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Abstract

In order to explain the U-shaped pattern of autocorrelations of stock returns i.e., autocorrelations starting around 

0 for short-term horizons and becoming negative and then moving toward 0 for long-term horizons, researchers sug-

gested the use of a state-space model consisting of an I(1) permanent component and an AR(1) stationary component, 

where the two components are assumed to be independent. They concluded that auto-regression coefficients derived 

from the state-space model follow a U-shape pattern and thus there is mean-reversion in stock prices. In this paper, 

we show that only negative autocorrelations are feasible under the assumption that the permanent component and 

the stationary component are independent in the state-space model. When the two components are allowed to be 

correlated in the state-space model, we show that the sign of the auto-regression coefficients is not restricted as 

negative. Monthly return data for all NYSE stocks for the period from 1926 to 2007 support the state-space model 

with correlated noise processes. However, the auto-regression coefficients of the ARIMA process, equivalent to the 

state-space model with correlated noise processes, do not follow a U-shaped pattern, but are always positive.
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1. Introduction

Financial economists have studied autocorre-

lations in short-term stock returns to test whe-

ther stock returns are predictable. Since early 

studies couldn’t find significant evidence of auto-

correlations in stock returns, they concluded that 

stock returns are unpredictable. That is, stock 

returns follow a random-walk model and the 

stock market is efficient (see Fama [5]; LeRoy 

[10]).

However, several studies have challenged this 

interpretation of short-horizon returns. Lo and 

MacKinlay [12], Conrad and Kaul [4], and Poterba 

and Summers [15] reported strong positive auto-

correlations in short-term (e.g., daily, weekly, 

and monthly) stock returns. Summers [18] insi-

sted on the phenomenon that prices take long 

temporary swings away from fundamental va-

lues, which means that prices have a slowly 

decaying stationary component. Fama and French 

[6], Lo and MacKinlay [12], and Poterba and 

Summers [15] showed that there is substantial 

mean-reversion in long-term stock returns that 

they attribute to the presence of a stationary 

component. By using regression tests for stock 

returns from 1926 to 1985, Fama and French [6] 

found a U-shaped pattern of autocorrelations in 

stock returns that was concluded to be due to 

both negative autocorrelations in returns beyond 

a year and substantial mean-reversion in stock 

market prices. In order to explain long-term 

mean-reversion due to negative autocorrelations, 

Fama and French [6] and Poterba and Summers 

[15] suggested the use of the state-space model 

(henceforth SS model) consisting of an I(1) per-

manent component and an AR(1) stationary com-

ponent where the two components are assumed 

to be independent.

Even though some skeptical studies followed 

the above results (e.g., Richardson and Stock 

[17]; Kim et al.  [9]; Richardson [16]; Malliaro-

pulos [13]), many studies have showed the evi-

dence of mean-reversion. Balvers et al. [1] found 

strong evidence of mean-reversion in relative 

stock index prices of 18 countries. Nam et al. [14] 

found the asymmetrical reverting behavior in US 

stock returns using asymmetric nonlinear smooth- 

transition GARCH approach. Balver et al. [1] and 

Nam et al. [14] interpreted that the detected mean- 

reversion leads to contrarian profits. Chaudhuri 

and Wu [2], [3] showed that a panel-based test 

that exploits cross-sectional information from 17 

emerging equity markets rejects the null hypo-

thesis of random-walk. Lim and Liew [11] de-

monstrated the random-walk assumption is re-

jected in Asian stock markets using nonlinear 

stationary tests.

In this study, we argue that the correlated 

structure between permanent and stationary com-

ponents of stock prices has a crucial meaning to 

interpret short-term and long-term autocorre-

lations in stock prices. Lo and MacKinray [12], 

Poterba and Summers [15], and Khil and Lee [8] 

pointed out that the SS model suggested by 

Fama and French [6] can explain the negative 

long-term autocorrelations, but not the positive 

short-term autocorrelations. In particular, Khil 

and Lee [8] suggested an SS model employing 

an AR(2) process instead of an AR(1) process 

as a stationary component in order to explain 

short and long-term autocorrelations at once. 

Khil and Lee [8] still adopted the independence 

assumption in their SS model.
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The SS model suggested by previous studies 

is equivalent to the unobserved component model 

that economists often use for the decomposition 

of observable non-stationary time series into 

two unobservable components, a permanent trend 

and a transitory cycle. Joo and Jun [7] showed 

that the trend-cycle decomposition could be 

spurious if dependence between the permanent 

and the stationary component is not allowed in 

the SS model, and thus an erroneous interpreta-

tion could occur.

Based on Joo and Jun [7], it is shown that the 

previous SS model with an independence as-

sumption is compatible only with negative auto-

correlations in this study. It cannot describe 

positive autocorrelations unless dependence bet-

ween the permanent and the stationary com-

ponent is allowed. Furthermore, auto-regression 

coefficients for one month returns of all NYSE 

stocks for the period from 1926 to 2007 is 

estimated, and it is shown that the SS model 

displays positive autocorrelations that are com-

patible only with a dependence assumption.

This paper is organized as follows. Section 2 

discusses the SS model of stock prices consi-

dering dependence between the permanent and 

the stationary noise process. In section 2, the 

equivalent ARIMA from the SS model and 

auto-regression coefficients expressed as the 

parameter of the SS model are derived. In section 

3, we analyze the NYSE stock return data and 

identify their ARIMA models. Based on these 

ARIMA estimates, we determine whether the 

noise processes are independent or dependent, 

and study the pattern of the auto-regression 

coefficients in order to try to explain mean- 

reversion in stock prices. Section 4 concludes the 

paper.

2. A State-Space Model for 
Stock Prices

2.1 Previous Studies with the State-Space 

Model for Long-Term Mean-Reverting 

Stock Prices

Many previous studies suggested the use of 

the SS model ignoring the dependence between 

noise processes for explaining the long-term 

mean-reversion of stock prices. By using regre-

ssion tests with NYSE returns for the 1926 to 

1985 period, Fama and French [6] reported the 

U-shaped pattern of stock returns beyond a year. 

They concluded this pattern is due to both large 

negative autocorrelations in returns beyond a 

year and substantial mean-reversion in stock 

market prices (see also Poterba and Summers 

[15]). The existence of mean-reversion in stock 

prices means that stock prices do not follow a 

random-walk but may contain a stationary com-

ponent. In order to explain this phenomenon, 

Fama and French [6] and Poterba and Summers 

[15] suggest the SS model to describe the natural 

log of monthly stock prices, , as the sum of 

a random walk component, , and a stationary 

component, ：

   

    (1)

   

where   is the expected drift and   and   

are normally distributed white noises as










∼  

 
 


 . (2)
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It was assumed that the noise processes,   

and , are independent. Since   is the natural 

log of the stock price, the continuously com-

pounded return from   to    is

       (3)

               

Let   be the slope of the following re-

gression of the return    on  ：

   ⋅  (4)

Since the auto-regression coefficient    is 

an OLS estimator and there is no correlation 

between the noise components,

   

   
(5)

If a stock price does not have a random-walk 

component, i.e.,   , the slope  

  approaches -0.5 for large values of 

 . On the other hand, if a stock price does not 

have a temporary component, i.e.,   , the slope 

  is zero for all values of  . Thus, Fama and 

French [6] insisted that if stock prices have both 

a random-walk and a stationary component, the 

slope   might form the U-shaped pattern, 

starting around zero for short horizons, becom-

ing more negative as   increases, and then 

moving back toward zero as the white noise 

variance begins to dominate in the long-term.

Other researchers also showed that the SS 

model consisting of an I(1) and an AR(1) com-

ponent are compatible with negative long-term 

autocorrelations. Lo and MacKinray [12] and 

Khil and Lee [8] showed that the SS model is 

compatible with negative long-term autocorre-

lations even if it has limitations for short-term 

autocorrelations. In other words, most studies 

suggested that the SS model with the indepen-

dent assumption is appropriate for explaining 

negative long-term autocorrelations.

However, it is most likely that the above re-

sults are derived from the independence assum-

ption in the SS model. In the following sections, 

we will show that when the independence assum-

ption is introduced in the SS model, the para-

meter space of the equivalent ARIMA process is 

restricted. The restricted parameter space is 

identical to the area that induces the negative 

sign of the auto-regression coefficients from the 

above SS model.

2.2 A State-Space Model Incorporating 

Dependence

For simplicity, previous studies assumed inde-

pendence between a permanent component and 

a stationary component. But the assumption that 

the permanent and stationary components of stock 

prices are not correlated can be unrealistic. As 

Joo and Jun [7] showed, the unrealistic assump-

tion of independence between the two compo-

nents could cause spurious inferences. Consider 

the following dependent noise processes：










∼  

 

 




 ,     (6)

where   is the ratio of the variance of the noise 

process for the stationary component to that for 

the permanent component, i.e., 
  

 , and   

is the correlation coefficient between the two 
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noises. In this case, the auto-regression coef-

ficient   is1)

 











 
  

  


⋅




  

  
 ≠

(7)

2.3 The Parameter Space Restriction 

of the State-Space Model

Joo and Jun [7] showed that the usual assum-

ption of independence between the noise process 

for the trend and that for the cycle may result 

in redundant AR and MA parameters in the equi-

valent ARIMA process. They proposed the SS 

trend-cycle decomposition of an ARIMA(1, 1, 1) 

process through the relationships between the 

model parameters. They showed that the inde-

pendent noise assumption might restrict the para-

meter space of the SS model.

The SS model in equations (1) and (6) is equi-

valent to the following ARIMA(1, 1, 1) process：

′  , (8)

where   is a normally distributed noise pro-

cess with variance, 
. By equating the autocor-

relations of the first difference of   in the ARIMA 

model to the autocorrelations in the SS model, 

the equivalence relationships for the model para-

meters can be obtained as follows：

′ ,     (9-a)

  ′ 
′′

′

, and (9-b)

1) Appendix 1 shows the derivation of the auto-regre-

ssion coefficient.


 ′ 




. (9-c)

Since ′  is always the same as   by equation 

(9-a), henceforth we will use the term   instead 

of ′  for convenience. When the two noise pro-

cesses are assumed independent, i.e.,   , equa-

tion (9-b) is reduced to

  


(10)

and the restricted parameter space of the SS 

model in equation (10) is

  . (11)

If the equivalent ARIMA(1, 1, 1) model has the 

same AR and MA parameters, i.e.,  , a 

trend-cycle decomposition results in redundant 

parameter estimation. That is, the stock price   

does not follow an ARIMA(1, 1, 1) process, but 

it follows a random-walk process. When the 

noise process of the random-walk trend and that 

of the AR(1) cycle in the SS model are assumed 

independent, the AR parameter is always less 

than the MA parameter, i.e.,   . When the AR 

parameter is greater than the MA parameter, i.e., 

  , the SS model with independent noise 

processes never describes the ARIMA process 

correctly. Because of the parameter restriction, 

correlation between noise processes must be 

considered in the SS model.

2.4 The Sign of the Auto-Regression 

Coefficient

Replacing   in equation (7) with equation 

(9-b),
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 

   

⋅





   

⋅


⋅


. (12)

From the stationarity and invertibility condi-

tions of an ARMA(1, 1) model, absolute values 

of the AR and MA parameters should be smaller 

than 1, i.e.,     and   . Therefore, the sign 

of the auto-regression coefficient   is deter-

mined by the sign of the term   since all 

other terms are positive.

If the AR parameter is less than the MA 

parameter, i.e.,   , the numerator of   in 

equation (12) is always negative and the deno-

minator is always positive. Therefore,   is 

always negative under the independence assum-

ption between the noise processes. Also,   

is negative for the short-horizon and then moves 

toward zero as   increases since the denomi-

nator grows as   increases.

If the MA parameter is less than the AR 

parameter, i.e.,   , the sign of the numerator 

of   is always positive, but that of the deno-

minator is somewhat complicated. The sign of 

the denominator is determined by the relative 

magnitude between (a) and (b) in equation (12). 

Part (a) keeps on increasing, but part (b) is 

constant as   increases.2) If  , the deno-

minator is always positive after one year, i.e., 

  . Moreover, the denominator is always 

positive after a month if  . That is, in 

most cases,   has both a positive and nega-

tive sign for the short-horizon but eventually 

converges to zero for the long-horizon regar-

2) The maximum of part (b) is 2 for    and   . 

The detailed derivation is shown in appendix 2.

dless of the magnitude of (a) and (b).3) Hence, 

the parameter space that always makes the 

auto-regression coefficient negative is equal to 

the restricted parameter space by the indepen-

dence assumption, and the SS model cannot 

describe the positive auto-regression coefficient 

without dependence between noise processes.

3. Empirical Analysis

3.1 Data

We analyzed the stock market data to deter-

mine whether correlations between the perma-

nent component and the stationary component 

matter in the SS model of stock prices. We col-

lected monthly returns for all New York Stock 

Exchange (NYSE) stocks for the period from 

July 1926 to December 2007 provided by the Cen-

ter for Research in Security Prices. At the end 

of each year, stocks are ranked on the basis of 

size and grouped into ten deciles. Monthly port-

folio returns, with equal weighting of securities, 

are calculated and transformed into continuously 

compounded returns.4) All portfolio returns are 

adjusted for the U.S. Consumer Price Index (CPI) 

to get the real returns.

3.2 ARIMA Estimation and Diagnostic Check

We performed ARMA identifications of mon-

thly stock returns. Since the SS model consisting 

of an I(1) and an AR(1) process is equivalent to 

3) Details for relationships of the sign of   with   

and   are derived in appendix 2.

4) We also analyzed portfolio returns with value wei-

ghting of securities. Overall results are very similar 

to those of a portfolio with equal weighting of secu-

rities.
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<Table 1> Estimation Results of the Stock Return from July 1926 to December 2007

Decile 
Portfolio

ARMA(1, 1)
  

ARMA(1, 0)
  

ARMA(0, 1)
  

Model 
Selection

* * AIC BSC ** AIC BSC ** AIC BSC

Decile 1 0.2347 -0.0099 7.6311 7.6411 0.2441 7.6291 7.6341 -0.2263 7.6324 7.6374 ARMA(1, 0)

Decile 2 0.2058 -0.0096 7.2906 7.3006 0.2149 7.2886 7.2936 -0.2029 7.2901 7.2951 ARMA(1, 0)

Decile 3 0.1465 -0.0970 7.0707 7.0807 0.2371 7.0696 7.0746 -0.2303 7.0695 7.0745 ARMA(0, 1)

Decile 4 0.1890 -0.0289 6.9305 6.9405 0.2164 6.9285 6.9335 -0.2040 6.9300 6.9350 ARMA(1, 0)

Decile 5 0.1395 -0.0536 6.8376 6.8476 0.1908 6.83580 6.84080 -0.1832 6.83582 6.84082 ARMA(1, 0)

Decile 6 0.1039 -0.0881 6.7477 6.7577 0.1882 6.7462 6.7512 -0.1852 6.7453 6.7503 ARMA(0, 1)

Decile 7 0.1630 -0.0031 6.6316 6.6416 0.1660 6.6295 6.6345 -0.1569 6.6298 6.6348 ARMA(1, 0)

Decile 8 0.1048 -0.0403 6.5424 6.5524 0.1441 6.5404 6.5454 -0.1397 6.5399 6.5449 ARMA(0, 1)

Decile 9 0.0937 -0.0366 6.4584 6.4684 0.1295 6.4564 6.4614 -0.1257 6.4559 6.4609 ARMA(0, 1)

Decile 10 0.0497 -0.0662 6.2479 6.2579 0.1145 6.2460 6.2510 -0.1144 6.2451 6.2501 ARMA(0, 1)

Note)
*
 All estimates of the ARMA(1, 1) model are insignificant at the 95% confidence level.

(Except   for decile 1, all estimates of the ARMA(1, 1) model are insignificant at the 90% confidence level).
**
 All estimates of the ARMA(1, 0) and ARMA(0, 1) models are significant at the 99% confidence level.

The bold number indicates the lowest value in each criterion for each decile portfolio.

an ARIMA(1, 1, 1) model, the stock return series 

follows an ARMA(1, 1) model. When the stock 

return data is fitted to an ARMA(1, 1) model, the 

AR and MA parameters appear to be insigni-

ficant even at the 90% confidence level. The 

insignificance of the parameters of the ARMA(1, 

1) model is also reported by Khil and Lee [8]. 

However, the return series of each decile port-

folio is identified as an ARMA(1, 0) or an ARMA 

(0, 1) model at the 99% confidence level. Hence, 

we perform diagnostic check for these three mo-

dels：ARMA(1, 1), ARMA(1, 0), and ARMA(0, 

1). We compare these models using AIC (Akaike 

Information Criterion) and BSC (Bayesian Sch-

wartz Criterion), which are generally employed 

in diagnostic checking. The results are shown in 

<Table 1>.

From the results, the ARMA(1, 0) model is 

selected as the best model for decile 1, 2, 4, 5, 

and 7 portfolios and the ARMA(0, 1) model is 

selected for decile 3, 6, 8, 9, and 10 portfolios. 

Thus, the ARMA(1, 0) or ARMA(0, 1) model fits 

the data better than the ARMA(1, 1) model.

3.3 The Parameter Space Restriction

From section 2, it is derived that the indepen-

dence assumption in the SS model restricts the 

parameter space of the equivalent ARIMA(1, 1, 

1) model as   . In [Figure 1], the dark colored 

area of the upper-left part indicates the restricted 

parameter space of the ARIMA(1, 1, 1) model due 

to the independence assumption. However, all 

estimates for the real data are located in the 

uncolored area of the lower-right part, which 

cannot be expressed by previous studies. It means 

that the correlation between noise processes 

must be considered to construct the appropriate 

SS model.
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Note) The dark colored area indicates the restricted pa-

rameter space by the independence assumption.

  [Figure 1] Plot of the Estimates of the 
ARIMA(1, 1, 1) Model

Since an ARIMA(1, 1, 0) model is equivalent 

to the ARIMA(1, 1, 1) model with a zero MA 

parameter, the parameter space is restricted as 

 . In the same manner, the restricted para-

meter space of an ARIMA(0, 1, 1) model is   . 

From <Table 1>, it can be easily checked whether 

the estimates belong to these restricted parame-

ter space for the ARIMA(1, 1, 0) and ARIMA(0, 

1, 1) models. Since all estimates of the ARIMA(1, 

1, 0) model are positive and all estimates of the 

ARIMA(0, 1, 1) model are negative, they are out 

of the restricted parameter space. It suggests 

that the independence assumption is not compa-

tible with the estimated parameters, therefore, 

the dependence between noise processes must be 

considered for building the correct SS model.

3.4 The Auto-Regression Coefficient

The auto-regression coefficient for an ARIMA 

(1, 1, 0) and ARIMA(0, 1, 1) models can be easily 

derived from equation (12). Setting  , the 

model is equivalent to the ARIMA(1, 1, 0) model 

and

 
⋅






.  (13)

Similarly, setting   , the model is equivalent 

to the ARIMA(0, 1, 1) model and

 
⋅





⋅
. (14)

In each case, the parameter space that always 

makes the auto-regression coefficient negative is 

the same as the restricted parameter space by 

the independence assumption, i.e.,    for the 

ARIMA(1, 1, 0) model, and     for the ARIMA 

(0, 1, 1) model. Hence, the SS model without 

dependence cannot be suitable for positive auto-

correlations of the stock return data.

[Figure 2] shows the patterns of the auto- 

regression coefficients of decile 1 and 10 for each 

ARIMA model. We look into the decile 1 and 10 

to compare extreme cases, the smallest-sized 

portfolio and the biggest-sized portfolio. The 

values of the remaining portfolios are located 

between those of decile 1 and 10.

From [Figure 2], it can be observed whether 

the firm size affects the autocorrelations. For 

short-sized horizon returns, a small-sized por-

tfolio (e.g., decile 1 portfolio) has stronger posi-

tive autocorrelations, while a big-sized portfolio 

(e.g., decile 10 portfolio) has relatively weaker 

positive autocorrelations. That is, prices of the 

small-sized firm take a longer swing away from 

fundamental values than those of the big-sized 

firm. These results related to firm size are also 
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  [Figure 2-a] The Auto-Regression Coefficient 
based on the Estimates of the 
ARIMA(1, 1, 1) Model
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  [Figure 2-b] The Auto-Regression Coefficient 
based on the Estimates of the 
ARIMA(1, 1, 0) Model
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 [Figure 2-c] The Auto-Regression Coefficient 
based on the Estimates of the 
ARIMA(0, 1, 1) Model

supported by previous studies.5)

From these results, the stock return data does 

not support the previous SS model with the 

independence assumption, in order to explain the 

U-shaped pattern. Furthermore, the estimation 

result of the equivalent ARIMA model suggests 

that positive autocorrelations can be supported 

only by the revised SS model to allow depen-

dence between the permanent and the stationary 

components. However, even with dependence, 

the parameter estimates shows that the stock 

return data has only positive autocorrelations 

that converge to zero. Therefore, the U-shaped 

mean-reverting pattern cannot be described by 

the SS model consisting of an I(1) and an AR(1) 

process; It is suggested that the higher order 

ARIMA model with dependence should be stu-

died.

4. Conclusion

In order to explain negative autocorrelations in 

returns of long holding periods, previous studies 

used an SS model consisting of an I(1) perma-

nent component, and an AR(1) stationary com-

ponent. In the SS model, they assumed indepen-

dence between the permanent component and the 

stationary component. In this paper, based on Joo 

and Jun [7]-if the correlations between noise 

processes are not considered properly in the SS 

model, the parameter space can be restricted and 

the decomposition of an integrated time series 

into two components using the SS model can be 

spurious-we show that auto-regression coeffici-

ents are negative when the noise processes are 

independent by comparing the parameters of the 

5) See also Fama and French [6] and Khil and Lee [8].
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equivalent ARIMA process with those of the SS 

model. On the other hand, the auto-regression 

coefficients can be either positive or negative 

when the noise processes are dependent.

We estimated the parameters of three models, 

the ARIMA(1, 1, 1), ARIMA(1, 1, 0), and ARIMA 

(0, 1, 1) models, fitting the monthly returns of 

the NYSE for the period from 1926 to 2007. The 

estimated parameters suggest that the correla-

tion between noise processes in the SS model 

must be considered. It implies that the decom-

position of stock prices using the SS model 

suggested by previous studies, which do not 

consider correlations, is likely to be spurious.

When we relax the independence assumption 

in the SS model, the auto-regression coefficients 

computed using the parameter estimates are 

never negative but always positive. Based on the 

estimated parameters of the stock return series, 

we conclude that the auto-regression coeffici-

ents from the SS models equivalent to the 

ARIMA(1, 1, 1), ARIMA(1, 1, 0), and ARIMA(0, 

1, 1) models do not follow a U-shaped pattern 

but are always positive. It suggests that the 

higher order ARMA model with dependence sho-

uld be studied to explain the observed U-shaped 

pattern of autocorrelations.
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<Appendix 1> The Derivation of the Auto-Regression Coefficient

First, let 
  be zero. It means a stock price does not have a random-walk component and  

. Now let 
  not be zero. Based on equation (1), the following characteristics can be easily 

obtained.

      




 




 , (A1-a)

      




 
   





 , (A1-b)

       




 




 (A1-c)

     





       





 





     ⋯   

     ⋯ 
 

     
   




⋅
 , (A1-d)

            (A1-e)

           

            

     




 , (A1-f)

      




 ⋅



 , (A1-g)

      (A1-h)

       

       

     ⋯  

      

     ⋯ 
 

Using the above characteristics and some calculations, the auto-regression coefficient   is 

derived as
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  
   



⋅






. (A2)

<Appendix 2> Relationship of the Sign of  with  and  
when   

As we mentioned in section 2, when   , the sign of   depends on the relative magnitude 

between (a) and (b) in equation (12). Part (b) can be written as the following quadratic equation with 

respect to ：

⋅





 . (A3)

In this equation, the maximum can be easily derived using the characteristic of a quadratic equation. 

Let   be zero. Then this equation becomes   and the maximum converges to two as →. Now 

let   not be zero. Although the extreme point of this equation is   , this point is located 

out of the condition,     . If   , this extreme point is the global maximum and always 

located on the right side of   since   . Therefore, the maximum of part (b) converges 

to two as →. In the same manner, the maximum of part (b) converges to two as →  if   . 

Hence, the maximum of part (b) converges to two regardless of the sign of  .

From this result, the minimum period to always make   positive can be obtained. Since the 

maximum of part (b) is two, the denominator of equation (12) satisfies the following inequality：

⋅



⋅


⋅



. (A4)

Thus, the minimum period to always make   positive is given as follows：

⋅



  . (A5)

However, since the closed solution of equation (A5) is complicated, we compute the minimum period 

numerically and report the results in table A1.
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<Table A1> Relationships of the Sign of  with  and  if 

 *
The Sign of   when   is odd The Sign of   when  is even

≥ -0.5
≤ 1 either (+) or (-) (+)

> 1 (+) (+)

= -0.6
≤ 4 either (+) or (-) (+)

> 4 (+) (+)

= -0.7
≤ 4 either (+) or (-) (+)

> 4 (+) (+)

= -0.8
≤ 6 either (+) or (-) (+)

> 6 (+) (+)

= -0.9
≤ 14 either (+) or (-) (+)

> 14 (+) (+)

= -0.95
≤ 26 either (+) or (-) (+)

> 26 (+) (+)

= -0.96
≤ 32 either (+) or (-) (+)

> 32 (+) (+)

= -0.97
≤ 42 either (+) or (-) (+)

> 42 (+) (+)

= -0.98
≤ 64 either (+) or (-) (+)

> 64 (+) (+)

= -0.99
≤ 128 either (+) or (-) (+)

> 128 (+) (+)

= -0.999
≤ 1278 either (+) or (-) (+)

> 1278 (+) (+)

Note) 
*
 These results mean that the minimum value of   to always make   positive cannot exceed the reported 

value.
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