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We obtain a phenomenologically acceptable PMNS matrix in a flipped SU(5) model, possessing the 
Z4R discrete symmetry, from the compactification of heterotic string E8 × E′

8. To analyze the Jarlskog 
determinant efficiently, we include the simple Kim-Seo form for the Pontecorbo-Maki-Nakagawa-Sakata 
matrix. We also noted that |δPMNS| � 63o for the normal hierarchy of neutrino masses with the PDG book 
parametrization.
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1. Introduction

The most urgent theoretical issue in the standard model(SM) is probing the symmetry structure from which the observed flavor 
phenomena can be understood. It is desirable if such symmetry results from an ultra-violet completed theory. At present, string theory 
is considered to be the most attractive one among various ultra-violet completed theories, chiefly because it unifies gravity on the same 
ground as gauge theories. The SM is obtained from compactification of six extra dimensions [1–6], and the symmetry structure of flavors 
is the one realized below the compactification scale.

Previously, most studies along this direction were centered on obtaining three families in the standard-like models [7,8].1 Since there 
are too many Yukawa couplings in standard-like models, here we attempt to work in a grand unification (GUT) models. The GUT group 
we use here is the rank 5 flipped SU(5) GUT [11,12], SU(5)flip≡SU(5)×U(1)X , which was obtained from compactifications via fermionic 
string [13] and Z12−I orbifold [14]. The simplest GUT SU(5) from string compactification is not accompanying an adjoint representation 
at the level 1 construction where the Higgs multiplet needed for breaking SU(5) down to the SM is lacking. The rank 5 SU(5)flip requires 
10 ⊕ 10 for breaking it down to the rank 4 SM gauge group, and the model of [10] contains them.

Time is ripe enough to study the details of the flavor structure from string compactification to see whether they converge to the 
observed data. The study is now possible in the Z4R model [9] based on [10] where the needed Z4R quantum numbers of all light chiral 
fields are presented. In the quark sector, the Cabibbo-Kobayashi-Maskawa matrix [15,16] has been studied in our previous paper [17]. 
In this paper, we present a numerical study on the Pontecorbo-Maki-Nakagawa-Sakata (PMNS) matrix [18,19] via many U(1)’s arising in 
string compactification. The heterotic string E8 × E′

8 has rank 16 gauge sector. The model presented in [10] has the SU(5)flip from E8 and 
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Fig. 1. A neutrino interaction with the SM fields only.

Table 1
U(1) charges of matter fields in the flipped SU(5). ξi and η̄i contain the left-handed quark and lepton doublets, respectively, in the i-th family.

State(P + kV 0) �i RX (Sect.) Q R Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q anom Q 18 Q 20 Q 22

ξ3 (+ + + − −;− − +)(08)′ 0 10−1(U3) +1 −6 −6 +6 0 0 0 −13 +1 −1 +1

η̄3 (+ − − − −;+ − −)(08)′ 0 5+3(U3) +1 +6 −6 −6 0 0 0 −1 +1 −1 +1

τ c (+ + + + +;− + −)(08)′ 0 1−5(U3) +1 −6 +6 −6 0 0 0 +5 +1 −1 +1

ξ2 (+ + + − −;− 1
6 ,− 1

6 ,− 1
6 )(08)′ +1

4 10−1(T 0
4 ) −1 −2 −2 −2 0 0 0 −3 −1 −1 −1

η̄2 (+ − − − −;− 1
6 ,− 1

6 ,− 1
6 )(08)′ +1

4 5+3(T 0
4 ) −1 −2 −2 −2 0 0 0 −3 −1 −1 −1

μc (+ + + + +;− 1
6 ,− 1

6 ,− 1
6 )(08)′ +1

4 1−5(T 0
4 ) −1 −2 −2 −2 0 0 0 −3 −1 −1 −1

ξ1 (+ + + − −;− 1
6 ,− 1

6 ,− 1
6 )(08)′ +1

4 10−1(T 0
4 ) −1 −2 −2 −2 0 0 0 −3 −1 −1 −1

η̄1 (+ − − − −;− 1
6 ,− 1

6 ,− 1
6 )(08)′ +1

4 5+3(T 0
4 ) −1 −2 −2 −2 0 0 0 −3 −1 −1 −1

ec (+ + + + +;− 1
6 ,− 1

6 ,− 1
6 )(08)′ +1

4 1−5(T 0
4 ) −1 −2 −2 −2 0 0 0 −3 −1 −1 −1

HuL (+1 0 0 0 0; 0 0 0)(05; −1
2

+1
2 0)′ +1

3 2 · 5−2(T6) −2 0 0 0 −12 0 0 0 −1 −1 −1

HdL (−1 0 0 0 0; 0 0 0)(05; +1
2

−1
2 0)′ +1

3 2 · 5+2(T6) +2 0 0 0 +12 0 0 0 −1 −1 −1

SU(5)′×SU(2)′ from E′
8, and we can consider 6 extra U(1) gauge groups. These many U(1)’s make it possible to have flavor dependent 

Yukawa couplings.2

String compactification in our example allows all the needed Yukawa couplings in the SM as non-renormalizable forms. There has been 
an ambitious attempt [21] to relate the origin of the μ term with the magnitudes of neutrino masses by introducing just one singlet 
chiral field beyond the minimal supersymmetric SM. This try allowed only renormalizable couplings. Therefore, with so many singlets 
participating through non-renormalizable Yukawa couplings in our model, this design is not applicable. The relations in our model might 
be intertwined in an elaborate way since the Z4R discrete symmetry automatically gives the μ term at the electroweak scale [22]. Since 
our Z4R is a subgroup of an Abelian gauge group U(1)6, it cannot be a non-Abelian discrete symmetry such as the interesting A4 symmetry 
[23].

The mass matrices leading to the Kim-Seo (KS) parametrization [24] of the CKM and PMNS mixing matrices have a small number 
of complex elements, by making one row consist of real numbers. At the places where complex entries are allowed, we allocate the CP 
phase. The KS form has another advantage that the Jarlskog determinant is J = −Im V KS

31 V KS
22 V KS

13 [25]. Toward a model building, the next 
step is to obtain phenomenologically acceptable mass matrices. In the flipped SU(5), the neutrino mass matrix is symmetric, can be made 
real, and hence we propose in this paper to put the CP phase in the charged lepton mass matrix.

The string model gives the Yukawa couplings for the charged lepton masses and neutrino masses. Thus, in Sec. 2 we present the lepton 
mass matrices from the flipped SU(5) model, i.e. allowed by the quantum numbers of Ref. [9], in the forms related to the KS mixing matrix. 
Then, we locate possible phases in the complex vacuum expectation values (VEVs) of the SM singlet fields σi . Next in Sec. 3, we relate 
these leptonic mass matrices with the PMNS matrix and compare it with the data presented in the Particle Data Book [26]. In Sec. 4, we 
present numerical analyses and obtain |δPMNS| < 62.8o for the normal hierarchy of neutrino masses with the PDG book parametrization 
[26]. Section 5 is a conclusion. The magnitude on the weak CP violation J [27] is briefly discussed in Appendix A.

2. Suggestion from the flipped SU(5) model

If we consider only the SM particles, neutrino masses arise from the diagram shown in Fig. 1. Any further attachments to this diagram 
are SM singlet scalars. If we consider the quantum numbers under SU(2)W ×U(1)Y , two neutrinos have 1−1 ⊕ 3↑

−1 where ↑ means that 
the 3rd component of the weak isospin is +1. Possible additional scalar attachments to Fig. 1 must carry quantum number 1+1 or 
3↓

+1 together with two H0
u ’s, and 1+1 is ruled out because 〈1+1〉 breaks U(1)em. 3↓

+1 allows the scalar attachments, shown as Hu ⊕
Hu in Fig. 1. Depending on details of high energy fields, implied by the question mark in the gray, two types of neutrino masses are 
named, Type I seesaw [28] and Type II seesaw [29]. Type III seesaw [30] requires more light particles at the electroweak scale. From the 
SU(5)flip spectra shown in Ref. [20], we note that there is no SU(2) triplet representation; hence only Type I seesaw is allowed from our 
string compactification.

2 Among these, the anomalous U(1) can work as a flavor symmetry [20]. Note that in addition to these we use U(1)’s from the extra dimensions toward Z4R discrete 
symmetry in Ref. [9].
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Table 2
U(1) charges of L-handed neutral scalars (but σ7,8 for R-handed). We kept up to one oscillator represented as Number of resulting fields(number of oscillating mode). For 
example, n(11̄) means that there results n multiplicities with one oscillator −5

12 . For Q 18,20,22 charges, here we listed only those of L-handed fields, participating in the 
Yukawa couplings. σ2,3,4,11′,15′,21,22,23,24 have phase �i = 0, which can be used to break Z4R down to Z2R .

State(P + kV 0) �i (N L) j P · RX (Sect.) Q R Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q anom Q 18 Q 20 Q 22

�∗
1 (+ + + − −; 03)(05; −1

4
−1
4

+2
4 )′ 0 2(11) 2 10−1(T3)L +4 0 0 0 0 +9 +3 −33

7 −1 +1 −1

�∗
1 (+ + + − −; 03)(05; −1

4
−1
4

+2
4 )′ +2

3 1(13) 1 10−1(T3)L +4 0 0 0 0 +9 +3 −33
7 −1 +1 −1

�2 (+ + − − −; 03)(05; +1
4

+1
4

−2
4 )′ 0 2(11̄) 2 10+1(T3)L −4 0 0 0 0 −9 −3 +33

7 −1 −1 −1

�2 (+ + − − −; 03)(05; +1
4

+1
4

−2
4 )′ +1

3 1(13̄) 1 10+1(T3)L −4 0 0 0 0 −9 −3 +33
7 −1 −1 −1

σ1 (05; −2
3

−2
3

−2
3 )(08)′ +1

4 0 2 · 10(T 0
4 ) −4 −8 −8 −8 0 0 0 −12 −1 −1 −1

σ2 (05; −2
3

+1
3

+1
3 )(08)′ 0 3(11̄) 3 · 10(T 0

4 ) 0 −8 +4 +4 0 0 0 −2 −1 −1 −1

σ3 (05; 13 −2
3

1
3 )(08)′ 0 3(11̄) 3 · 10(T 0

4 ) 0 +4 −8 +4 0 0 0 −8 −1 −1 −1

σ4 (05; 13 1
3

−2
3 )(08)′ 0 3(11̄) 3 · 10(T 0

4 ) 0 +4 +4 −8 0 0 0 +10 −1 −1 −1

σ5 (05; 0 1 0)(05; 12 −1
2 0)′ +1

2 0 2 · 10(T6) +4 0 +12 0 +12 0 0 +14 −1 −1 −1

σ6 (05; 0 0 1)(05; −1
2

1
2 0)′ +1

2 0 2 · 10(T6) 0 0 0 +12 −12 0 0 −4 −1 −1 −1

σ7 (05; 0 − 1 0)(05; −1
2

1
2 0)′ +1

2 0 2 · 10(T6)R +4 0 +12 0 +12 0 0 +14 −1 +1 −1

σ8 (05; 0 0 − 1)(05; 12 −1
2 0)′ +1

2 0 2 · 10(T6)R −2 0 0 +12 −12 0 0 −4 −1 +1 −1

σ11 (05; −1
2

−1
2

−1
2 )(05; 34 −1

4
−1
2 )′ +2

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −6 −6 −6 −6 +12 −9 −3 −30
7 +1 +1 −1

σ ′
11 (05; −1

2
−1
2

−1
2 )(05; 34 −1

4
−1
2 )′ 0 4(11 + 13,11̄ + 13̄) 4 · 10(T3) −6 −6 −6 −6 +12 −9 −3 −30

7 −1 +1 +1

σ12 (05; −1
2

1
2

1
2 )(05; 34 −1

4
−1
2 )′ +1

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −2 −6 +6 +6 +12 −9 −3 +40
7 +1 +1 −1

σ ′
12 (05; −1

2
1
2

1
2 )(05; 34 −1

4
−1
2 )′ +2

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −2 −6 +6 +6 +12 −9 −3 +40
7 −1 +1 +1

σ13 (05; 12 1
2

−1
2 )(05; −1

4
3
4

−1
2 )′ +1

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −6 +6 +6 −6 −12 −9 −3 +124
7 +1 +1 −1

σ ′
13 (05; 12 1

2
−1
2 )(05; −1

4
3
4

−1
2 )′ +2

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −6 +6 +6 −6 −12 −9 −3 +124
7 −1 +1 +1

σ14 (05; 12 1
2

−1
2 )(05; −1

4
−1
4

1
2 )′ +2

3 2(11̄) + 1(13̄) 3 · 10(T3) +4 +6 +6 −6 0 +9 +3 +58
7 −1 +1 +1

σ15 (05; −1
2

−1
2

−1
2 )(05; +3

4
−1
4

−1
2 )′ +2

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −6 −6 −6 −6 +12 −9 −3 −30
7 +1 +1 −1

σ ′
15 (05; −1

2
−1
2

−1
2 )(05; +3

4
−1
4

−1
2 )′ 0 2(11 + 13,11̄ + 13̄) 4 · 10(T3) −6 −6 −6 −6 +12 −9 −3 −30

7 −1 +1 +1

σ16 (05; −1
2

+1
2

+1
2 )(05; +3

4
−1
4

−1
2 )′ +1

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −2 −6 +6 +6 +12 −9 −3 +40
7 +1 +1 −1

σ ′
16 (05; −1

2
+1
2

+1
2 )(05; +3

4
−1
4

−1
2 )′ +2

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −2 −6 +6 +6 +12 −9 −3 +40
7 −1 +1 +1

σ17 (05; +1
2

+1
2

−1
2 )(05; −1

4
+3
4

−1
2 )′ +1

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −6 +6 +6 −6 −12 −9 −3 +124
7 +1 +1 −1

σ ′
17 (05; +1

2
+1
2

−1
2 )(05; −1

4
+3
4

−1
2 )′ +2

3 2(11 + 13,11̄ + 13̄) 2 · 10(T3) −6 +6 +6 −6 −12 −9 −3 +124
7 −1 +1 +1

σ18 (05; 12 +1
2

−1
2 )(05; +3

4
−1
4

−1
2 )′ +2

3 2(11̄) + 1(13̄) 2 · 10(T3) +4 +6 +6 −6 0 +9 +3 +58
7 −1 +1 +1

σ21 (05; −1
6

−1
6

−1
6 )(05; 14 1

4
−1
2 )′ 0 1(11̄) 10(T 0

1 ) +2 −2 −2 −2 0 +9 +3 +12
7 −1 −1 −1

σ22 (05; −5
6

1
6

1
6 )(05; 14 1

4
−1
2 )′ 0 1(11̄ + 13) 10(T 0

5 ) +2 −10 +2 +2 0 +9 +3 −2
7 −1 +1 +1

σ23 (05; 16 −5
6

1
6 )(05; 14 1

4
−1
2 )′ 0 1(11̄ + 13) 10(T 0

5 ) +2 −10 +2 +2 0 +9 +3 −44
7 −1 +1 +1

σ24 (05; 16 1
6

−5
6 )(05; 14 1

4
−1
2 )′ 0 1(11̄ + 13) 10(T 0

5 ) +2 −10 +2 +2 0 +9 +3 +82
7 −1 +1 +1

The SM fields from [9] are shown in Table 1, and the SM singlet fields, including those in 10−1 and 10+1 of SU(5)flip, are shown in 
Table 2. Considering the SM singlet attachments to Fig. 1, let us consider the neutrino mass operators allowed by the quantum numbers 
of Tables 1 and 2. Firstly, the diagonal masses are

Mν
33 ∝ 1

M̃3
3

∫
d2ϑ 5+3(U3,0;+1)5+3(U3,0;+1)5−2(T6,

1

3
;−2)5−2(T6,

1

3
;−2)10−1(T3,

1

3
;+4)10−1(T3,0;+4)

Mν
22 ∝ 1

M̃4
2

∫
d2ϑ 5+3(T 0

4 ,
1

4
;−1)5+3(T 0

4 ,
1

4
;−1)5−2(T6,

1

3
;−2)5−2(T6,

1

3
;−2)10−1(T3,

1

3
;+4)10−1(T3,0;+4)

· 10(σ5, T6,
1

2
;+4)

(1)

where the last number after ; is the Q R charge, and M̃3 and M̃2 are determined by ? in Fig. 1. We need Q R = 2 modulo 4 above for d2ϑ

integration. Mν
11, M

ν
12, M

ν
21 have the same structure as Mν

22. Note that the selection rule is making the phase an integer multiple, which is 
satisfied above for �i , viz. 0 + 0 + 1

3 + 1
3 + 1

3 + 0 = 1 and 1
4 + 1

4 + 1
3 + 1

3 + 1
3 + 0 + 1

2 = 2. Then, the above masses are estimated as

Mν
33 ∼ v2

EW M2
10

M̃3
3

, Mν
22 ∼ v2

EW M2
10|〈σ5〉|

M̃4
2

, (2)

where M10 = 〈10−1〉 = 〈10+1〉. Then, neutrino mixing masses are generally of order v2
EW /M̃ since the SM singlet VEV 〈σ5〉 can be at the 

GUT scale without breaking Z4R .
For the off-diagonal masses between U3 and T 0

4 neutrinos, we need Q R = 0 modulo 4 for d2ϑd2ϑ̄ integration.

Mν
32, Mν

31 ∝ 1

M̃6

∫
d2ϑd2ϑ̄ 5+3(U3,0;+1)5+3(T 0

4 ,
1

4
;−1)5−2(T6,

1

3
;−2)5−2(T6,

1

3
;−2)

· 10−1(T3,0;+4)10−1(T3,0;+4) · 10(σ1, T 0
4 ,

1 ;−4)∗10(σ14, T3,
2 ;+4)∗.

(3)
4 3
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Then, the above mass mixing is estimated as

Mν
13,23 ∼ v2

EW M2
10|〈σ1σ14〉|
M̃5×

, (4)

where M̃× is some mass scale determined by the above equations. Note that �∗
2, �1 and σ1 can have the GUT scale VEVs because all of 

them carry Q R = 0 modulo 4, and we obtain a similar order of mass for all of Mν
11,12,22,33,13,23.

Comparing Mν
11,22,31,32 and Mν

33,

Mν
11, Mν

22

Mν
33

≈
∣∣∣∣σ5

M̃

∣∣∣∣ , Mν
31, Mν

32

Mν
33

≈
∣∣∣∣ 〈σ1σ14〉

M̃2

∣∣∣∣ , (5)

we note that the neutrino mass hierarchy can be the normal hierarchy (in the sense that ντ is the heaviest) if the VEVs of σ singlets are 
comparably small, |σ1|, |σ5| < M̃ .

Since we obtained all entries in the neutrino mass matrix, here we investigate how the CP phase can be inserted in the mass matrix 
of the Q em = −1 leptons and in the neutrino mass matrix.

2.1. Neutrino mass matrix inspired by flipped SU(5)

In Ref. [9] based on the flipped SU(5) model of [10], a possible identification Z4R has been achieved, forbidding dimension-5 B violating 
operators but allowing the electroweak scale μ term and dimension-5 L violating Weinberg operator. In the flipped SU(5), the neutrino 
masses arise in the form

−LI J
ν = f (ν)

I J ({σ })5I,i
+35 J , j

+3 5k−2(Hu)5l−2(Hu)[10−1(HGUT)10−1(HGUT)]i jkl + h.c., (6)

where the couplings f (ν)
I J are complex parameters, I and J are flavor indices, i, j, k, l, m are SU(5) indices, and the subscript is the U(1)X

quantum number of SU(5)flip. 5−2 is usually denoted as HuL , and 10−1, together with 10+1, is the ten-plet needed for breaking the rank 
5 gauge group SU(5)×U(1) at a GUT scale down to the rank 4 SM gauge group.

Consider 5I,i
+35 J , j

+3 in Eq. (6) which is symmetric under I and J . Thus, the neutrino mass matrix is symmetric. The Majorana phase 
factored out in Eq. (20) is from the heavy neutrinos, which will not affect our study of CC interactions of Sec. 3. We assume that the 
neutrino mass matrix, being symmetric, is real. Thus, V (ν) can be considered to be an orthogonal matrix O (ν) .

2.2. Mass matrix of charged leptons inspired by flipped SU(5)

As commented above, we can always take V (ν) as a real matrix O (ν) . Thus, the PMNS matrix given in the KS form, Eq. (25), can be 
represented as

V (l)†
KS = V (e) O (ν)T =

⎛
⎝q11r11 + q12r12 + q13r13, q11r21 + q12r22 + q13r23, q11r31 + q12r32 + q13r33,

q21r11 + q22r12 + q23r13, q21r21 + q22r22 + q23r23, q21r31 + q22r32 + q23r33,

q31r11 + q32r12 + q33r13, q31r21 + q32r22 + q33r23, q31r31 + q32r32 + q33r33,

⎞
⎠ (7)

where the elements V (l)
i j = qij and O (ν)

i j = ri j are complex and real numbers, respectively. Making the 1st row real for the KS form, q11, q12

and q13 are required to be real.
The unitary matrices relating the weak eigenstates l amd mass eigenstates i of the charged leptons are named as V for L-handed fields 

and U for R-handed fields,

lL =
3∑

j=1

V (l)
l j l(mass)

jL , lR =
3∑

j=1

U (l)
l j l (mass)

jR , (8)

where l̄ mass
L = (�1, �2, �3)L in terms of mass eigenstates �1, �2, �3, and lmass

R = (N1, N2, N3)R . The mass matrix becomes

l̄L(V (l)
e MmassU (l)†

e )lR (9)

in the weak eigenstate basis. Since R-handed leptons are not participating in the CC interactions, the lepton R-handed unitary matrix U (l)

can be taken as the identity matrix. Thus, the mass matrix in the weak basis becomes

M(l) = V (l)

⎛
⎝m̃e, 0, 0

0, m̃μ, 0
0, 0, 1

⎞
⎠ U (l)† =

⎛
⎝q11m̃e, q12m̃μ, q13

q21m̃e, q22m̃μ, q23
q31m̃e, q32m̃μ, q33

⎞
⎠ =

⎛
⎝ real, real, real

complex, complex, complex
complex, complex, complex

⎞
⎠ (10)

where V (l)
i j = qij and we obtained q11, q12 and q13 are real numbers.

We show that the quantum numbers of the model presented in [9] allows an effective mass matrix form Eq. (10) for the charged 
leptons.

−LI J = f (l)
({σ })5I,i 1 J 5+2,i(Hd)[10+1(HGUT)10−1(HGUT)] + h.c., (11)
l I J +3 −5
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which arises from, for example for the (22), (33) and (32) elements, viz. Tables 1 and 2,

1

M4

∫
d2ϑd2ϑ̄ η̄2(T 0

4 ,
1

4
;−1)μc(T 0

4 ,
1

4
;−1)Hd(T6,

1

3
;+2)�2(T3,0;−4)�∗

1(T3,
2

3
;+4)σ ∗

5 (T6,−1

2
;−4)

1

M4

∫
d2ϑd2ϑ̄ η̄3(U3,0;+1)τ c(U3,0;+1)Hd(T6,

1

3
;+2)�2(T3,0;−4)�∗

1(T3,
2

3
;+4)σ ∗

2 (T 0
4 ,0;0)

1

M4

∫
d2ϑ η̄3(U3,0;+1)μc(T 0

4 ,
1

4
;−1)Hd(T6,

1

3
;+2)�2(T3,0;−4)�∗

1(T3,
2

3
;+4)σ1(T 0

4 ,
1

4
;−4)σ5(T6,

1

2
;+4)

(12)

which are allowed because they satisfy Q R = 0 (needed for D-terms) and Q R = 2 (needed for F-terms) modulo 4, respectively. The BSM 
fields in Eq. (12) carry Q R = 4 modulo 4 and hence Z4R is not broken by the mass terms of the charged leptons.

Since all the entries of the mass matrix M(l) are allowed, we show below how the required form (10) results. Because of the degeneracy 
of the SM fields in the sector T 0

4 , the mass matrix can be written as

∼
⎛
⎝r1eiφ1 , r1eiφ1 , r2eiφ2

r1eiφ1 , r1eiφ1 , r2eiφ2

r3eiφ3 , r3eiφ3 , r4eiφ4

⎞
⎠ . (13)

Redefining the L-handed and R-handed phases,

l′L =
⎛
⎝eiφ5 , 0, 0

0, eiφ5 , 0
0, 0, 1

⎞
⎠ lL, l′R =

⎛
⎝1, 0, 0

0, 1, 0
0, 0, eiφ6

⎞
⎠ lR , (14)

we obtain the mass matrix for the choice of φ5 = −φ1 and φ6 = φ2 − φ1,

∼
⎛
⎝ r1, r1, r2

r1, r1, r2

r3eiφ3 , r3eiφ3 , r4e−iφ2

⎞
⎠ . (15)

The above mass matrix form is simple enough to assign phases in the SM singlet fields, σi . From Eq. (12), we can choose the following 
phase for the singlets, 〈σ1〉 ∼ eiφ3 , 〈σ5〉 ∼ ei·0 and 〈σ2〉 ∼ eiφ2 . Determining these phases is postponed until a sufficiently accurate value of 
the PMNS phase is known.

3. Diagonalization of mass matrices and mixing angles in the KS form

The charged current (CC) coupling in the lepton sector is

LCC = − g√
2

∑
l=e,μ,τ

l̄Lγ
ανlL W −

α + h.c. (16)

where the weak eigenstate leptons l are the defining ones in the CC interaction, and the weak eigenstate leptons l, νl are related to the 
mass eigenstate leptons l (mass)

i , ν (mass)
i as

lL =
3∑

j=1

V (e)
l j l(mass)

jL , νlL =
3∑

j=1

V (ν)

l j ν
(mass)
jL , (17)

where the first equation is given already in Eq. (8). The neutrino masses presented in Sec. 2 are in the weak eigenstate bases. Between 
the mass eigenstates, the CC interaction is given by

LCC = − g√
2

l̄ (mass)
L γ α V (e)† V (ν)ν

(mass)
L W −

α + h.c. (18)

The PMNS matrix is given by3

V †
PMNS = V (e)† V (ν) (19)

where V (e) and V (ν) are diagonalizing unitary matrices of L-handed charged leptons and neutrino fields.
A standard way to parametrize the CC lepton interactions is

CC lepton matrix = V †
PMNS ×

⎛
⎝1, 0 0

0 eiα21/2 0
0 0 eiα31/2

⎞
⎠ (20)

where the first factor called the PMNS matrix is usually written as [31,26]

3 Compare with the CKM matrix V CKM = V (u)† V (d) defined from the W +
μ coupling, − g√ ū (mass)

L γ α V (u)† V (d)d(mass)
L W +

α + h.c.

2
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Fig. 2. The KS values of �1,2,3 and α in the first quadrant within one sigma bounds of the PDG values as functions in the allowed region of γ . In the second quadrant, �1,2,3

are given as �1,2,3(−γ ) = �1,2,3(γ ). In the third quadrant α is given as α(−γ ) � −α(γ ). The 10% allowed region from the maximum, γ = [+62.8o, +56.56o], is shown as 
the pink band. The solution for �2 is an ellipse whose tangent, as shown by the extended dashed curve, gives the limit determining the maximum |γ |’s in Eq. (23).

V †
PMNS �

⎛
⎜⎝

C12C13, S12C13, S13e−iδ

−S12C23 − C12 S23 S13eiδ, C12C23 − S12 S23 S13eiδ, S23C13

S12 S23 − C12C23 S13eiδ, −C12 S23 − S12C23 S13eiδ, C23C13

⎞
⎟⎠ , (21)

where Cij = cos�i j, Sij = sin �i j , �i j = [0, π2 ), and the angle δ = [0, 2π ] is the Dirac CP violation phase, and α21, α31 are two Majorana 
CP violation phases. The second factor of (20) contains the Majorana phases which may be determined by heavy neutrinos in the seesaw 
mechanism. The best fit (BF) real angles of the PMNS matrix are [26],

�12 = 0.5764 [C12 = 0.8385, S12 = 0.5450],
�23 = 0.7101 [C23 = 0.7583, S23 = 0.6519],
�13 = 0.1472 [C13 = 0.9892, S13 = 0.1466].

(22)

and we have the following bound from Fig. 2,

−78.29o +2.35o

−0.90o < γ < +78.29o +0.90o

−2.35o (23)

from which we obtain

V †
PMNS �

⎛
⎜⎝

0.8294, 0.5391, 0.1466 e−iδ

−0.4132 − 0.08015 eiδ, 0.6358 − 0.0521 eiδ, 0.6449

0.3553 − 0.0932 eiδ, −0.5466 − 0.0606 eiδ, 0.7501

⎞
⎟⎠ ,

J = Im V 11 V 22 V 33 = −3.28 × 10−2 sin δ

(24)

where we used the central values for the allowed angles, θ12 = 0.5758(= 32.99o), θ13 = 0.1471(= 8.428o) and θ23 = 0.7101(= 40.69o), for 
the normal hierarchy4 of neutrino masses m1 < m2 < m3.

The mass matrix in SU(5)flip from string was presented in Sec. 2 in the KS form, where the 1st row of the PMNS matrix is made real 
[24],

V †
KS =

⎛
⎜⎝

C1, S1C3, S1 S3

−C2 S1, C1C2C3 + S2 S3e−iδKS , C1C2 S3 − S2C3e−iδKS

−eiδKS S1 S2, −C2 S3 + C1 S2C3eiδKS , C2C3 + C1 S2 S3eiδKS

⎞
⎟⎠ , (25)

where Det V KS = 1. Then, the phase appearing in the (31) element is the key, viz. J = −Im V KS
31 V KS

22 V KS
13 = −C1C2C3 S2

1 S2 S3 sin δKS [25]. So, 
let us obtain data in the KS form from the data in the PDG book [26]. In view of Fig. 5, we solve the equations for θi in terms of θi j ,

c1s1s3 = c12c13s13,

c2
2c2

3s2
1s2

2 + c2
1s2

1s2
3 − 2c1c2c3s2

1s2s3 cosα = c2
13c2

23s2
12s2

23,

c2
2c2

3s2
1s2

2 = c2
13c2

23s2
12s2

23 + c2
12c2

13s2
13 − 2c12c2

13c23s12s23s13 cosγ .

(26)

4 Here we cite, for simplicity of presentation, mainly the numbers for normal hierarchy of neutrino masses except in Fig. 3.
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For the fixed triangle given by (26), the area relation results in

c2c3s1s2 sinα = c13c23s12s23 sinγ . (27)

Since there are four parameters to be determined i.e. θ1,2,3 and α from Eq. (26), there is a degree of freedom to define the KS form 
from the observed angles in the PDG book. Even if we can determine the KS parameters from (26) with one degeneracy parameter, the 
additional relation (27) has a profound meaning. It must be satisfied for all real values of parameters θi , α and θi j, γ . For some angles, 
therefore, there must be a bound for the relation (27) to be satisfied. Let us fix the parametrization such that the (11) element in the KS 
form agrees with the (11) element of the PDG book, c1 = c12c13. Then, the four conditions to determine the KS parameters are

c1 = c12c13,

s1s3 = s13,√
c2

2c2
3s2

1s2
2 + c2

1s2
1s2

3 − 2c1c2c3s2
1s2s3 cosα = ±c13c23s12s23,

c2c3s1s2 = ±
√

c2
13c2

23s2
12s2

23 + c2
12c2

13s2
13 − 2c12c2

13c23s12s23s13 cosγ .

(28)

The second relation of (28) is the important parameter in the neutrino oscillation and hence the condition for the (11) element to 
reproduce the PDG’s (11) element is intuitive and persuasive. From the known values of θi j and the solutions of (26), γ should be 
bounded. Especially, it cannot be −π

2 .

4. Numerical analyses

In this section, we present numerical analyses for the KS form angles of the PMNS matrix. The best fit (BF) real angles from [26]
determine �1 and �3 accurately,

�1 = 0.5928 [C1 = 0.8294, S1 = 0.5587],
�3 = 0.2656 [C3 = 0.9649, S3 = 0.2625], (29)

but �2 can be 0.5377 or 1.0331. Numbers given in Eq. (29) are presented in Fig. 2.5 For α = −π
2 (corresponding to γ = −62.8o) and 

�2 = 0.5377, we have

V †
KS =

⎛
⎜⎝

0.82939, 0.53909, 0.14663

−0.47985, 0.68740 + 0.13441e−iδKS , 0.18697 − 0.49417e−iδKS

−0.28611eiδKS , −0.22543 + 0.40986eiδKS , 0.82880 + 0.11148e−iδKS

⎞
⎟⎠ ,

J = −Im V KS
31 V KS

22 V KS
13 = −2.8838 × 10−2 sin δKS .

(30)

Namely, to have J given in Eq. (30) for δKS = −π
2 compared to J of Eq. (24), we have the minimum allowed value γ = −62.8o which 

is inside the region given in Eq. (23). In Fig. 2, we mark the +10 % band from this value, γ = [62.8o, 56.52o], as the pink band. In the 
third quadrant, the band becomes anti-symmetric to the curve in the first quadrant, γ = [−62.8o +1.25o

−1.56o , −56.56]. In Fig. 3, we present an 
inverted hierarchy solution for m3 < m1 < m2.

We used † notation in Eqs. (25) and (30) since the definition of the PMNS matrix is given by W −
μ coupling and the CKM matrix is given 

by W +
μ coupling. To compare both with the W +

μ coupling, factoring out the Majorana phases, let us consider the PMNS parametrization 
with † of Eq. (25),

V KS =
⎛
⎜⎝

C1, −C2 S1, −S1 S2e−iδKS

S1C3, C1C2C3 + S2 S3eiδKS , −C2 S3 + C1 S2C3e−iδKS

S1 S3, C1C2 S3 − S2C3eiδKS , C2C3 + C1 S2 S3e−iδKS

⎞
⎟⎠ , (31)

To build a model, leading to (31), one must find out the mass matrices M(ν) and M(l) with appropriate insertions of e±iδKS , which has 
been already shown in Sec. 2.

As suggested in [32], if we use the KS parametrization for the CKM matrix given in [24] and again the KS parametrization for the 
PMNS matrix given in Eq. (31) and the same CP phase α appears in the CKM and PMNS phases, we expect the unitary triangles take 
the forms given in Fig. 4 (a). If we use the Maiani-Chau-Keung (MCK) parametrization for the CKM matrix and the Schechter-Valle (SV) 
parametrization for the PMNS matrix given in [31,26] and the same CP phase γ appears in the CKM and PMNS phases, we expect the 
unitary triangles take the forms given in Fig. 4 (b). The CKM unitary triangle is known rather accurately but the PMNS unitary triangle 
is not known accurately, chiefly because the error bars allowed for γ is large: e.g. for the normal hierarchy δCP = −1.728+0.851

−0.855 [34]. 
These unitary triangles are defined by CC interactions, and determined chiefly by the decay processes in the quark sector and by neutrino 
oscillations in the lepton sector.

5 An approximate analytic solution near the dodeca symmetric point was given before [33].
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Fig. 3. Same as in Fig. 2 except for the inverted hierarchy [26], m3 < m1 < m2, where Eq. (23) becomes −78.80o +0.94o

−3.01o < γ < +78.80o +3.01o

−0.94o and the lower limit of γ becomes 
−62.64o +1.46o

−1.48o < γ .

Fig. 4. The CKM and PMNS unitary triangles with one common angle [32]: (a) α in the KS form, and (b) γ in the SV form.

Fig. 5. The Jarlskog triangle [27,35] where ci = cos θi , si = sin θi , and ci j = cos θi j , si j = sin θi j .

5. Conclusion

We obtained the mass matrix forms of neutrinos and charged leptons from symmetries allowed in a compactified string [9], possessing 
Z4R discrete symmetry. Discrete R parity Z4R is crucial in supersymmetric SMs toward the solutions of the dimension-5 proton decay 
problem, μ problem, and acceptable neutrino masses [22]. In the flipped SU(5), the neutrino mass matrix is symmetric, and the weak CP 
phase is inserted in the mass matrix of charged leptons. This is then related to the Kim-Seo form of the PMNS matrix. The flipped SU(5) 
model compactified on Z12−I is simple enough to draw this analysis up to satisfying all data on the PMNS matrix.
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Appendix A. Jarlskog determinant

In this Appendix, we comment on the Jarlskog determinant. For three families in the SM, the W boson couplings couple to the charged 
currents (CCs) in terms of four angles (three real angles and one phase) in the quark sector [16] and also in the lepton sector [18,19]. The 
weak CP violation in the SM is given by the Jarlskog determinant J . The numerical value of J is twice the area of the triangle shown in 
Fig. 5. Originally, J was given by a sum of four products of V ij in the form V ∗V V ∗V [27]. It was proved that by making Det. V real, one 
can express it in terms of three products of V ij: J = −Im V KS

31 V KS
22 V KS

13 or J = Im V KS
11 V KS

22 V KS
33 , etc. [25]. In this form, J relates the entire 

range of the 3 × 3 matrix, covering all three families, and hence it can be a theory dependent number. So, it is better to use this form of 
J . Fig. 5 is drawn by considering 

∑
i V ∗

i1 V i3 = 0.
One intuitive parametrization is using three rotation angles �i j in the (i j) planes, with cosines V ii = V jj = ci j and sines V ij =

si j, V ji = −si j in V ij and Vkk = 1 for k|εi jk| in the plane (i j). A non-Majorana phase δ is inserted conveniently in (13) plane [36]: 
V 1 j = (c13, 0, s13e−iδ), V 2 j = (0, 1, 0), V 3 j = (−s13eiδ, 0, c13). Since the unitary matrix in the (13) plane has the real determinant, here also 
we can use J = −Im V KS

31 V KS
22 V KS

13 or J = Im V KS
11 V KS

22 V KS
33 , etc.

The angles α, β , and γ , in the unitarity relation 
∑

i V ∗
i1 V i3 = 0, of Fig. 5 are related to δ of V . The same area of the triangle can be 

given in terms of α, β , or γ . For the parameters of Fig. 5, J can be expressed as (c1s1s3)(c2c3s1s2) sinα for the parameters of [24] or 
(c12c13s13)(c13c23s12s23) sinγ for the parameters of [36]. The usefulness of the Kim-Seo (KS) parametrization with Det. V KS = 1 is making 
one row real, e.g. in the first row [24],

V KS =
⎛
⎜⎝

R1, R2, R3

T1, R4 + R5e−iδ, T2

R6eiδ, T3, T4

⎞
⎟⎠ , (A.1)

where Ri and Ti are real and complex numbers, respectively. Then, we have J = −R3 R4 R6 sin δ. In this form, it is possible to visualize the 
CP phase eiδ appearing in the position V 31 [25]. A complex (22) element can be always written in the form separating out the term with 
the factor e−iδ .
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