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Abstract

The present paper describes a structural dynamics modification (SDM) method, labeled aslayout reorientation
methodby attaching and reorienting modification structural elements on the baseline structure. The present method
is distinctly different from existing fixed layout pattern SDM methods which utilize a fixed modification layout
pattern and vary material properties or geometrical dimensions. The present method determines both the position
and orientation of the modification structural elements to be placed on the basic structure. A challenge in the present
method is how to resolve grid non-matching problem between the baseline structure and modification elements, for
which a virtual interface frame concept between the nodes of the baseline and modification structures is employed.
The potential of the present SDM method is demonstrated via numerical examples.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Structural dynamics modification (SDM) is widely used to change natural frequencies and/or mode
shapes by adding and deleting auxiliary members for improving the dynamic response of a target structure.
Most of the existing SDM approaches deal with the material property or the size of structures for a
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given structural layout[1–3]. In the present paper it is assumed that the base structure has been already
designed via a variety of methods and procedures including topology optimization[4]. While topology
optimization for vibration problems has been investigated by several investigators (see, e.g.,[5] and others
cited in[4, p. 310]), structural dynamics modifications are distinctly different from the problems posed
by topology design for vibration problems. First, its application is primarily aimed atmodifying(more
precisely perturbing) existing structures for the next generation design cycle. Second, it may provide an
alternative method for obviating the so-called non-smoothness of eigenvalues discussed in[6], among
others.

In the present paper, an attempt is made to place the modification structural elements on the baseline
structure by determining their translational positions and the rotational orientations, thus effectively
realizing the redesign of the layout of modifying structures for improving the natural frequencies of the
resulting structure.A motivation for the present approach is our belief that employing the layout variations
of modifying structural elements could accomplish more easily the stated design goal than by employing
the optimization of the material properties and the size variations of a fixed-layout system. A similar
approach was proposed by Twu and Choi[7,8] who developed a continuum-based configuration design
sensitivity using a material derivative idea, and applied it to beam and truss optimization. In order for
their idea to be applied to discretized FE models, the discrete model needs to be re-meshed for every new
design obtained from each iteration step of optimization process. Thus, the computational cost can be
high to implement in real engineering problems with finite elements models.

In the present study, a modular substructure coupling concept is introduced in SDM when attaching
auxiliary structures to the baseline structure. Thus, the optimization problem is reduced to finding the
attaching position of auxiliary structures. In a typical substructural synthesis, each of the substructure
is modeled separately and assembled into a whole structure without having to generate a new mesh.
However, node mismatch problem can occur on the interfacing surface of the substructures. This is
particularly true in layout optimization, for which the attaching structural members move continuously
on the baseline structure such that interface nodes usually do not match. Recently, several investigators
addressed non-matching interface problems. Farhat and Geradin[9] used a Lagrange multiplier function
which represents the interface tractions for gluing non-matching nodes in application of component mode
synthesis. Park and Felippa[10] presented a continuum-based variational principle for the formulation of
the discrete governing equations of partitioned structural systems. The interface is treated by an interface
frame and the localized Lagrange multipliers. Park et al.[11] presented a frame nodal displacement
criterion to carry out the frame discretization into piecewise linear elements. It should be noted that in
the interface frame concept, the discrete models of both the baseline structure and the attaching elements
are preserved, and the task of remeshing is delegated to the discretization of the frame only.

In this paper the interface frame concept is adopted for an effective layout optimization. The interfac-
ing displacements of modifying substructures are constrained to those of the baseline structure during
optimization process, thus circumventing remeshing. In the optimization process, of several methods
to calculate eigenvalues of the combined whole structure (e.g., see:[12–15]), we adopt a determinant
search method. Since the attaching structure moves continuously on the baseline structure, sensitivities to
determine the moving direction are essential for each optimization iteration. The eigenvalue sensitivities
of the attaching structure to the moving direction of the attaching members are formulated using the
Simpson method[14]. Finally, the optimal structural modification is obtained by iteratively carrying out
the eigenvalue sensitivities and eigenvalue reanalysis. Numerical examples demonstrate the basic features
and performance of the proposed SDM approach.
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2. Partitioned equations for structures having non-matching interface nodes

Consider a structure composed of three substructures as shown inFig. 1. The bottom substructure is
the baseline structure and the upper two substructures represent modification structures introduced to
alter the natural frequencies of the baseline structure. When synthesizing the substructures, we would like
to preserve the discrete nodes of the three substructures. Imagine now one or both of the modification
substructures move with respect to the baseline structure so that the interface nodal pattern is altered.
One way to preserve the original nodal patterns of the three substructures is to introduce an interface
frame along the interface surface, to which the substructures are brought to be connected, instead of
direct connection one another. It can be shown that there exists a unique constraint condition between
the interface displacements of substructures and those of the frame. Specifically, the interface constraint
condition between the substructure and the frame (not the interfacing substructure) can be expressed as

u�s − uf = 0, (1)

whereu�s is the interface displacement of substructures anduf is the frame displacement thatmatches
with the substructural interface displacement.

Observe that each substructure is connected to the interface frame,not to the adjacent substructure,
which is labeled aslocalized constraint conditionsin Park and Felippa[10]. Thus, when the above
localized constraint condition is augmented to the completely free virtual work of each substructures, the
following constrained Hamilton’s principle is obtained:

�

∫
(T − V + ��) dt=0, T =

ns−1∑
s=0

Ts, V =
ns−1∑
s=0

Vs, ��=
ns−1∑
s=0

∫
�s

�s(us − uf ) d�s (2)

in which Ts andVs are the kinetic and potential energies of substructures; us , uf , ns and�s denote
the substructural displacement, the interface frame displacement, the number of substructures and the
boundary of substructures, respectively; d�s is used for the boundary integral; and,�s is the localized
Lagrange multiplier associated to thesth substructure, effectively forcing the interface constraint condition
(1) for each substructure. It should be noted that the method of classical Lagrange multipliers connects
one substructural interface directly to that of its adjacent substructures.

Baseline structure 0 

Interface frame

element

Modification structure 1 Modification structure 2

�
1 �

2

�
0

Fig. 1. Substructure synthesis employing the method of localized Lagrange multipliers.
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First, we discretizeus , �s anduf with suitable shape functions:

us = N(s)
u us, �s = N(s)

� �s, and uf = Nf uf , (3)

whereN(s)
u , N(s)

� andNf are shape functions of the displacement, the localized Lagrange multiplier and
the interface frame displacement, respectively, andus , �s anduf are nodal vectors. Thus, when Eq. (2)
is discretized via (3), the following discrete Hamilton’s equation is obtained:

�

∫ ns−1∑
s=0

(
1

2
u̇T

sM s u̇s − 1

2
uT

s K sus + f Ts us + �T
s Bsus − �T

s Cf suf

)
dt = 0 (4)

in which

Bs =
∫

�s

N(s)T

� N(s)
u d�s, Cf s =

∫
�s

N(s)T

� Nf d�s , (5)

M s ,K s , fs ,Bs andCf s , are the mass matrix, stiffness matrix of thesth substructure, external force onsth
substructure, interface Boolean matrix and interpolation matrix, respectively. Usually the shape functions
of the localized Lagrange multipliers are chosen as delta functions located at substructure nodes. Then,
the connection matrix,Bs , becomes a Boolean matrix with 0 or 1 entries, which indicates a nodal point
connected to the neighboring substructure.

From the discrete variational equation (4), the partitioned domain-by-domain equations for each sub-
structure and its force and displacement compatibility conditions can be derived as

�us : M s üs + K sus = fs + BT
s �s s = 0, 1, . . . , (ns − 1),

��s : Bsus − Cf suf = 0, s = 0, 1, . . . , (ns − 1),

�uf :
ns−1∑
s=0

CT
f s�s = 0.

(6)

The partitioned governing equations for the entire structure can be rewritten by stacking up the above
relations as follows:[M 0 0

0 0 0
0 0 0

][ ü
�̈
üf

]
+
[ K −BT 0

−B 0 Cf

0 −CT
f 0

][ u
�
uf

]
=
[ f

0
0

]
,

uT = [u0 u1 . uns−1]T
�T = [�0 �1 . �ns−1]T. (7)

We will employ the preceding partitioned equations of motion for synthesizing structural modification.
To this end, by assuming periodic motions at frequency� and withf = 0, the frequency equation for the
synthesized whole structure is obtained from the partitioned governing equation (7):[D(�) −BT 0

−B 0 Cf

0 CT
f 0

][ u
�
uf

]
=
[0

0
0

]
, D(�) = K − �2M = H(�)−1, (8)

whereD(�) is the substructure-by-substructure dynamic stiffness. It should be noted that� in the
above equation represents the frequencies of the assembled total system equations, not the substructural
frequencies.
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Since the number of structural nodes is usually larger than that of the interface nodes, it is preferable
to reduce the size of Eq. (8). First, we obtainu(�) from the first row of Eq. (8) as

u(�) = H(�)BT�(�). (9)

Substituting this into the second and third rows of Eq. (8) leads to a reduced equation of motion:[−H(�)bb Cf

CT
f 0

] [
�
uf

]
= E(�)

[
�
uf

]
= 0, H(�)bb = BH(�)BT, (10)

where subscript,b, denotes the interface degrees of freedom which are much smaller compared to the
total degrees of freedom. The matrix is block diagonal in terms of the interface degrees of freedom of
each substructure. To have a non-trivial solution, the determinant of matrixE(�) must be equal to zero,
which leads to the characteristic equation. There are many methods to solve for eigenvalues yielded by
the characteristic equation. In the present study, a method suggested byYee and Tsuei[13] will be adopted
as they are known to alleviate numerical instabilities, which solves the following equation:

det(E(�)) = �ns−1
i=0 �nm

j=1(�
2
ij − �2) = 0, (11)

where�ij is thej th natural frequency of theith substructure andnm is the number of modes of the
ith substructure in the frequency range of interest. After obtaining therth natural frequency�r , the
eigenvector corresponding to[�T,uT

f ] can be calculated when needed.
In Eq. (10), the number of degrees of freedom can be drastically reduced to the number of the interface

degree of freedom. This means that calculating the limited number of frequency response functions at
the interfacing points would enable one to obtain the natural frequencies of the synthesized structure.
Experimentally measured frequency response function at the interfacing points can also be used instead
of those from the FE model.

3. Placement of modification members by employing partitioned equations of motion

Our modification problem can be stated as follows:

max

[
�min = N

min
i=1

�i

]
(12)

that is s.t.

(K − �2
iM )�i = 0, i = 1, . . . , N ,

(xm, ym) ∈ D, 0��m�	, m = 1, . . . , nm,∑
mm�Mm, (13)

where(K ,M ) are the stiffness and mass of the combined base and modification beams,(xm, ym) denotes
the center of the modification beam,�m is the angular orientation of the modification beam,D is the
permissible domain for the modification beam placement,mm is the mass of each modification beam,
Mm is the total allowable modification beams, and subscripts(N, nm) designate the total degrees of
freedom of the modified structures and the total number of modification beams, respectively.
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Fig. 2. Reorientation design variablesg = [x1, y1, �1, x2, y2, �2]T.

To modify effectively the natural frequencies of the baseline structure, an eigenvalue sensitivity for-
mulation with respect to the design variables is needed. Eigenvalue sensitivities are very helpful to guide
the preferable direction and location of the modification members to be placed. Simpson[14] formulated
an eigenvalue sensitivity equation for a coupled system using the derivatives of mass and stiffness ma-
trices with respect to the design variables. In this work, the design variables to be used in the eigenvalue
sensitivity are the position and orientation of the modification members, viz.,(x, y) and� as shown in
Fig. 2. The design variables can be expressed asgi = [xi, yi, �i]T if we take two design modification
beams where subscriptsi denotes theith modification member. For therth natural frequency�r of the
synthesized structure, pre- and post-multiplying Eq. (10) by[�T,uT

f ] result in

−�THbb(�r )� + 2�TCf (�r )uf = 0. (14)

It is assumed that the number of the interfacing boundary nodes is kept unchanged, but the nodal po-
sition moves as the position design variable,(x, y) and the rotational design variable� are changed.
Differentiating Eq. (11) with respect to theith position design variablegi gives

−�T dHbb(�r )

dgi

� + 2�T dCf (�r )

dgi

uf = 0. (15)

Since changes in the design variables affect both the natural frequency and the frequency response function
(FRF), the derivative of the interface FRF is expressed as

dHbb(�r )

dgi

= �Hbb(�r )

�gi

+ �Hbb(�r )

��r

��r

�gi

. (16)

From Eqs. (15) and (16), the desired eigenvalue sensitivity can be written as follows:

��r

�gi

=
∑ns−1

s=0 (−�T
s (�H(s)

bb (�r )/�gi)�s + 2�T
s (dCf (�r )/dgi)uf )∑ns−1

s=0 (�T
s (�H(s)

bb (�r )/��r )�s)
. (17)

In Eq. (16), the interface FRF variation and the interpolation derivative are needed to obtain the
eigenvalue sensitivity expression (17). Since the interface FRF is not affected by the position design
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Fig. 3. Frame and localized Lagrange multipliers for modeling of non-matching substructural interfaces.
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variable(xs, ys) but by the rotational design variable(�s), the interface FRF can be expressed as

H(s)
bb (�r , �s) = T(�s)

TH(s)
bb (�r ,0)T(�s), (18)

whereT(�s) is the coordinate transformation matrix due to the rotation�s . Therefore, the derivative of
the interface FRF is obtained by differentiating Eq. (18) as

dH(s)
bb (�r , �s)

d�s

= dT(�s)
T

d�s

H(s)
bb (�r , 0)T(�s) + T(�s)

TH(s)
bb (�r , 0)

dT(�s)

d�s

. (19)

The derivative of the frame node matrixCf s with respect to the design variablesgs of substructure�s is
expressed as

dCf s

dgs

=
∫

�s

N(s)
�

T dNf (
, �)

dgs

d�s, gs = (xs, ys, �s), (20)
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Table 1
Convergence of natural frequencies for non-matching beam cases

Matched FEM Non-matched FEM Difference (%)

1st natural freq. 16.08 16.17 0.5
2nd natural freq. 46.39 46.98 1.3
3rd natural freq. 93.02 93.90 1.3
4th natural freq. 158.20 166.38 5.0

Interface 
frame

Modification beam
structure1

Baseline plate
structure 0

Synthesized 
structure

�0�

�1�

�1�

�0�
�0w �0w

�1w

�1w

Fig. 5. Construction of frame for non-matching interface between plate and modifying beam.

where the shape function derivatives can be expressed by invoking the standard finite element procedure
as 


dNf (
, �)

dxs

dNf (
, �)

dxs


= J−1

s




�Nf (
, �)

�

�Nf (
, �)

��


 , Js =

[
xs,
 ys,


xs,� ys,�

]
,

dNf (
, �)

d�s

= [xs,� ys,�] J−1
s




�Nf (
, �)

�

�Nf (
, �)

��


 . (21)

From Eqs. (19) to (21), the eigenvalue sensitivity vector with respect to the position design variables of
thesth modification substructure�s (17) can be written as



��r

�xs
��r

�ys
��r

��s


= [A]

∑ns−1
s=0

(
�T

s

�H(s)
bb (�r )

��r

�s

) ,
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Fig. 6. Present layout reorientation design variables of beam stiffener (cantilevered plate).

[A] =



0
0

−�T
s

dH(s)
bb (�r , �s)

��s

�s


+ 2

[
�T

s 0 0
0 �T

s 0
0 0 �T

s

][ 1 0
0 1

−ls sin�s ls cos�s

]

× J−1
s




�Nf (
, �)

�

�Nf (
, �)

��


 . (22)

4. Example problems

4.1. A beam problem

In implementing the design sensitivity vector, the construction of the frame node matrixCf is re-
quired. As the frame nodes are a new concept in connection with design optimization, its construction
will first be demonstrated by using a simple beam structure. The beam has modulus of elasticity of
200 Gpa, density of 7800 kg/m3, height of 2 mm, and width of 10 mm. As shown inFig. 3, the base-
line structure has four beam elements and the modification structure has one beam element. Since
each node of a beam element has two variables: the vertical displacementw and the rotational slope
� (not to be confused with the rotational variable of the modification member orientation), it is natu-
ral to have the vertical displacementwf and the rotational slope�f for the interface frame as well.
Therefore, the shape function of the interface frame takes the form of Hermitian cubic interpolations as
follows:

[
wf

�f

]
=



(

1−3x2

L2 + 2x3

L3

) (
x−2x2

L
+ x3

L2

) (
3x2

L2 −2x3

L3

) (−x2

L
+ x3

L2

)
(−6x

L2 + 6x2

L3

) (
1 − 4x

L
+ 3x2

L2

) (
6x

L2 − 6x2

L3

) (−2x

L
+ 3x2

L2

)





wf 1
�f 1
wf 2
�f 2


 . (23)
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Here,L=0.2 m becomes the length of the interface frame element. Note that the interface frame nodes are
collocated with the baseline structure nodes. Since the localized Lagrange multipliers are also collocated
at substructure nodes, they are shown inFig. 3 accordingly. In this case the frame node matrixCf is
evaluated from the interface frame shape function at the appropriate interface position as follows.

For the baseline structure (denoted by subscript 0) and the frame (denoted by subscriptf), one finds
the following constraint:

B0 u0 − Cf 0 uf = 0,

B0 =




0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


 , Cf 0 = I (6, 6),

uT
0 = [w01 �01 w02 �02 w03 �03 w04 �04]T,

uT
f = [wf 1 �f 1 wf 2 �f 2 wf 3 �f 3]T. (24)

For the modification structure (denoted by subscript 1) and the frame (denoted by subscriptf), one
finds the following constraint:

B1u1 − Cf 1uf = 0, B1 = I (4, 4),

Cf 1 =



1/2 L/8 1/2 −L/8 0 0
−3/2L −1/4 3/2L −1/4 0 0

0 0 5/32 3L/64 27/32 −9L/64
0 0 −9/8L −5/16 9/8L 3/16


 ,

uT
1 = [w11 �11 w12 �12]T,

uT
f = [wf 1 �f 1 wf 2 �f 2 wf 3 �f 3]T. (25)

Fig. 4 shows the accuracy comparison of the present partitioned, non-matching model vs. a monolithic
beam model that combines the modification beam (see alsoTable 1), which shows the viability of the
partitioned model with non-matching interface nodes.

4.2. A plate problem

The present SDM method detailed in Eqs. (1)–(22), labeled aslayout reorientation method, is applied
to a plate baseline structure for altering its dynamic characteristics by placing a set of modification beams.
For the baseline plate, it has been found that the adoption of an area-element interface frame, i.e., the
interface frame consists of four-noded rectangular elements, becomes convenient as shown inFig. 5. The
location where the displacement constraint condition is applied, is marked with circle on the interface
frame. Note that the interface frame moves to accommodate the movement of the modification beam.
Two plate problems are considered, a cantilevered plate and a corner-supported plate in order to illustrate
the adaptiveness of the present method to accommodate different boundary conditions.
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Iteration 0, �1= 6.34 Hz

(Σ mi = 0.05 kg)

Iteration 5, �1= 6.34 Hz

(Σ mi = 0.05 kg)k = 1000 N/m k = 1000 N/m

Iteration 15, �1= 7.54 Hz

(Σ mi = 0.3 kg)

Iteration 24, �1= 7.76 Hz

(Σ mi = 0.3 kg)k = 1000 N/m k = 1000 N/m

Fig. 7. Rectangular fixed layout pattern and beam width changes during optimization process (cantilevered plate).

4.2.1. A cantilevered plate
The plate baseline structure is made of steel having dimensions 600 mm by 450 mm by 2 mm as shown

in Fig. 6. The plate is clamped at the left side and connected to lumped stiffnessk = 1000 Nm at its right
corner for asymmetry.

First, the 28 beams are placed in a predetermined rectangular grid pattern, labeled asfixed layout
pattern method, is shown inFig. 7. The optimization was carried out by changing the modification beam
masses of the 28 beams and by gradually increasing the total beam mass limit. It was determined that
at the end of 24 optimization iterations, no further increase in the first-mode frequency was possible as
illustrated inFig. 8. Hence, it was concluded that the optimization has converged with 7.76 Hz for the first
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Fig. 8. Convergence of rectangular layout pattern for first-mode optimization (cantilevered plate).

mode. For curiosity, the diagonal pattern was used, which led to a lower maximum first mode (7.24 Hz)
than of the rectangular pattern as shown inFig. 9.

The same problem was tackled by the present layout reorientation method with the modification beams
ranging from one to five. Each of the modification beams is chosen to be 150 mm long, 5 mm high and
10 mm wide and modeled with 4 Euler–Bernoulli beam elements. Both the plate and the beam have
their modulus of elasticity of 200 Gpa and density of 7800 kg/m3, respectively. The design variables for
this problem are the location and orientation (gi = [xi, yi, �i]) for each of the modification beams. The
eigenvalue sensitivity with respect to the design variables has been computed by using Eq. (22).

The optimization results for determining the beam orientation and position are shown for the case of
one modification beam inFig. 10and for five modification beams inFig. 11, respectively. It is found
that the modification beams move from the right side to the left side in order to increase the first natural
frequency of the modified plate.Although not reported herein, the cases of two to four modification beams
have been examined, which are summarized inTable 2. Clearly, the fundamental frequency increases as
the number of the modification beams is increased while keeping the total mass of the modification beams
is constrained to be the same as for the fixed layout pattern case. Specifically, when one employs five
modification beams, the fundamental frequency attained exceeds that obtained by the fixed-pattern case.
This demonstrates the flexibility and potential of the present structural modification method as no a priori
assumption is needed for their final orientations.

To compare and contrast to the fixed layout pattern method, the same plate structural modification prob-
lem was rerun using the present layout reorientation method, with five 135◦ inclined initial modification
beams as opposed to five horizontal modification beams considered inFig. 11. The result is illustrated
in Fig. 12, which indicates that the final modification pattern is qualitatively the same as the case ofFig.
11. In other words, the present layout reorientation method is somewhat insensitive to initial layout of
modification structures, an important advantage over the fixed layout pattern method.
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Iteration 0, �1= 6.33 Hz

(Σ mi = 0.2 kg) k = 1000 N/m

Iteration 15, �1= 6.87 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 22, �1= 7.24 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 5, �1= 6.66 Hz

(Σ mi = 0.28 kg) k = 1000 N/m

Fig. 9. Cross fixed layout pattern and beam width changes during optimization process (cantilevered plate).

4.2.2. A two-corner supported plate
The same plate is used for two-corner supported boundary conditions as shown inFig. 13. The op-

timization results of the fixed layout pattern method are illustrated inFigs. 14and15 for two different
patterns. Clearly, the diagonal pattern yields somewhat higher fundamental frequency than that of the
horizontal pattern. This shows that a desirable initial pattern is influenced by the different boundary
conditions.

As for the present layout reorientation method with one to five beam elements,Table 3shows that the
present layout reorientation method with three modification beam elements yields a competitive funda-
mental frequency compared to the fixed layout pattern method. In addition, the same plate modification
problem was rerun using the present layout reorientation method with a diagonal initial orientation pat-
tern of the modification beams. The results are summarized inFigs. 16 and 17, which illustrate that the
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Iteration 0,
�1= 5.74 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 12,
�1= 7.48 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 18,
�1= 7.60 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 5,
�1= 6.19 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Fig. 10. Present layout reorientations of a beam stiffener during optimization process (cantilevered plate).

final layout of modification beams converges to that of the fixed layout pattern method with the diagonal
pattern (seeFig. 15).A major difference is that, whereas the final result by the fixed layout pattern method
forms two diagonal beams, that of the present layout reorientation method forms only one beam line.

It is observed that, for the example problems considered, different fixed patterns influence more signif-
icantly the final optimization results (4% for the present example) of the fixed layout pattern method than
those of the present layout reorientation method (less than 1%). This illustrates that, even for problems
that may yield different modification layout depending on the initial layout, the present layout reorienta-
tion method yields almost the same achievable frequency levels. This is not the case with the fixed layout
pattern method.

Finally, for the three problems evaluated, the present layout reorientation method is more efficient than
the fixed layout pattern method.
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Iteration 0, �1= 5.81 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 12, �1= 6.78 Hz

(Σ mi = 0.3 kg) k = 1000 N/m
Iteration 34, �1= 7.81 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 5, �1= 6.10 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Fig. 11. Present layout reorientations of initially horizontal five beam stiffeners during optimization process (cantilevered plate).

Table 2
Comparison of fixed layout pattern vs. present layout reorientation methods for cantilevered plate

Baseline plate Size optimization Position optimization

1 beams 2 beams 3 beams 4 beams 5 beams

6.21 Hz 7.76 Hz 7.60 Hz 7.67 Hz 7.68 Hz 7.80 Hz 7.81 Hz

Maximum adding mass: 0.3 kg.
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Iteration 0, �1= 6.12 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 30, �1= 7.50 Hz

(Σ mi = 0.3 kg) k = 1000 N/m
Iteration 59, �1= 7.80 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Iteration 0, �1= 6.47 Hz

(Σ mi = 0.3 kg) k = 1000 N/m

Fig. 12. Present layout reorientations of initially diagonal five beam stiffeners during optimization process (cantilevered plate).

5. Conclusion

In this work, position changes and reorientation of modification structures are utilized as the design
optimization variables for improving the frequencies and/or mode shapes of the baseline structure.The par-
titioned equations of motion are used to model independently the baseline structure and the modification
substructures, and a frame concept is introduced to address the coupling of non-matching interface nodes.
Computations of the natural frequencies of the combined structure are carried out by the resulting interface
FRFs, thus reducing the number of degrees of freedom in eigenvalue problem as the number of interface
degree of freedom usually substantially smaller than the total degrees of freedom of the baseline structure
and the modification substructures. An eigenvalue sensitivity in terms of the optimization variables, viz.,
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x
1

y
1

�1

Ω1

Ω0

k = 100 N/m

Fig. 13. Diagonally corner-supported plate.

Iteration 0, Iteration 5,
�2 = 7.07 Hz

(Σ mi = 0.18 kg)

Iteration 15,
�2 = 7.47 Hz

(Σ mi = 0.3 kg)

�2 = 7.40 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

k = 100 N/m

Iteration 22,
�2 = 7.74 Hz

(Σ mi = 0.3 kg)k = 100 N/m

k = 100 N/m

Fig. 14. Rectangular fixed layout pattern and beam width changes during optimization process (corner-supported plate).
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Iteration 0, �2 = 7.27 Hz

(Σ mi = 0.2 kg)

Iteration 15, �2 = 7.94 Hz

(Σ mi = 0.3 kg)

Iteration 5, �2 = 7.83 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

k = 100 N/m

Iteration 22, �2 = 8.06 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

k = 100 N/m

Fig. 15. Cross fixed layout pattern and beam width changes during optimization process (corner-supported plate).

the position and the orientation of modification substructures, is derived and used to find the modification
direction and orientation. Finally, the optimal structural modification is iteratively calculated by combin-
ing the eigenvalue sensitivities and exact eigenvalue reanalysis results. The present layout reorientation
SDM method has been applied to determine the position and orientation of beam stiffeners to increase the
natural frequency of the baseline plate and compared to the fixed layout pattern SDM method that employs
the beam width as the design variable. The result is encouraging both in terms of its conceptual simplicity
as the present method can take advantage of software modularity for large-scale SDM problems. Further
studies would provide insight as to its applicable ranges and limitations, which we are actively pursuing.
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Table 3
Comparison of fixed layout pattern vs. present layout reorientation methods for corner-supported plate

Baseline plate Size optimization Position optimization

1 beams 2 beams 3 beams 4 beams 5 beams

6.88 Hz 7.74 Hz 7.20 Hz 7.50 Hz 7.78 Hz 7.92 Hz 7.97 Hz

Maximum adding mass: 0.3 kg.

Iteration 0, �2 = 7.42 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

Iteration 10, �2 = 7.91 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

Iteration 35, �2 = 7.97 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

Iteration 5, �2 = 7.66 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

Fig. 16. Present layout reorientations of initially horizontal five beam stiffeners during optimization process (corner-supported
plate).
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Iteration 0, �2 = 7.21 Hz

(Σ mi = 0.3 kg)

Iteration 5, �2 = 7.69 Hz

(Σ mi = 0.3 kg)
k = 100 N/m k = 100 N/m

Iteration 10, �2 = 8.00 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

Iteration 23, �2 = 8.05 Hz

(Σ mi = 0.3 kg)
k = 100 N/m

Fig. 17. Present layout reorientations of initially diagonal five beam stiffeners during optimization process (corner-supported
plate).
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