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1 Introduction
Let K be an imaginary quadratic �eld with ring of integers OK, and let E be an elliptic curve with complex
multiplication by OK . When E is given by the a�ne model

y2 = 4x3 − g2x − g3 with g2 = g2(OK) and g3 = g3(OK),

theWeber function h : C/OK → P1(C) is de�ned by

h(z) =


(g22/∆)℘(z)2 if K = Q(

√
−1),

(g3/∆)℘(z)3 if K = Q(
√
−3),

(g2g3/∆)℘(z) otherwise,
(1)

where ∆ = g32 − 27g23 and ℘(z) = ℘(z; OK). This map gives rise to an isomorphism of E/Aut(E) onto P1(C) ([8,
Theorem 7 in Chapter 1]).

Let f be a proper nontrivial ideal ofOK . We denote by H the Hilbert class �eld of K, and by Kf the ray class
�eld of K modulo f. As a consequence of the main theorem of the theory of complex multiplication, Hasse
proved in [4] that

H = K(j) with j = 1728 g
3
2
∆ and Kf = H

(
h(z0)

)
for some z0 ∈ f−1. (2)

See also [8, Chapter 10]. In his letter to Hecke, Hasse further asked whether Kf can be generated by a single
value of h without the j-invariant ([3, p. 91]), and Ramachandra also mentioned this problem later in [10]. It
was Sugawara who �rst gave a partial answer to this question ([12] and [13]), however, it still remains an open
question.

In this paper, through careful understanding about the characters on class groups and the second
Kronecker limit formula, we shall eventually resolve Hasse-Ramachandra’s problem for f = (N) with any
positive integer N excluding 2,3,4 and 6 (Theorem 5.1).
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2 The second Kronecker limit formula

For v =
[
r1
r2

]
∈ (Q \ Z)2, we de�ne the (�rst) Fricke function fv(τ) on the upper half-planeH by

fv(τ) =
g2(τ)g3(τ)
∆(τ) ℘(r1τ + r2), (3)

where g2(τ) = g2([τ, 1]), g3(τ) = g3([τ, 1]), ∆(τ) = ∆([τ, 1]) and ℘(z) = ℘(z; [τ, 1]). This function depends
only on ±v (mod Z2), and is holomorphic on H ([8, Chapters 3 and 6]). Furthermore, we de�ne the Siegel
function gv(τ) onH by the following in�nite product

gv(τ) = −eπir2(r1−1)q(1/2)(r
2
1−r1+1/6)(1 − qr1e2πir2 )

∞∏
n=1

(1 − qn+r1e2πir2 )(1 − qn−r1e−2πir2 ),

where q = e2πiτ. If N is a positive integer so that Nv ∈ Z2, then gv(τ)12N depends only on ±v (mod Z2), and
has neither zeros nor poles onH ([6, §2.1]).

Lemma 2.1. Let u, v ∈ (Q \ Z)2 such that u ≢ ±v (mod Z2). Then we have the relation

(
fu(τ) − fv(τ)

)6 = j(τ)2(j(τ) − 1728)3230324
gu+v(τ)6gu−v(τ)6
gu(τ)12gv(τ)12

.

Proof. See [8, Theorem 2 in Chapter 18] and [6, p. 29 and p. 51].

Let K be an imaginary quadratic �eld, let f be a proper nontrivial ideal of OK and let N (> 1) be the smallest
positive integer in f. We denote by Cl(f) the ray class group of K modulo f. Then Gal(Kf/K) is isomorphic to
Cl(f) via the Artin map σ = σf : Cl(f) → Gal(Kf/K). Let C ∈ Cl(f). Take any integral ideal c in the class C and
express

fc−1 = [ω1, ω2] for some ω1, ω2 ∈ C such that ω = ω1
ω2
∈ H,

1 = r1ω1 + r2ω2 for some r1, r2 ∈ (1/N)Z.

We de�ne the Fricke invariant ff(C) and the Siegel-Ramachandra invariant gf(C) by

ff(C) = f[ r1
r2

](ω) and gf(C) = g[ r1
r2

](ω)12N , (4)

respectively. These values depend only on the class C, not on the choices of c, ω1 and ω2 ([8, §6.2 and §6.3]
and [6, §2.1 and 11.1]).

Proposition 2.2. The invariants ff(C) and gf(C) belong to Kf. Furthermore, they satisfy

ff(C)σ(C
′) = ff(CC′) and gf(C)σ(C

′) = gf(CC′) for all C′ ∈ Cl(f).

Proof. See [6, Theorem 1.1 in Chapter 11].

Let χ be a nonprincipal character of Cl(f). We de�ne the Stickelberger element S(χ) = Sf(χ) by

S(χ) =
∑
C∈Cl(f)

χ(C) ln |gf(C)|, (5)

and the L-function Lf(s, χ) by

Lf(s, χ) =
∑
a

χ([a])
NK/Q(a)s

(s ∈ C),

where a runs over all nontrivial ideals ofOK prime to f and [a] stands for the class in Cl(f) containing the ideal
a. We shall denote by fχ the conductor of the character χ.
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Proposition 2.3. Let χ0 be the primitive character of χ on Cl(fχ). If fχ ≠ OK , then we obtain the relation ∏
p : prime ideals ofOK
such that p | f, p - fχ

(1 − χ0([p]))

 Lfχ (1, χ0) = − πχ0([γdKfχ])
3N(fχ)

√
|dK |ω(fχ)Tγ(χ0)

S(χ),

where dK is the di�erent ideal of the extension K/Q, γ is an element of K so that γdKfχ is a nontrivial ideal ofOK
prime to fχ, N(fχ) is the least positive integer in fχ, ω(fχ) = |{α ∈ O*K | α ≡ 1 (mod fχ)}| and

Tγ(χ0) =
∑

α+fχ∈(OK /fχ)*
χ0([αOK])e2πiTrK/Q(αγ).

Proof. See [11, Theorem 9 in Chapter II] or [6, Theorem 2.1 in Chapter 11].

Remark 2.4. Since χ0 is a nonprincipal character of Cl(fχ) by the assumption fχ ≠ OK, we have Lfχ (1, χ0) ≠ 0
([5, Theorem 10.2 in Chapter V]). Thus, if every prime ideal factor of f divides fχ, then we derive by Proposition
2.3 that S(χ) ≠ 0.

3 Di�erences of Weber functions
For an imaginary quadratic �eld K, �x an element τK ofH so thatOK = [τK , 1]. From now on, we assume that
K is di�erent fromQ(

√
−1) andQ(

√
−3), and let N > 1. We then have j(τK) ≠ 0, 1728 ([1, p. 261]) and

h(r1τK + r2) = f[ r1
r2

](τK) for all
[
r1
r2

]
∈ (Q \ Z)2

by the de�nitions (1) and (3).
Let HN be the ring class �eld of the order of conductor N in K. Then we have a tower of �elds

K ⊆ H ⊆ HN ⊆ K(N)

([1, §7]). For an integer t prime to N, by Ct = CN, t we mean the class in the ray class group Cl(N) of K modulo
(N) containing the ideal (t). Note that C1 is the identity element of Cl(N).

Lemma 3.1. If t is an integer prime to N, then we get

f(N)(Ct) = f[ 0
t/N

](τK) and g(N)(Ct) = g[ 0
t/N

](τK)12N .
Proof. Since

(NOK)(tOK)−1 = (N/t)OK = [NτK/t, N/t] and 1 = 0(NτK/t) + (t/N)(N/t),

we deduce the lemma by the de�nition (4).

For an intermediate �eld F of the extension K(N)/K, we shall denote by Cl(K(N)/F) the subgroup of Cl(N)
corresponding to Gal(K(N)/F).

Lemma 3.2. We have

Cl(K(N)/HN) = {Ct | t ∈ (Z/NZ)*/{±1}} ' (Z/NZ)*/{±1}.

Proof. See [2, Proposition 3.8].
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Let t be an integer such that
gcd(N, t) = 1 and t ≢ ±1 (mod N).

Note that such an integer t always exists except for the four cases N = 2, 3, 4, 6. Express (t + 1)/N and
(t − 1)/N as

t + 1
N = n+

N+
and t − 1

N = n−
N−

,

where n+, N+, n−, N− are integers such that N+, N− > 0 and gcd(n+, N+) = gcd(n−, N−) = 1. Observe that the
condition t ≢ ±1 (mod N) is equivalent to saying that neither N+ nor N− is equal to 1.

Now, we de�ne

ξt =
(
h(t/N) − h(1/N)

)12N =
(
f[ 0
t/N

](τK) − f[ 0
1/N

](τK)
)12N

. (6)

Furthermore, for a character χ of Cl(N) we denote by

S(χ, ξt) =
∑

C∈Cl(N)

χ(C) ln
∣∣∣ξ σ(C)t

∣∣∣ .
Lemma 3.3. If χ is nontrivial on Cl(K(N)/H), then we obtain

S(χ, ξt) = (N/N+)
∑

B+∈Cl(N)
(mod Cl(K(N)/K(N+)))

χ(B+) ln
∣∣∣g(N+)(CN+ , n+ )

σ(B+)
∣∣∣ ∑
A+∈Cl(K(N)/K(N+))

χ(A+)

+(N/N−)
∑

B−∈Cl(N)
(mod Cl(K(N)/K(N−)))

χ(B−) ln
∣∣∣g(N−)(CN− , n− )σ(B−)∣∣∣ ∑

A−∈Cl(K(N)/K(N−))

χ(A−)

−2(χ(Ct) + 1)S(χ).

Proof. We derive that

S(χ, ξt) =
∑

C∈Cl(N)

χ(C) ln

∣∣∣∣∣
(
j(τK)4N(j(τK) − 1728)6N

260N348N

)σ(C)∣∣∣∣∣
+
∑

C∈Cl(N)

χ(C) ln

∣∣∣∣∣
(
g[ 0

n+/N+

](τK)12N
)σ(C)∣∣∣∣∣ + ∑

C∈Cl(N)

χ(C) ln

∣∣∣∣∣
(
g[ 0

n−/N−

](τK)12N
)σ(C)∣∣∣∣∣

−
∑

C∈Cl(N)

χ(C) ln

∣∣∣∣∣
(
g[ 0

t/N
](τK)24N

)σ(C)∣∣∣∣∣ − ∑
C∈Cl(N)

χ(C) ln

∣∣∣∣∣
(
g[ 0

1/N
](τK)24N

)σ(C)∣∣∣∣∣
by the de�nition (6) and Lemma 2.1

=
∑

B∈Cl(N)
(mod Cl(K(N)/H))

∑
A∈Cl(K(N)/H)

χ(AB) ln

∣∣∣∣∣
(
j(τK)4N(j(τK) − 1728)6N

260N348N

)σ(AB)∣∣∣∣∣
+(N/N+)

∑
B+∈Cl(N)

(mod Cl(K(N)/K(N+)))

∑
A+∈Cl(K(N)/K(N+))

χ(A+B+) ln
∣∣∣g(N+)(CN+ , n+ )

σ(A+B+)
∣∣∣

+(N/N−)
∑

B−∈Cl(N)
(mod Cl(K(N)/K(N−)))

∑
A−∈Cl(K(N)/K(N−))

χ(A−B−) ln
∣∣∣g(N−)(CN− , n− )σ(A−B−)∣∣∣

−2
∑

C∈Cl(N)

χ(C) ln
∣∣∣g(N)(Ct)σ(C)∣∣∣ − 2 ∑

C∈Cl(N)

χ(C) ln
∣∣∣g(N)(C1)σ(C)∣∣∣ by Lemma 3.1

=
∑
B
χ(B) ln

∣∣∣∣∣
(
j(τK)4N(j(τK) − 1728)6N

260N348N

)σ(B)∣∣∣∣∣∑
A
χ(A)
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+(N/N+)
∑
B+

χ(B+) ln
∣∣∣g(N+)(CN+ , n+ )

σ(B+)
∣∣∣∑
A+

χ(A+)

+(N/N−)
∑
B−

χ(B−) ln
∣∣∣g(N−)(CN− , n− )σ(B−)∣∣∣∑

A−

χ(A−)

−2χ(Ct)
∑
C
χ(CtC) ln

∣∣g(N)(CtC)∣∣ − 2∑
C
χ(C) ln

∣∣g(N)(C)∣∣ by (2) and Proposition 2.2

= (N/N+)
∑
B+

χ(B+) ln
∣∣∣g(N+)(CN+ , n+ )

σ(B+)
∣∣∣∑
A+

χ(A+)

+(N/N−)
∑
B−

χ(B−) ln
∣∣∣g(N−)(CN− , n− )σ(B−)∣∣∣∑

A−

χ(A−)

−2(χ(Ct) + 1)S(χ)
by the assumption that χ is nontrivial on Cl(K(N)/H) and the de�nition (5).

4 Lemmas on characters of class groups
If we set

F = K
(
h(1/N)

)
= K

(
f[ 0

1/N
](τK)

)
,

then we obtain by (2) that

Cl(K(N)/H) ∩ Cl(K(N)/F) = Cl(K(N)/HF) = Cl(K(N)/K(N)) = {C1}. (7)

In this section, we shall prove the existence of certain characters of class groups under the assumption that
F is properly contained in K(N).

Lemma 4.1. Assume that
gcd(72, N) ∈ {1, 8, 9, 72}.

Then, there is a character χ of Cl(N) satisfying the following properties:

(A1) It is trivial on Cl(K(N)/HN).
(A2) χ(C) ≠ 1 for any chosen C ∈ Cl(K(N)/H) \ Cl(K(N)/HN).
(A3) Every prime ideal factor of (N) divides the conductor (N)χ.

Proof. See [7, Lemma 3.4 and Remark 4.5].

Lemma 4.2. Suppose that F is properly contained in K(N). Then, there is a character ρ of Cl(N) satisfying the
following properties:

– It is trivial on Cl(K(N)/H), and so (N)ρ = OK .
– It is nontrivial on Cl(K(N)/F).

Here, (N)ρ stands for the conductor of the character ρ.

Proof. Since |Cl(K(N)/F)| ≥ 2 and Cl(K(N)/H) ∩ Cl(K(N)/F) = {C1} by (7), one can take a class C ∈ Cl(K(N)/F) \
Cl(K(N)/H). Thus, if we let µ : Cl(N) → Cl(N)/Cl(K(N)/H) be the canonical homomorphism, then there is a
character ψ of Cl(N)/Cl(K(N)/H) such that ψ(µ(C)) ≠ 1.

Now, de�ning a character ρ of Cl(N) by ρ = ψ ◦ µ, we see that it is trivial on Cl(K(N)/H). Since

Cl(N)/Cl(K(N)/H) ' Cl(H/K) = Cl(OK),

we get (N)ρ = OK . Moreover, ρ(C) = ψ(µ(C)) ≠ 1 implies that ρ is nontrivial on Cl(K(N)/F).
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Proposition 4.3. Assume that

gcd(72, N) ∈ {1, 8, 9, 72} and F is properly contained in K(N). (8)

Then, there is a character χ of Cl(N) and an integer t which satisfy the following properties:

(B1) χ is nontrivial on Cl(K(N)/F).
(B2) gcd(N, t) = 1 and t ≢ ±1 (mod N).
(B3) S(χ, ξt) ≠ 0.

Proof. We divide the proof into three cases in accordance with gcd(72, N).

Case 1. First, consider the case where gcd(72, N) ∈ {8, 72}. Let C be the class in Cl(N) containing the ideal
((N/2)τK + 1). We observe by Lemma 3.2 that

C ∈ Gal(K(N)/K(N/2)) \ Gal(K(N)/HN). (9)

Then, by Lemma 4.1 there is a character χ of Cl(N) satisfying (A1)–(A3). If χ is trivial on Cl(K(N)/F), then
we replace χ by χρ, where ρ is a character of Cl(N) given in Lemma4.2. Thenewcharacter χ is nontrivial
on Cl(K(N)/F) and preserves the properties (A1)–(A3). Take any integer t such that gcd(N, t) = 1 and
t ≡ ̸ ±1 (mod N). Since N, t + 1 and t − 1 are all even, we see that N+ and N− divide N/2, from which it
follows that

Cl(K(N)/K(N/2)) ⊆ Cl(K(N)/K(N+)) ∩ Cl(K(N)/K(N−)). (10)

We then achieve that

S(χ, ξt) = (N/N+)
∑

B+∈Cl(N)
(mod Cl(K(N)/K(N+)))

χ(B+) ln
∣∣∣g(N+)(CN+ , n+ )

σ(B+)
∣∣∣ ∑
A+∈Cl(K(N)/K(N+))

χ(A+)

+(N/N−)
∑

B−∈Cl(N)
(mod Cl(K(N)/K(N−)))

χ(B−) ln
∣∣∣g(N−)(CN− , n− )σ(B−)∣∣∣ ∑

A−∈Cl(K(N)/K(N−))

χ(A−)

−2(χ(Ct) + 1)S(χ) by Lemma 3.3
= −2(χ(Ct) + 1)S(χ) since χ is nontrivial on Cl(K(N)/K(N+)) and Cl(K(N)/K(N−))

by (9), (10) and (A2)
= −4S(χ) by (A1) and Lemma 3.2
≠ 0 by Proposition 2.3 and Remark 2.4.

Case 2. Second, consider the case where gcd(72, N) = 9. If we let C be the class in Cl(N) containing the ideal
((N/3)τK + 1), then we see that

C ∈ Gal(K(N)/K(N/3)) \ Gal(K(N)/HN) (11)

by Lemma 3.2. By Lemma 4.1, there exists a character χ of Cl(N) satisfying (A1)–(A3). In a similar way
to the above Case 1, we may assume that χ is nontrivial on Cl(K(N)/F). Take t = 2, and then we get

n+ = 1, N+ =
N
3 and n− = 1, N− = N .

So, we derive that

S(χ, ξt) = 3
∑

B+∈Cl(N)
(mod Cl(K(N)/K(N/3)))

χ(B+) ln
∣∣∣g(N/3)(C(N/3), 1)σ(B+)∣∣∣ ∑

A+∈Cl(K(N)/K(N/3))

χ(A+)

+S(χ) − 2(χ(Ct) + 1)S(χ) by Lemma 3.3
= −(2χ(Ct) + 1)S(χ) since χ is nontrivial on Cl(K(N)/K(N/3)) by (11) and (A2)
= −3S(χ) by (A1) and Lemma 3.2
≠ 0 by Proposition 2.3 and Remark 2.4.
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Case 3. Lastly, consider the casewhere gcd(72, N) = 1. By Lemma 4.1, there is a character χ of Cl(N) satisfying
(A1)–(A3) for any chosen C ∈ Cl(K(N)/H) \ Cl(K(N)/HN). In like manner as above, we may assume that
χ is nontrivial on Cl(K(N)/F). Take t = 2, then it follows that

n+ = 3, N+ = N and n− = 1, N− = N .

Therefore, we obtain

S(χ, ξt) = χ(Cn+ )S(χ) + S(χ) − 2(χ(Ct) + 1)S(χ) by Lemma 3.3
= −2S(χ) by (A1) and Lemma 3.2
≠ 0 by Proposition 2.3 and Remark 2.4.

This proves the lemma.

Lemma 4.4. Assume that

gcd(72, N) ∈ {2, 3, 4, 6, 12, 18, 24, 36} and N ≠ 2, 3, 4, 6. (12)

Then, there exists an integer t satisfying the following properties:

(C1) gcd(N, t) = 1 and t ≢ ±1 (mod N).
(C2) There are prime factors p+, p− of N (not necessarily distinct) such that gcd(p±, N±) = 1 (Note that N±

depends on the choice of t).

Proof. Let ` be an integer such that ` > 1 and gcd(6, `) = 1. One can take t as listed in Table 1.

Table 1: An integer t satisfying (C1) and (C2)

N t N+ N− p+ p−
12 5 2 3 3 2
18 5 3 9 2 2
24 7 3 4 2 3
36 17 2 9 3 2
2` ` + 2 ` ` 2 2
4` 2` + 1 ` 2 2 a prime factor of `

2a3b` with
a ≥ 0, b ≥ 1

a solution of{
x ≡ 1 (mod 2a`),
x ≡ −1 (mod 3b)

a divisor of 2a` a divisor of 3b 3 a prime factor of `

Let (N) =
∏

p p
np be the prime ideal factorization of (N). Then we get

[K(N) : H] =
ω(N)
2

∏
p | (N)

(
NK/Q(p) − 1

)
NK/Q(p)np−1,

whereω(N) is the number of roots of unity in Kwhich are congruent to 1modulo (N) ([9, Theorem 1 in Chapter
VI]). One can then readily deduce that

K(N) = K(M) for a proper divisor M of N ⇐⇒ 2 ‖N and 2 splits in K.

In this case, we have
K(N) = K(N/2). (13)
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Furthermore, it is well known that

[HN : H] = N
∏
p | N

(
1 −
(
dK
p

)
1
p

)
, (14)

where (dK/p) is the Legendre symbol for an odd prime p, and (dK/2) is the Kronecker symbol ([1, Theorem
7.24]).

Lemma 4.5. Assume that if 2 ‖N, then 2 does not split in K. Let p be a prime factor of N with pe ‖N. Then,
there is a nontrivial character χp of Cl(N) satisfying the following properties:

– It is trivial on Cl(K(N)/Hpe ), and so (N)χp divides (pe).
– (N)χp is divisible by every prime ideal factor of (p).

Proof. Note that the assumption implies [Hpe : H] ≥ 2 by (14). Therefore, the lemma is an immediate
consequence of [7, Lemma 3.3].

Proposition 4.6. Assume that

N satis�es (12) and F is properly contained in K(N).

Under this assumption instead of (8), Proposition 4.3 also holds.

Proof. Let
χ =

∏
p | N

χp ,

where χp is a character of Cl(N) given in Lemma 4.5 for each prime factor p of N. If χ is trivial on Cl(K(N)/F),
then we replace χ by χρ where ρ is a character of Cl(N) given in Lemma 4.2. Then, χ satis�es the following
properties:

(i) It is trivial on Cl(K(N)/HN).
(ii) It is nontrivial on Cl(K(N)/F).
(iii) (N)χ is divisible by every prime ideal factor of (N).

Now, take an integer t satisfying (C1) and (C2) in Lemma 4.4. We then derive that

S(χ, ξt) = (N/N+)
∑

B+∈Cl(N)
(mod Cl(K(N)/K(N+)))

χ(B+) ln
∣∣∣g(N+)(CN+ , n+ )

σ(B+)
∣∣∣ ∑
A+∈Cl(K(N)/K(N+))

χ(A+)

+(N/N−)
∑

B−∈Cl(N)
(mod Cl(K(N)/K(N−)))

χ(B−) ln
∣∣∣g(N−)(CN− , n− )σ(B−)∣∣∣ ∑

A−∈Cl(K(N)/K(N−))

χ(A−)

−2(χ(Ct) + 1)S(χ) by Lemma 3.3
= −4S(χ) because χ is nontrivial on Cl(K(N)/K(N+)) and Cl(K(N)/K(N−))

by (iii) and (C2) and χ(Ct) = 1 by (i) and Lemma 3.2
≠ 0 by Proposition 2.3, Remark 2.4 and (iii).

5 Main theorem
Now, we are ready to prove our main theorem. Note by (2) that the problem of Hasse and Ramachandra is
trivial if the class number of K is one.
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Theorem 5.1. Let K be an imaginary quadratic �eld other than Q(
√
−1) and Q(

√
−3), and let N > 1 be an

integer such that N ≠ 2, 3, 4, 6. Then we have

K(N) =
{
K(h(1/N)) if 2 ∦ N or 2 does not split in K,
K(h(2/N)) otherwise.

Proof. First, consider the case where 2 ∦ N or 2 does not split in K. Suppose on the contrary that F =
K
(
h(1/N)

)
is properly contained in K(N). Then, by Propositions 4.3 and 4.6, there exist a character χ of Cl(N)

and an integer t such that

(B1) χ is nontrivial on Cl(K(N)/F),
(B2) gcd(N, t) = 1 and t ≢ ±1 (mod N),
(B3) S(χ, ξt) ≠ 0.

On the other hand, since F is a Galois extension of K, it contains the Galois conjugate h(1/N)σ(Ct) of h(1/N).
We then see by Proposition 2.2 and Lemma 3.1 that

h(1/N)σ(Ct) = f[ 0
1/N

](τK)σ(Ct) = f(N)(C1)σ(Ct) = f(N)(Ct) = f[ 0
t/N

](τK) = h(t/N).
Thus F contains the element ξt =

(
h(t/N) − h(1/N)

)12N . Now, we derive that

S(χ, ξt) =
∑

C∈Cl(N)

χ(C) ln
∣∣∣ξ σ(C)t

∣∣∣
=

∑
B∈Cl(N)

(mod Cl(K(N)/F))

∑
A∈Cl(K(N)/F)

χ(AB) ln
∣∣∣ξ σ(AB)t

∣∣∣
=

∑
B∈Cl(N)

(mod Cl(K(N)/F))

χ(B) ln
∣∣∣ξ σ(B)t

∣∣∣ ∑
A∈Cl(K(N)/F)

χ(A) because ξt ∈ F

= 0 by (B1),

which contradicts (B3). Hence, we have K(N) = K
(
h(1/N)

)
as desired.

Second, consider the case where 2 ‖N and 2 splits in K. Then we have

K(N) = K(N/2) as mentioned in (13)
= K(h(2/N)) by the �rst case of the theorem.

This completes the proof.
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