental result with anti-windup scheme of TDC 

and reset sliding surface method 

5 CONCLUSION 
In this paper, we have reported the windup phenomenon 
associated with TDCSA using an integral sliding surface, 
presented its causes, and proposed its remedies. Specifically, 
we have shown that the windup phenomenon results from 
the inherent two integral effects in TDCSA using an 
integral sliding surface: the integral effect of the time delay 
estimation and the integral term of the integral sliding 
surface.  

So we have proposed the anti-windup schemes for two 
integral effects, respectively. For the integral effect of the 
time delay estimation, we proposed the existing anti-
windup scheme of TDC. However, this scheme can not 
compensates the windup effect occurred by the integral 
term of the sliding surface, and then we proposed the reset 
sliding surface for the windup effect of the sliding variable.  

Through the experiments on a SCARA-type robot, we 
showed that, in TDCSA using an integral sliding surface, 
there exists the windup phenomenon and the proposed 
compensators are effective enough to handle the windup 
phenomenon well. 

Finally, the proposed anti-windup scheme will be useful to 
SMC using an integral sliding surface.  
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