
J
H
E
P
0
3
(
2
0
1
9
)
0
7
2

Published for SISSA by Springer

Received: September 24, 2018

Revised: February 13, 2019

Accepted: March 8, 2019

Published: March 13, 2019

Group theoretic approach to fermion production

Ui Min, Minho Son and Han Gyeol Suh

Department of Physics, Korea Advanced Institute of Science and Technology,

291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

E-mail: alsdml234@kaist.ac.kr, minho.son@kaist.ac.kr, suhh@uwm.edu

Abstract: We propose a universal group theoretic description of the fermion production

through any type of interaction to scalar or pseudo-scalar. Our group theoretic approach

relies on the group SU(2)×U(1), corresponding to the freedom in choosing representations

of the gamma matrices in Clifford algebra, under which a part of the Dirac spinor function

transforms like a fundamental representation. In terms of a new SO(3) (∼ SU(2)) vector

constructed out of spinor functions, we show that fermion production mechanism can be

analogous to the classical dynamics of a vector precessing with the angular velocity. In our

group theoretic approach, the equation of motion takes a universal form for any system,

and choosing a different type of interaction or a different basis amounts to selecting the

corresponding angular velocity. The expression of the particle number density is greatly

simplified, compared to the traditional approach, and it provides us with a simple geometric

interpretation of the fermion production dynamics. For the purpose of the demonstration,

we focus on the fermion production through the derivative coupling to the pseudo-scalar.

Keywords: Cosmology of Theories beyond the SM, Beyond Standard Model

ArXiv ePrint: 1808.00939

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2019)072

mailto:alsdml234@kaist.ac.kr
mailto:minho.son@kaist.ac.kr
mailto:suhh@uwm.edu
https://arxiv.org/abs/1808.00939
https://doi.org/10.1007/JHEP03(2019)072


J
H
E
P
0
3
(
2
0
1
9
)
0
7
2

Contents

1 Introduction 1

2 The model 2

3 Reparametrization group 4

4 Fermion production 7

4.1 Fermion production in inertial frame 7

4.2 Fermion production in rotating frame 10

4.3 Backreaction due to fermion production 12

5 Numerical analysis 13

6 Summary 16

A Convention 18

B Energy and particle number in inertial frame 18

1 Introduction

The particle production is an efficient way of dissipating energy, and it has a variety of

application from the phenomenology to the cosmology. In cosmology, the particle pro-

duction has been known to be an underlying mechanism, known as the preheating via

parametric resonance or excitation, that is responsible for the reheating of the Universe in

the post-inflationary era [1]. The axion inflation through the particle production has been

explored. For instance, the axion through the electromagnetic dissipation can be realized

as the inflaton even in the steep axion potential [2]. The fermion production could be

significant enough, or more efficient than the dissipation via the Hubble friction (against

a common prejudice) to support the axion inflation as well [3, 4]. The particle production

could also generate the gravitational waves in various context [5–17]. In phenomenology,

an interesting recent application is the relaxation with the particle production [18]1 that

has been proposed as an alternative solution to the gauge hierarchy problem [20].

In this work, we revisit the theory of the spin-1/2 fermion production [3, 4, 21–27] and

reformulate it in a group theoretic way. Our formalism is based on the reparametrization

group that corresponds to the freedom in choosing a representation of the gamma matrices.

1See [19] for the discussion about the Higgs production as an alternative to the gauge boson production

for the dissipation, and also for the phenomenological and cosmological constraints on the relaxation model

proposed in [18].
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Since this freedom is unphysical, the physical observables must be invariant under the

reparametrization group. In a typical quantum field theory, one chooses a representation

of the gamma matrices in the beginning as a convention, and therefore, the corresponding

freedom is hidden and it can hardly become practical. As we will demonstrate in this work,

we newly discover that the freedom in the representation of the gamma matrices can greatly

help us understanding the complicated fermion production mechanism. As an example,

our group theoretic approach reveals a simple analogy between the quantum-mechanical

dynamics of the fermion production and the classical dynamics of a vector precessing with

an angular velocity. This analogy provides us with a simple geometrical interpretation of

the quantum-mechanical fermion production. To the best of our knowledge, we are the first

who show that the reparametrization group in the representation of the gamma matrices

could be useful for understanding the nature of the fermion production.

This paper is organized as follows. In section 2, we set up the model for the fermion

production through the coupling of the pseudo-scalar to fermions, and we discuss about

subtleties caused by the basis choice. In section 3, we first establish the existence of the

reparametrization group that leaves Clifford algebra and the Lagrangian for the Dirac

fermion invariant and that does not overlap with the Lorentz group. Then, we construct

the building blocks for our group theoretic approach such as the irreducible representations

of the reparametrization group. In section 4.1, we reformulate the equations of motion of

fermions and particle number density in an inertial frame in terms of the covariant or

invariant quantities under the reparametrization group. We demonstrate the analogy of

the fermion production mechanism to the classical motion of a vector precessing with an

angular velocity. In section 4.2, we demonstrate how the formalism changes under the time-

dependent transformation from an inertial frame to the non-inertial frame. In section 5, we

perform some numerical study to elaborate our new approach compared to the traditional

way. In section 6, we summarize our results. In appendix A, we provide the convention of

the metric and the gamma matrices. In appendix B, we provide the explicit derivation of

the particle number from the Hamiltonian in an inertial frame.

2 The model

We study the fermion production through the derivative coupling of the Dirac fermion ψ

to a pseudo-scalar φ with the action,

S =

∫
d4x
√
−g
[
ψ̄

(
ieµaγ

aDµ −m−
1

f
eµaγ

aγ5∂µφ

)
ψ +

1

2
(∂µφ)2 − V (φ)

]
, (2.1)

on a metric

ds2 = dt2 − a(t)2dx2 = a(t)2
(
dτ2 − dx2

)
, (2.2)

where a(t) is a scale factor of the Universe. The overall scale factor due to
√
−g in the

Lagrangian for fermions can be removed via rescaling, ψ → a−3/2ψ. Under this rescaling,

the covariant derivative due to the spin connection become partial derivative. The resulting

Lagrangian becomes

L = ψ̄

(
iγµ∂µ −ma−

1

f
γµγ5∂µφ

)
ψ +

1

2
a2ηµν∂µφ∂νφ− a4V (φ) . (2.3)
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Throughout this work we will use the symbol τ to denote the conformal time, and we will

not distinguish the cosmic time and the conformal time unless necessary. We will also

assume that the pseudo-scalar field φ is spatially homogeneous.

In the context of the fermion production during axion inflation, the analytic solution of

the differential equation from the Lagrangian in eq. (2.3) is available, known as the Whit-

taker function, assuming that the homogeneous φ has nearly constant velocity [3]. Even

when assuming the static universe scenario, the apparent formalism for the fermion pro-

duction has a close similarity to the case with the Yukawa-type coupling of the scalar to the

fermions [3], which could be useful for a better understanding. However, the corresponding

Hamiltonian formalism is not straightforward to use to define the particle number density

unambiguously [4]. It is because the derivative coupling of the pseudo-scalar to fermions

includes the velocity of the pseudo-scalar, φ̇, and this causes an extra fermion-bilinear term

in its conjugate momentum:

Πψ =
δL
δψ̇

= iψ† , Πφ =
δL
δφ̇

= a2φ̇− 1

f
ψ̄γ0γ5ψ . (2.4)

The Hamiltonian is obtained by the Legendre transformation,

H = Πψ ψ̇ + Πφ φ̇− L

= ψ̄

(
−iγi∂i +ma+

1

f
γ0γ5φ̇

)
ψ − 1

2a2

(
ψ̄γ0γ5ψ

)2
f2

+
1

2a2
Π2
φ + a4V (φ) ,

(2.5)

where we organized the Hamiltonian such that the first quadratic term in ψ matches to

the part taken as the free Hamiltonian in literature [3, 4], from which the particle number

was estimated. One notices that the remaining part of the Hamiltonian includes the four-

fermion self interaction when expressed in terms of the conjugate momentum Πφ, and the

zero particle production in the massless limit is not straightforward.

The estimation of the fermion production is more straightforward in the Hamiltonian

formalism from the Lagrangian obtained via the field redefinition [4],

ψ → e−iγ
5φ/fψ . (2.6)

After the rotation in eq. (2.6), the Lagrangian becomes

L = ψ̄
(
iγµ∂µ −mR + imI γ

5
)
ψ +

1

2
a2ηµν∂µφ∂νφ− a4V (φ) , (2.7)

where mR = ma cos
(
2φ
f

)
and mI = ma sin

(
2φ
f

)
. The conjugate momenta are derived

to be

Πψ = iψ† , Πφ = a2φ̇ , (2.8)

and the Hamiltonian is given by

H = ψ̄
(
−iγi∂i +mR − imI γ

5
)
ψ +

1

2
a2φ̇2 + a4V (φ) . (2.9)

As a result, the fermion and pseudo-scalar parts in the Hamiltonian in eq. (2.9) are clearly

separated, and the fermion Hamiltonian includes only the quadratic terms in ψ. In the
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Hamiltonian in eq. (2.9), the decoupling of the pseudo-scalar from the fermions in the

massless limit is manifest. The fermion becomes a free field in the massless limit, and

therefore, no fermion is produced.

In our approach, we will stick to the basis in which the Lagrangian and Hamiltonian

take the forms without the derivative couplings (see eqs. (2.7) and (2.9)) and develop our

group theoretic approach. After we construct our approach in one basis, we will discuss

about how the fermion production dynamics changes when switching from one basis to

another basis with the derivative coupling.

3 Reparametrization group

To establish the reparametrization group later, with a clear comparison with the Lorentz

group, that our group theoretic approach is based on, we will start with briefly reviewing

the spinor representation of the Lorentz group. Our starting point is the Clifford algebra,

{γµ, γν} = 2ηµν I4 , (3.1)

where In denotes n× n identity matrix. The gamma matrices in the Weyl representation

are suitable for the discussion of the Lorentz group, and they are given by (also in the

tensor product form of two 2× 2 matrices)

γ0 =

(
0 I2
I2 0

)
= σ1⊗ I2 , γi =

(
0 σi
−σi 0

)
= i σ2⊗σi , γ5 =

(
−I2 0

0 I2

)
= −σ3⊗ I2 , (3.2)

where ⊗ refers to the tensor product whereas ⊕ is used to refer to the tensor sum. The

spinor representation of the Lorentz group is defined as the following commutator of two

gamma matrices in the Clifford algebra,

Sµν =
i

4
[γµ, γν ] , (3.3)

and it satisfies the Lorentz algebra. The six generators of Sµν can be split into three space

rotations and three Lorentz boosts:

Ji ≡
1

2
εijkS

jk =
1

2
I2 ⊗ σi , Ki ≡ Si0 =

i

2
σ3 ⊗ σi . (3.4)

The generators in eq. (3.4) can be reorganized to satisfy two independent SU(2) Lie alge-

bras: (
JL/R

)
i
≡ Ji ∓ iKi

2
=

1

2
(I2 ± σ3)⊗

σi
2
. (3.5)

One sees that the Lorentz group is isomorphic to SU(2)L×SU(2)R whose Casimir operators

are used to construct the irreducible representations of the Lorentz group. The four-

component Dirac spinor belongs to the (1/2, 0) ⊕ (0, 1/2) representation of SU(2)L ×
SU(2)R, and it can be written as

ψ =

(
ψL

ψR

)
. (3.6)
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On the other hand, the action of the group element for the space rotation with the gener-

ators in eq. (3.4) is manifest in the following tensor product form,

ψ = ξ ⊗ χ , (3.7)

where ξ denotes two-component column vector and χ two-component spinor. The tensor

product form in eq. (3.7) should be understood to hold for a Fourier mode of the Dirac

spinor as its meaning will be clear below. The space rotation acts on the Dirac spinor

ψ like

ψ → e−i
~θ· ~J ψ = ξ ⊗ e−i~θ·

~σ
2 χ , (3.8)

which implies that the space rotation rotates ψL and ψR universally whereas the Lorentz

boosts are not associated with any rotation. The space rotation in eq. (3.8) will be com-

pared with the subgroup of the reparametrization group below.

The representation of the gamma matrices is not unique. Indeed, the Clifford algebra

in eq. (3.1) is invariant under a similarity transformation,

γµ → UγµU−1 , (3.9)

with an 4×4 unitary matrix U . Although the maximal transformation group that keeps al-

gebra invariant is the complex general linear group GL(4,C), unitarity condition is required

to keep Dirac theory invariant at the same time.

We consider the following subgroup of U(4), which was constructed by tensor products

of two unitary matrices and phase rotation,

SU(2)1 × SU(2)2 ×U(1) ⊂ U(4) . (3.10)

The U(1) is the global phase transformation. In the parametrization of the Dirac spinor like

eq. (3.7), we will assume that ξ carries U(1) charge. The matrix representation of SU(2)1×
SU(2)2 is obatined by tensor product, and it acts on the Dirac spinor in eq. (3.7) like

ψ = ξ ⊗ χ→ (U1 ⊗ U2) (ξ ⊗ χ) = (U1ξ)⊗ (U2χ) (3.11)

where U1 (U2) is the matrix representation of SU(2)1 (SU(2)2). The U2 transformation

universally acts on two-component spinors in ψL and ψR. Although the space rotation of

the Lorentz group in eq. (3.8) and the U2 transformation on the spinor in eq. (3.11) look

similar, the SU(2)2 group can not be identified with SU(2) for the space rotation of the

Lorentz group.2 We do not find any relevant role played by the SU(2)2 subgroup in our

work, and therefore, we will not consider it anymore.

The U1 transformation of SU(2)1 exchanges between ψL and ψR, and it does not overlap

with the Lorentz group. A well-known example of SU(2)1 is the similarity transformation

2The group properties on the gamma matrices and the transformation acting on the Dirac spinor are

identical for both SU(2)2 and SU(2) space rotation of the Lorentz group. However, the gamma matrices

do not transform under the Lorentz transformation, γµ → γµ, whereas the gamma matrices transform

under the similarity transformation of the reparametrization group as is indicated in eq. (3.9). As a result,

for instance, a vector current ψ̄γµψ stays invariant under the reparametrization transformation whereas it

transforms like a vector under the Lorentz group.
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between Weyl and Dirac representations of the gamma matrices. The rotation by π/2

about x2-axis of SU(2)1 transforms the gamma matrices in Weyl representation into those

in the Dirac representation:

γ0 =

(
I2 0

0 −I2

)
= σ3⊗ I2 , γi =

(
0 σi
−σi 0

)
= i σ2⊗ σi , γ5 =

(
0 I2
I2 0

)
= σ1⊗ I2 . (3.12)

Since SU(2)1 ×U(1) is a symmetry in choosing the representation of the gamma matrices,

any physical quantity should be invariant under the symmetry. Importantly, the two-

component column vector ξ in eq. (3.7) transforms like the fundamental representation

of SU(2)1 with a charge under U(1). Our group theoretic construction of the fermion

production relies on this property.

For the discussion of the fermion production through the coupling to the pseudo-scalar,

we need to quantize the Dirac spinor in the Lagrangian while keeping pseudo-scalar as a

classical field. A generic fermion quantum field can be written as

ψ =

∫
d3k

(2π)3/2
eik·x

∑
r=±

[
Ur(k, τ)ar(k) + Vr(−k, τ)b†r(−k)

]
. (3.13)

A Fourier mode in eq. (3.13) is what we actually meant in eq. (3.7). The spinor function

Ur can be written in the tensor product form,

Ur(k, τ) =
1√
2

(
urχr
vr r χr

)
=

1√
2

(
ur
r vr

)
⊗ χr ≡ ξr(k, τ)⊗ χr(k) , (3.14)

where ξr is a SU(2)1 doublet which carries the U(1) charge and χr is a helicity eigenstates

corresponding to the momentum vector k. The other spinor function Vr is related to Ur
via the charge conjugation (see appendix B for the detail).

As a first step to construct physical parameters, we construct the bilinear of ξ. Due

to the U(1) invariance, it takes the form,

ξ†r Aξr (3.15)

where A is an arbitrary 2×2 complex matrix. Since an arbitrary 2×2 complex matrix can

be written as a linear combination of I2 and σi, the only U(1) invariant ξ bilinears are, in

terms of SO(3)1 ∼ SU(2)1,

ξ†rξr : scalar ,

ξ†rσi ξr : vector .
(3.16)

The SO(3)1 scalar is just a normalization. We normalize it to ξ†rξr = (|ur|2 + |vr|2)/2 =

1. The only non-trivial representation for the spin-1/2 fermion production is the SO(3)1
vector, and we define it as ~ζr:

~ζr ≡ ξ†σi ξ =
1

2
(u∗r , r v

∗
r )~σ

(
ur

r vr

)
. (3.17)
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The explicit form of three components of ~ζr is

ζr 1 =
1

2
r (u∗rvr + v∗rur) , ζr 2 = −1

2
i r (u∗rvr − v∗rur) , ζr 3 =

1

2

(
|ur|2 − |vr|2

)
, (3.18)

which appeared in many places in [4]. Note that ~ζr is real unit vector, or |~ζr| = 1, with

our normalization of ξ†ξ = 1.

4 Fermion production

4.1 Fermion production in inertial frame

As was mentioned in section 2, defining the particle number is more straightforward with

the Lagrangian in eq. (2.7). We will call this basis an inertial frame, borrowing the termi-

nology from the classical mechanics, to distinguish it from another ~ζr frame that will be

introduced in section 4.2. Its meaning will be clear as we will develop the analogy of the

fermion production to the system in classical mechanics.

The equation of motion for ψ from the Lagrangian in eq. (2.7) is given by(
iγµ∂µ −mR + imI γ

5
)
ψ = 0 . (4.1)

When iγµ∂µ acts on the spinor function ξr ⊗ χr , it becomes

(i σ3 ∂τ ⊗ I2 − i σ2 ⊗ (k · ~σ))(ξ ⊗ χ) . (4.2)

Using the helicity basis relation (k · ~σ)χr = rkχr, the equation of motion of ξr ⊗ χr is

given by [
(iσ3 ∂τ − i rk σ2 −mR I2 + imI σ1)⊗ I2

]
(ξr ⊗ χr) = 0 , (4.3)

from which the first-order differential equation for ξr is derived:

∂τ ξr = −i (q · ~σ) ξr , (4.4)

where

q = rk x̂1 +mI x̂2 +mR x̂3 . (4.5)

We emphasize that the equation of motion for ξr in eq. (4.4) is universal in that its form is

valid for any system (and for any choice of basis), and all the information about the given

system (or choice of basis) are encoded in the SO(3)1 vector q. The q ·~σ is an embedding of

SO(3)1 vector q into the SU(2)1 representation. The differential equation written in terms

of SU(2)1 representation in eq. (4.4) can be converted into the form in terms of SO(3)1
representation. The differentiation of ~ζr with respect to time, using eq. (4.4), gives rise to

∂τζr i =
1

2
ξ†r [iq · ~σ, σi] ξr = 2 εijk qjζr k . (4.6)

The equation of motion of ~ζr is given in the vector form,

1

2
∂τ~ζr = q× ~ζr . (4.7)

– 7 –
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Remarkably, the above differential equation in eq. (4.7) is nothing but the equation of

motion for a vector (r) precessing with an angular velocity (~ωr), namely dr/dτ = ~ωr × r.

As was mentioned before, choosing any interaction type of interest or any particular basis

simply amounts to selecting the corresponding vector q which can be interpreted as an

angular velocity of ~ζr in the classical system.

In order to derive the fermion production in the inertial frame, we need to quantize

the Dirac fermion ψ in the Hamiltonian for the fermions,

H = ψ̄
(
−iγi∂i +mR − imI γ

5
)
ψ . (4.8)

With the expression of the quantum field ψ in eq. (3.13), we obtain the Hamiltonian in

terms of the creation and annihilation operators,

H =
∑
r=±

∫
d3k

(
a†r(k), br(−k)

)(Ar B∗r

Br −Ar

)(
ar(k)

b†r(−k)

)
, (4.9)

where the matrix element is given by3

Ar = q · ~ζr , |Br|2 = (q× ~ζr)2 . (4.10)

The second relation in eq. (4.10) is nothing but the eigenvalue equation whose energy

eigenvalues are ±|q| (see eq. (B.11) in appendix B for the explicit expression of Br up

to the phase). One notes that the inner product q · ~ζr is invariant under SU(2)1 × U(1).

Although the system starts with the diagonalized Hamiltonian, the Hamiltonian after a

time t generally becomes non-diagonal, and therefore, the operators a†r and b†r (and ar
and br) at a later time τ do not create (and destroy) energy eigenstates. The creation

and annihilation operator after diagonalizing the Hamiltonian becomes an admixture of

the operators before the diagonalization, and they gain the time-dependence through ur
and vr functions. Expressing the Hamiltonian in eq. (4.9) in terms of the creation and

annihilation operators, which correspond to the one-particle states, amounts to(
ar(k)

b†r(−k)

)
→

(
α∗r β∗r

−βr αr

)(
ar(k)

b†r(−k)

)
, (4.11)

where mixing angles, αr and βr, are called Bogoliubov coefficients, and they are linear in

ur and vr as the matrix elements in eq. (4.10) are linear in ~ζr (or quadratic in ur and vr).

The particle number (similarly for anti-particle) for a helicity r is defined as

Nr(τ) = 〈0|
∫

d3k

(2π)3
a†r ar|0〉 ≡

∫
d3k nr, k(τ) , (4.12)

3The fermion production can be considered to be analogous to the precession of the magnetic dipole

(or magnetization) around the magnetic field with the angular velocity, ~ωM = −γB, whose dynamics is

governed by dM/dτ = ~ωM ×M (known as Bloch equation). The energy of the classical system, ~ωM ·M, is

analogous to q · ~ζr, which appears as the diagonal element of the Hamiltonian, and it becomes the energy

eigenvalue of the Hamiltonian due to the vanishing off-diagonal elements when ~ζr is parallel or anti-parallel

to the q vector.

– 8 –



J
H
E
P
0
3
(
2
0
1
9
)
0
7
2

where nr, k(τ) is the particle number density for a k mode, and the operators a†r and ar are

associated with the one-particle state at time τ . From the point of view of the time-varying

creation and annihilation operators, the vacuum |0〉 in eq. (4.12) is the one defined at the

initial time where the Hamiltonian takes a diagonal form, or the particle number density is

initially zero as it should. Due to the Pauli exclusion principle, it must be always smaller

than (or equal to) unit,

0 ≤ nr, k(τ) = |βr|2 ≤ 1 , (4.13)

and it is known as the Pauli-blocking. While the analytic expression of nr, k(τ) is obtained

by a complicated algebra in the traditional approach, its expression can be uniquely deter-

mined by a few properties in our group theoretic approach. As was explained in section 3,

the length of ~ζr is unit, or |~ζr| = 1. Since the length of the ~ζr is preserved, the inequality,

− 1 ≤ q · ~ζr
|q|

= cos θ ≤ 1 , (4.14)

holds over the time evolution. The θ is the angle between two vectors ~ζr and q. Since the

mixing angle in the diagonalization of the Hamiltonian should be linear in ur and vr, the

particle number density in eq. (4.12) can be at most a linear function in ~ζr (or quadratic

in ur and vr). It can be written as, up to a sign ambiguity,

nr, k(τ) = A±B q · ~ζr
|q|

. (4.15)

The negative sign in front of B in eq. (4.15) has to be chosen to be consistent with the

form of the Hamiltonian in eqs. (4.9) and (4.10). For instance, when ~ζr is parallel to the

q vector, q · ~ζr corresponds to the energy eigenvalue due to the vanishing off-diagonal

matrix elements. In this situation, the ar and a†r operators in eq. (4.12) correspond to the

one-particle states which leads to the zero particle number density (see appendix B for a

detailed discussion).

The inequality in eq. (4.14) implies that

A−B ≤ nr, k(τ) ≤ A+B . (4.16)

Matching both sides of eq. (4.16) to those in eq. (4.13) determines two coefficients, A and

B, and gives rise to the analytic expression of the particle number density (see appendix B

for an explicit derivation),

nr, k(τ) =
1

2

(
1− q · ~ζr

|q|

)
=

1

2
(1− cos θ) . (4.17)

An advantage of the form in eq. (4.7) in terms of ~ζr, compared to eq. (4.4) in terms of ξr,

is that the correct initial condition for the ~ζr corresponding to zero particle production at

τ = τ0 is straightforward in eq. (4.17) which is

~ζr(τ0, τ0) =
q(τ0)

|q(τ0)|
≡ q0

|q0|
. (4.18)
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From the point of view of the explicit derivation of the fermion number density in eq. (4.17)

(as was done in appendix B), our group theoretic formalism explicitly shows the feature of

the Pauli-blocking, namely 0 ≤ nr, k(τ) ≤ 1, in terms of an angle between two vectors, q

and ~ζr, with which one can visualize the fermion production dynamics.

Just like solving the Schrödinger equation for the unitary operator in quantum me-

chanics, the closed form of the solution for ~ζr can be easily obtained. We rewrite the

eq. (4.7) in a matrix form,

∂~ζr(τ, τ0)

∂τ
= M(τ) ~ζr(τ, τ0) with ~ζr(τ0, τ0) =

q0

|q0|
, (4.19)

where the matrix M(τ) can be written as M(τ) = q · L with L being the 3 × 3 matrix

representation of the SO(3)1 group and q is the vector in eq. (4.5). We can solve the

differential equation iteratively order-by-order in M(τ). The final solution is given by

~ζr(τ, τ0) = T exp

(∫ τ

τ0

dτ ′M(τ ′)

)
q0

|q0|
, (4.20)

where T denotes a time-ordering. Finally, the resulting particle number density is given by

nr, k(τ) =
1

2

(
1− q(τ)

|q(τ)|
· T exp

(∫ τ

τ0

dτ ′M(τ ′)

)
q0

|q0|

)
. (4.21)

While the form in eq. (4.21) takes a closed form, it is a separate issue whether it is practically

useful or not unless one can extract any type of (semi) analytic expression out of it. Since

M(τ) = q · L and the matrices Li satisfies the commutation relation, one might expect

that the expression in eq. (4.21) can be further processed to obtain an analytic expression.

However, we have not managed to simplify the solution.

We close this section by comparing our result with literature. By plugging eqs. (3.18)

and (4.5) into eq. (4.17) and defining |q| ≡ ω, the particle number density in terms of ur
and vr is given by

nr, k(τ) =
1

2
− mR

4ω

(
|ur|2 − |vr|2

)
− k

2ω
Re(u∗rvr)−

rmI

2ω
Im(u∗rvr) , (4.22)

and this expression agrees with the result in [4]. An agreement with those in [4] is also

hold for the expressions for Ar and |Br|2 in eq. (4.10) in terms ur and vr (see eqs. (B.11)

and (B.17) for the explicit derivation).

4.2 Fermion production in rotating frame

The transformation of the Lagrangian in eq. (2.7) to the one in eq. (2.3) with the derivative

coupling of the pseudo-scalar to the fermions,

ψ → eiγ
5φ/fψ , (4.23)

amounts to the φ(τ)-dependent SO(3)1 rotation, ~ζr → R(τ) ~ζr where the time-dependent

rotation matrix R(τ) is given by

R(τ) =


1 0 0

0 cos 2φ
f − sin 2φ

f

0 sin 2φ
f cos 2φ

f

 , (4.24)
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and it corresponds to the rotation by 2φ/f angle around the ζr 1 axis. We will call the

transformed ~ζr frame a rotating frame to distinguish it from the inertial ~ζr frame in sec-

tion 4.1.

Moving into the rotating frame via the time-dependent rotation in classical mechanics

introduces fictitious forces, which have no physical origin, such as the coriolis force, cen-

trifugal force, and a term related to the acceleration of the axes. Those fictitious forces

need to be introduced in the rotating frame to make the physics frame-independent. Fol-

lowing the analogy to the classical mechanics, we would expect similar fictitious terms to

be introduced when moving into the rotating ~ζr frame, or basis with the derivative cou-

pling of the pseudo-scalar to fermions, via the time-dependent rotation with the matrix in

eq. (4.24).

Under the time-dependent rotation with the matrix R(τ), the equation of motion for
~ζr transforms like

1

2
∂τ~ζr = (q · L) ~ζr → 1

2
∂τ

(
R~ζr

)
= (q · L)R~ζr . (4.25)

The equation of motion in the rotating frame can be written as4

1

2
∂τ ~ζr = (Rq) · L ~ζr +

1

2
~ωζr × ~ζr , (4.26)

where we used RT (q · L)R = (Rq) · L, and the ~ωζr can be interpreted as the angular

velocity of the rotating ~ζr axes which is given by

~ωζr =

2φ̇/f

0

0

 . (4.27)

When the equation of motion for the transformed ~ζr is brought back into the universal form,

1

2
∂τ ~ζr =

(
Rq +

1

2
~ωζr

)
× ~ζr = q̃× ~ζr , (4.28)

the q̃ in the rotating frame is obtained by

q̃ =

(
rk +

φ̇

f

)
x̂1 +ma x̂3 . (4.29)

As is evident in eqs. (4.28) and (4.29), the differential equation for ~ζr stays in a universal

form, and the information on the rotating frame is encoded in the new q̃ vector. The

equation of motion in eq. (4.28) agrees with the one derived directly from the Dirac equation

from the Lagranagian in eq. (2.3),[(
i σ3∂τ − i rkσ2 −maI2 − i

φ̇

f
σ2

)
⊗ I2

]
(ξr ⊗ χr) = 0 , (4.30)

4The rotation matrix R for an orthogonal group satisfies RTR = 1. Differentiating the relation with

respect to time gives ṘTR + RT Ṙ = (RT Ṙ)T + RT Ṙ = 0 which implies that RT Ṙ is antisymmetric. We

can define a vector ~ωζr such that (RT Ṙ)ij ≡ εijkωζr k. Therefore, −RT ∂τR~ζr = ~ωζr × ~ζr.
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which induces the differential equation for the SU(2)1 doublet ξr,

∂τ ξr = −i (q̃ · ~σ) ξr , (4.31)

where q̃ is the same as eq. (4.29).

Since the q̃ and ~ζr are the only available SO(3)1 vectors, the particle number density

for k mode in the rotating ~ζr frame needs to be a function of the inner product, q̃ · ~ζr (and

lengths of q̃ and ~ζr),

nr, k(τ) = f
(
q̃ · ~ζr

)
. (4.32)

While the particle number density in eq. (4.17) is conserved under a time-independent

SO(3)1 rotation, which can be thought of changing from an inertial ~ζr frame to another

inertial ~ζr frame, we suspect that the particle number density5 changes in the transition

from the inertial frame to the rotating frame, or non-inertial frame. The particle number

density must be at most linear in ~ζr in the rotating frame as well, and it is similarly

determined to be6

nr, k(τ) =
1

2

(
1− q̃ · ~ζr

|q̃|

)
. (4.33)

All higher-order terms in ~ζr should be forbidden by demanding that the particle number

densities in two frames should match in the φ̇→ 0 limit (time-independent rotation limit).

One notes that the particle number in eq. (4.33) matches to the one that is derived from

the free Hamiltonian following similar steps to appendix B.

As was explained in section 2, the Hamiltonian in the basis with the derivative coupling

(or in the rotating frame, or the non-inertial frame, in our language) does not take a simple

quadratic form in ψ with an obvious decoupling limit when the fermion mass vanishes,

and the velocity of φ, including the fermion bilinear term, introduces the fermion quartic

coupling. This complication prevents us from estimating the final particle number density

at a later time unambiguously in the rotating ~ζr frame, whereas the particle number density

can be unambiguously estimated in the inertial frame. However, one should note that the

nature will not care about the choice of the basis, or the preference of the inertial ~ζr frame

is not a physical consequence.

4.3 Backreaction due to fermion production

In this section, we will briefly discuss about the backreaction of the produced fermion on the

pseudo-scalar dynamics. The zero backreaction in the massless limit can be reinterpreted

in our group theoretic formalism. We take the equation of motion of φ from the Lagrangian

in eq. (2.7),

φ̈+ 2
ȧ

a
φ̇+ a2V ′(φ) =

2

a2f
〈ψ̄
(
mI + imR γ

5
)
ψ〉 . (4.34)

5What we meant by the particle number density here is the one defined based on the first principle,

namely taking the quadratic part in the Hamiltonian, diagonalizing it, and defining the particle number as

the expectation value of the number operator.
6The result in eq. (4.33) matches to the |β̃r|2 in the appendix B of [4], which is a particle number density

obtained from the quadratic term in ψ in eq. (2.5).
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Figure 1. The particle number density in the inertial frame for m = 1, φ0/f = 10, and k = 1

(leftest), k = 10 (middle), and k = 12 (rightest). The plots were obtained by solving the equation

of motion for ~ζr with the helicity r = +1 in the inertial frame.

Using the simplified form of ψ in a tensor product form, where the two-component spinor

χr can be dropped due to the orthgonormality, in appendix B, we trivially obtain

〈ψ̄
(
mI + imR γ

5
)
ψ〉 = −

∑
r=±

∫
d3k

(2π)3
〈mI ζr 3 +mR ζr 2〉 . (4.35)

In the massless limit m→ 0, the above expression in eq. (4.35) obviously becomes zero as

it is proportional to the mass term. However, we can also see that the only non-vanishing

component of ~ζr in the massless limit is ζr 1. In the massless limit, the vector q becomes

constant staying on the x1-axis all the time, q = rk x̂1 (see eq. (4.5)). Since there must be

no particles produced at the initial time, ~ζr should be on the x1-axis too to be parallel to

the vector q (see eq. (4.17)). As a result, the equation of motion for ~ζr becomes trivial, or

∂τ~ζr = 2q×~ζr = 0 for any time, and ~ζr stays on the x1-axis forever, or ζr 2(τ) = ζr 3(τ) = 0.

5 Numerical analysis

Since our group theoretic approach reproduces the same results as those from the traditional

approach (as was shown in eq. (4.22)), we would expect the same numerical outcome as

well. In this section, we will demonstrate how simply our new approach can simulate the

fermion production compared to the traditional approach. To this end, we will reproduce

some result in the literature using our method. We will also use this section to address a

few subtle issues in estimating the fermion production. As a benchmark example for the

illustration, we choose the following quadratic potential,

V (φ) =
1

2
m2
φφ

2 . (5.1)

In the static Universe, the solution can be parametrized as φ(τ) = φ0 sin(τ). We numer-

ically solved the equation for ~ζr in eq. (4.7) in the inertial frame with the vector q in

eq. (4.5) for three same set of parameters as those in [3], and the resulting particle number

density is illustrated in figure 1. Similarly particle number density in the rotating frame

– 13 –



J
H
E
P
0
3
(
2
0
1
9
)
0
7
2

� �� �� �� �� �� ��

���

���

���

���

���

���

τ

� �

� �� �� �� �� �� ��

���

���

���

���

���

���

���

τ

� �

� �� �� �� �� �� ��

����

����

����

����

����

����

τ

�
�

Figure 2. The particle number density in the rotating frame for m = 1, φ0/f = 10, and k = 1

(leftest), k = 10 (middle), and k = 12 (rightest). The plots were obtained by solving the equation

of motion for ~ζr with the helicity r = +1 in the rotating frame.

� �� �� �� �� �� ��

���

���

���

���

���

���

τ

� �

� �� �� �� �� �� ��

���

���

���

���

τ

� �

� �� �� �� �� �� ��

����

����

����

����

����

����

����

����

τ

� �

Figure 3. The particle number density in the rotating frame (red) from figure 2 and in the inertial

frame (black) from figure 1 for m = 1, φ0/f = 10, and k = 1 (leftest), k = 10 (middle), and

k = 12 (rightest).

(although it is ambiguously defined) for the same set of parameters is shown in figure 2

where we numerically solved the equation for ~ζr in eq. (4.28) in the rotating frame with the

vector q̃ in eq. (4.29). The result in figure 2 exactly reproduces those in [3] (see figure 2

of [3]) where the particle number was estimated in the basis with the derivative coupling,

or the rotating frame in our language. To make a clear comparison between two frames, we

superimpose the plots in two frames and present them in figure 3. As is evident in figure 3,

particle number densities in two frames are different not only in the form of expression

but also numerically. The discrepancy in particle number density between two frames can

be better understood by looking at the explicit expression in terms of input parameters

and components of the spinor function. For instance, the particle number density in the

rotating frame in eq. (4.33) can be expanded in terms of ũr and ṽr (tilde symbol to refer

to the rotating frame while holding ur and vr for the inertial frame), and it is given by

nr, k(τ) =
1

2
− k̃

2ω̃
Re (ũ∗r ṽr)−

m

4ω̃

(
|ũr|2 − |ṽr|2

)
, (5.2)
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where k̃ = k + rφ̇/f and ω̃ = |q̃|. One notes that the expression in eq. (5.2) reproduces

the result in [4] (see appendix B of [4]) in the basis with the derivative coupling. Using the

relation, that connects the solutions in two frames via the field redefinition in eq. (4.23),

ur = cos
φ

f
ũr + ir sin

φ

f
ṽr ,

vr = ir sin
φ

f
ũr + cos

φ

f
ṽr ,

(5.3)

we can also express the particle number density in the inertial frame in eq. (4.22) in terms

of ũr and ṽr,

nr, k(τ) =
1

2
− k

2ω
Re (ũ∗r ṽr)−

m

4ω

(
|ũr|2 − |ṽr|2

)
, (5.4)

where ω = |q|. It is clear from eqs. (5.2) and (5.4) that particle number densities in two

frames become similar only when either k̃ ∼ k (and thus ω̃ ∼ ω) or m is negligible, namely

m/ω,m/ω̃ � 1 (and thus k̃/ω̃ ∼ k/ω ∼ 1). Apparent resemblance of the results between

two frames in the middle and rightest panels of figure 3 is a numerical coincidence due to

a negligible m.

In the inflationary era, φ can satisfy the slow roll condition and its velocity is approx-

imately constant with respect to the cosmic time t, or ∂tφ ∼ constant. In this situation,

one can convert the equation of motion of ũr and ṽr in the rotating frame into the forms of

Whittaker equations, and bring the solutions into those in the inertial frame via the field

redefinition. When an initial boundary condition, corresponding to zero particle number,

is imposed asymptotically in the far past, or τ → −∞, it turns out that the solutions in

both frames (connected via the field redefinition) simultaneously satisfy the zero particle

initial condition despite their different definitions of the particle number density.7 The

solutions in this case are expressed in terms of only the Whittaker function of the second

kind. Instead, if one imposes the zero particle initial boundary condition at a finite initial

time, the solutions include the Whittaker function of the first kind as well, and simultane-

ously satisfying the zero particle boundary condition in both frames is not a generic feature

any more. The two unknown coefficients of the solution must be determined to satisfy the

zero particle initial boundary condition in the inertial frame where the particle number is

unambiguously defined.

The numerical simulation of the fermion production in the inflationary era is as

straightforward as the case for the static Universe. Since ∂tφ ∼ constant (with respect

to the cosmic time), the spatially homogeneous φ can be parametrized as

φ(τ) = −∂tφ
H

log (τ/τin) , (5.5)

where τ = −1/Ha (H as the Hubble parameter) in de Sitter spacetime and τin is related

to the initial φ value. We introduce the following set of parameters as in [4] to elaborate

7It is straightforward to understand this property by comparing eqs. (5.2) and (5.4) in the far past. In

the limit of τ → −∞, k̃ = k + rφ̇/f → k, ω̃ =
√

(k + rφ̇/f)2 +m2a2 → k, and ω =
√
k2 +m2a2 → k since

φ̇ = a ∂tφ and ma terms vanish. Therefore, particle number densities in two frames become identical in the

far past, and one can impose the zero particle boundary condition simulataneously.
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Figure 4. The particle number density in the inertial frame (red) for the helicity r = −1 (black

solid) and r = +1 (red dashed) as a function of k/aH for ξ = 10 and µ = 1 (left) and µ = 0.1 (right).

our approach in a direct comparison with the literature,

x = −kτ , µ =
m

H
, ξ =

∂tφ

2fH
, (5.6)

and we re-express the equation for ~ζr in the inertial frame in terms of them:

1

2
∂x~ζr = qx × ~ζr , (5.7)

where

qx = −1

k
q = −r x̂1 −

µ

x
sin (−4ξ log (x/xin)) x̂2 −

µ

x
cos (−4ξ log (x/xin)) x̂3 , (5.8)

and the vector q is given by eq. (4.5). All that we need to do is to evaluate the equation

in eq. (5.7) with the initial boundary condition for ~ζr (see eq. (4.18)), that corresponds to

the zero particle number density in the far past, or nr, k(τ = −∞) = 0,

~ζr(τ = −∞) = ~ζr(x =∞) = r x̂1 . (5.9)

In the numerical evaluation, xin (or τin) can be set to any value as the fermion production

does not depend on it (we have verified it through our numerical simulation). This property

can be clearly understood in the rotating frame where φ derivatively couples to the fermion.

Our numerical result of the particle number density in the inertial frame for the same set of

parameters as those in [4] is illustrated in figure 4. As is evident in figure 4, our numerical

simulation exactly reproduce the result in [4] (see figure 1 of [4]) in a much simpler way.

6 Summary

In this work, we revisited the fermion production sourced by the classical pseudo-scalar

field such as axion through its derivative coupling to the fermions. We have shown that the

related dynamics can be formulated in a simpler way than the traditional approach utilizing

the reparametrization group that corresponds to the freedom in selecting a representation

of the gamma matrices in the Clifford algebra.
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We have established the SU(2)×U(1) subgroup (of the reparametrization group) that

leaves the Clifford algebra and the Lagrangian for the Dirac fermion invariant, and that

plays an essential role in our group theoretic approach. We identified the two-component

column vector in a Fourier mode of the Dirac spinor which transforms like the fundamental

representation of SU(2) with a charge under U(1). We have constructed the irreducible

representations of SO(3) ∼ SU(2) out of the fundamental representation of SU(2), and we

have shown that the vectorial representation of SO(3), what we called ~ζ in this work, is

the only non-trivial representation that one can use in our group theoretic approach.

The equation of motion in terms of ~ζ turns out to be analogous to the one for a vector

precessing with an angular velocity. Due to the analogy, one would expect a dictionary

between the quantum-mechanical fermion production and the classical dynamics of the

vector precessing with an angular velocity. The equation of motion of ~ζ is universal (see

eq. (4.7)) irrespective of the basis choice or type of the interaction. All the details of the

fermion production dynamics are entirely encoded in a quantity which corresponds to the

angular velocity in the analogy.

The particle number density was uniquely derived by a few properties in our group

theoretic approach. We also explicitly derived the particle number density directly from

the Hamiltonian in a simpler way in appendix B. We have argued that the particle number

density (at their creation) in either inertial or non-inertial frame is at most linear in ~ζ

(see eqs. (4.17) and (4.33)) and their apparent discrepancy is due to the different nature

of the fermions in two frames in terms of their interaction. In the analogy to the classical

dynamics, an obscure subtlety related to the transformation between two bases with and

without derivative coupling of the pesudo-scalar to the fermions is translated to the physics

problem that arises under the transformation from an inertial frame to the non-inertial

frame, where one expects various fictitious effects, to describe the physics in a frame-

independent way.

We have demonstrated through our numerical study how straightforwardly the fermion

production in any situation, either static Universe or inflationary era, can be simulated in

our new approach. For illustration, we have reproduced some result in literature using our

new approach.

A drawback of our group theoretic formalism is that we have not managed to obtain

a useful (semi) analytic expression out of the general solution for ~ζ (see eq. (4.20)). A

progress needs to be made on this direction. Nevertheless, there is no limitation on a

numerical computation. Finally, an application of our group theoretic approach can be

the extension to the production of higher-spin fermions [28] or fermion production in an

extra-dimensional spacetime.
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A Convention

We adopted the convention in [4] for our explicit computations. The metric is chosen to

have mostly negative signs, ηµν = diag.(+1,−1,−1,−1). The gamma matrices are chosen

to be

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1

1 0

)
. (A.1)

B Energy and particle number in inertial frame

In this section, we compute the particle number density explicitly from the Hamiltonian

for the fermions in the inertial frame,

H = ψ̄
(
−iγi∂i +mR − imI γ

5
)
ψ , (B.1)

and we confirm that the result agrees with what we obtained in eq. (4.17).

We express the Hamiltonian operator in the tensor product form,

hD ≡ −iγi∂i +mR − imIγ
5 = i σ2 ⊗ (~σ · k) +mRI2 ⊗ I2 − imIσ1 ⊗ I2 . (B.2)

We also express the fermion quantum field in the form such that the action of the hD
operator is manifest. The fermion quantum field is given by

ψ =

∫
d3k

(2π)3/2
eik·x

∑
r=±

[
Ur(k, τ)ar(k) + Vr(−k, τ)b†r(−k)

]
, (B.3)

where

Ur(k, τ) =
1√
2

(
ur χr
rvrχr

)
, Vr(k, τ) = CŪTr with C =

(
0 iσ2
iσ2 0

)
= iσ1 ⊗ σ2 , (B.4)

and

χr(k) =
(k + r~σ · k)√

2k(k + k3)
χ̄r , χ̄+ =

(
1

0

)
, χ̄− =

(
0

1

)
. (B.5)

The part inside [ ] in the fermion quantum field ψ in eq. (B.3) can be written in a tensor

product form,

Ur(k, τ)ar(k) + Vr(−k, τ)b†r(−k)

= (ξr(k)⊗ χr(k)) ar(k) + (i r σ2 ξ
∗
r (−k)⊗ χ−r(−k)) b†r(−k) ,

= (ξr(k)⊗ χr(k)) ar(k) +
(
e−i rϕk i σ2 ξ

∗
r (−k)⊗ χr(k)

)
b†r(−k) .

(B.6)
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In the last line of eq. (B.6), we have expressed two-component spinor in terms on χr(k)

using the relation,

χ−r(−k) = re−i rϕkχr(k) with eiϕk =
k1 + i k2√
k21 + k22

, (B.7)

and this will help simplifying the computation. We also hid the time dependence in eq. (B.6)

(and in what follows) for a notational simplicity. We act the Hamiltonian operator on the

individual terms in front of ar and b†r in eq. (B.6). Using the relations, (~σ · k)χr(k) =

rk χr(k), we obtain

hD (ξr(k)⊗χr(k)) =
[

(irkσ2+mRI2−imIσ1)⊗I2
]

(ξr(k)⊗χr(k)) ,

=
[
σ3 (q·~σ)⊗I2

]
(ξr(k)⊗χr(k)) ,

hD (irσ2 ξ
∗
r (−k)⊗χ−r(−k)) = e−irϕk

[
(−rkI2+imRσ2+imIσ3)⊗I2

]
(ξ∗r (−k)⊗χr(k)) ,

= e−irϕk

[
σ1 (q0 ·~σ)⊗I2

]
(ξ∗r (−k)⊗χr(k)) , (B.8)

where q0 = −rk x̂1 +mI x̂2 −mR x̂3 was introduced purely for the simple expression.

What we computed in eq. (B.8) will be multiplied by the corresponding terms in ψ̄

from the left. The ψ̄ = ψ†γ0 (with γ0 = σ3 ⊗ I2) includes the pieces,[
a†r(k)U †r (k, t) + br(−k)V †r (−k, t)

]
(σ3 ⊗ I2)

=
[
a†r(k)

(
ξ†r(k)⊗ χ†r(k)

)
+ br(−k)

(
ei rϕk ξTr (−k)(−i σ2)⊗ χ†r(k)

) ]
(σ3 ⊗ I2)

= a†r(k)
(
ξ†r(k)σ3 ⊗ χ†r(k)

)
+ br(−k)

(
ei rϕk ξTr (−k)σ1 ⊗ χ†r(k)

)
.

(B.9)

In the computation of the Hamiltonian in terms of the creation and annihilation operators,

we can forget about two-component spinor parts from now on. It will drop due to the or-

thonormality of χr(k). The resulting Hamiltonian in terms of the creation and annihilation

operators can be written as

H =
∑
r=±

∫
d3k

(
a†r(k), br(−k)

)(Ar B∗r

Br −Ar

)(
ar(k)

b†r(−k)

)
, (B.10)

where the matrix elements are easily computed using all the ingredients that we prepared

before eq. (B.10), and they are given by

Ar = ξ†r(k) (q · ~σ) ξr(k) = q · ~ζr ,

=
1

2

[
k (u∗rvr + v∗rur)− i r mI (u∗rvr − v∗rur) +mR

(
|ur|2 − |vr|2

) ]
,

Br =
(
ei rϕk ξTr (−k)σ1

)
σ3 (q · ~σ) ξr(k) = −i ei rϕk ξTr (−k)σ2 (q · ~σ) ξr(k) ,

=
rei rϕk

2

[
2mRurvr − k

(
u2r − v2r

)
− i rmI

(
u2r + v2r

) ]
.

(B.11)
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We wrote the expressions of Ar and Br in terms of ur and vr (and their complex conjugates)

in eq. (B.11) only for the purpose of comparison with literature, and they agree with those

in [4]. Due to the non-vanishing matrix element Br, the a†r and b†r (and ar and br) do not

create (and destroy) the energy eigenstates. Diagonalizing the matrix in eq. (B.10) gives

rise to two eigenvalues, ±ω, with ω = |q| =
√
k2 +m2

R +m2
I , or(

Ar B∗r

Br −Ar

)
=

(
α∗r β∗r

−βr αr

)(
ω 0

0 −ω

)(
αr −β∗r
βr α∗r

)
. (B.12)

Since the matrix elements, Ar and Br are quadratic in ur and vr, the mixing angles, αr
and βr, must be linear in ur and vr. Expressing the Hamiltonian in eq. (B.10) in terms of

the creation and annihilation operators amounts to(
ar(k)

b†r(−k)

)
→

(
α∗r β∗r

−βr αr

)(
ar(k)

b†r(−k)

)
. (B.13)

Therefore, the particle number density (with the diagonalized ar and a†r) for a particle with

the helicity r is given by

Nr(τ) ≡ 〈0|
∫

d3k

(2π)3
a†r ar|0〉 =

∫
d3k nr, k(τ) =

∫
d3k |βr|2 . (B.14)

The particle number density for a anti-particle is also given by |βr|2.
Since βr is linear in ur and vr, it does not have a simple expression in terms of ~ζr.

However, what we need to know is |βr|2 which could be, in principle, a linear function in
~ζr. Indeed, from the eq. (B.12),

Ar = ω
(
|αr|2 − |βr|2

)
= ω

(
1− 2|βr|2

)
→ |βr|2 =

1

2

(
1− Ar

ω

)
, (B.15)

where we used |αr|2 + |βr|2 = 1. Using the Ar in terms of ~ζr in eq. (B.11) and the relation,

ω = |q|, we finally derive the particle number density to be

nr, k(τ) =
1

2

(
1− q · ~ζr

|q|

)
. (B.16)

The q · ~ζr is the diagonal element of the Hamiltonian matrix in eq. (B.10), and it can be

thought of as the energy eigenvalue when the Hamiltonian matrix is diagonal, or Br = 0

in eq. (B.16). After a simple algebra (eigenvalue equation), one can derive the relation,

|Br|2 = ω2 −
(
q · ~ζr

)2
= q · q−

(
q · ~ζr

) (
q · ~ζr

)
=
(
q× ~ζr

)2
, (B.17)

which shows that the off-diagonal element of the Hamiltonian vanishes, Br = 0, when ~ζr is

parallel or anti-parallel to the vector q. We restrict the discussion below to the case where
~ζr is parallel or anti-parallel to q for a clarity.

What we compute for the particle number density sourced by the classical φ-field is

the vacuum expectation value, 〈0|a†rar|0〉, instead of the expectation value of the number
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operator with a generic state vector (similarly for the energy expectation values). When
~ζr is parallel to the q vector, q · ~ζr becomes an energy eigenvalue of the Hamiltonian, while

〈0|a†rar|0〉 vanishes since ar becomes an annihilation operator defining the vacuum, which

implies that there is no energy released into the vacuum to create particles. As a time

goes on, the Hamiltonian becomes non-diagonal, and the vacuum |0〉 in the definition of

the particle number (see eq. (4.12)) does not corresponds to the truth vacuum from which

one-particle states are generated. This is how a nonzero fermion production can happen.

When ~ζr reaches the configuration which is anti-parallel to the q vector, q · ~ζr becomes an

energy eigenvalue of the Hamiltonian again (nevertheless, the energy of the Hamiltonian

stay same as before due to the exchanged roles between ar (b†r) and b†r (ar)), and the particle

number density becomes maximum, 〈0|a†rar|0〉 = |βr|2〈0|brb†r|0〉 = |βr|2, via the maximal

mixing, ar = β∗r b
†
r, in eq. (B.13).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after

inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

[2] M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic

dissipation, Phys. Rev. D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].

[3] P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP

11 (2015) 021 [arXiv:1508.00891] [INSPIRE].

[4] P. Adshead, L. Pearce, M. Peloso, M.A. Roberts and L. Sorbo, Phenomenology of fermion

production during axion inflation, JCAP 06 (2018) 020 [arXiv:1803.04501] [INSPIRE].

[5] S.Y. Khlebnikov and I.I. Tkachev, Relic gravitational waves produced after preheating, Phys.

Rev. D 56 (1997) 653 [hep-ph/9701423] [INSPIRE].

[6] R. Easther and E.A. Lim, Stochastic gravitational wave production after inflation, JCAP 04

(2006) 010 [astro-ph/0601617] [INSPIRE].

[7] R. Easther, J.T. Giblin Jr. and E.A. Lim, Gravitational Wave Production At The End Of

Inflation, Phys. Rev. Lett. 99 (2007) 221301 [astro-ph/0612294] [INSPIRE].

[8] R. Easther, J.T. Giblin and E.A. Lim, Gravitational Waves From the End of Inflation:

Computational Strategies, Phys. Rev. D 77 (2008) 103519 [arXiv:0712.2991] [INSPIRE].
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