
Software Quality Assurance in XP and Spiral - A Comparative Study

Sajid Ibrahim Hashmi and Jongmoon Baik
Information and Communication University,

109 Munji-ro, Yuseong-gu, Daejon,
South Korea

{hashmi,jbaik}@icu.ac.kr

Abstract

Agile processes have been introduced to avoid the

problems most of software practitioners have run up
against by using traditional software development
methodologies. These are well known for their benefits
like focus on quality, early business value delivery,
higher morale of stakeholders, and the reduced
cost/schedule. Also, they can support the earlier and
quicker production of the code by dividing the product
into small segments called iterations. However, there
are on-going debates about their flexibility to
accommodate changing requirements and whether the
productivity and quality of the agile processes is
satisfactory for the customers or not. Previously
available studies have mostly focused on comparing
XP(eXtreme Programming) with some other Agile
methodologies, rather than comparing it with
traditional plan-driven software development
methodologies. In this Paper, we identify the XP
phases and practices, how they ensure product quality,
and map XP phases against the Spiral model phases to
prove that XP has built-in QA(Quality Assurance)
practices in its life cycle, in addition to its focus on
productivity. A case study is also included to
empirically investigate quality of the product
developed using XP with comparison to the product
developed using Spiral Model.

1. Introduction

Agile methods have been known to be effective
software development processes which can result in
high quality products. However, it is a controversial
topic in software engineering. Many practitioners and
researchers still doubt about its benefits, some are
strongly against the agile development, while others
suggest a mix of agile and plan driven development
[1]. XP, which has been one of the widely used agile
methods, concentrates on producing executable code

and test drivers rather than focusing on software
requirements and designs. This immense focus on
source code makes XP controversial [2], but the fact is
that XP is highly valuable in terms of simple design,
emphasis on refactoring, testing, and code inspection
by means of its related practices.

There are two of the main advantages of agile
approaches: Firstly, they can effectively handle the
unstable/changing requirements throughout the
software development life cycle. Secondly, they can
deliver the business values earlier by small increments
of the product under budget and schedule constraints
when compared to traditional plan-driven software
development methods [3]. One of the most important
issues is to satisfy customers with high quality
products, which agile methodologies are supposed to
resolve in an appropriate way. Is it possible to satisfy
the customer with high quality products throughout the
QAs of agile methods,? Is the level of QA in XP the
same as that in Spiral? In order to address this issue,
we compare the quality assurance techniques of both
XP and Spiral development models.

A recurring aspect of many XP practices is a focus
on product development risk control (or management).
Instead of producing an artifact to satisfy the process,
XP encourages developers to ask the question what
would happen if the artifact is not produced. Apart
from focusing on risks only, XP also focuses on
building quality into the product rather than relying on
a quality process that verifies a product after
development. This built-in QA of XP is obtained by
means of its practices like refactoring, metaphor,
simple design, and Test Driven Development.

The primary purpose of this paper is two-fold. First,
it identifies and describes the built-in QA practices in
both XP and Spiral Model. Secondly, it provides a case
study to investigate the relation of quality in both
processes. Quality is chosen because this is one of the
major issues for which XP is supposed to answer
properly.

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.65

367

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.65

367

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.65

367

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

Our research question is that quality is built into XP
process, and XP addresses this issue better than any
other traditional plan-driven software development
method. The proposed approach consists of identifying
the phases of XP, figuring out how those activities are
involved at each phase, how they ensure the quality
like Spiral model, and what is the empirical relation of
quality in both processes. This approach can be helpful
to investigate XP’s support for software quality within
its life cycle.

The rest of paper is organized as follows: Section 2
describes XP and Spiral processes in terms of stages
and practices involved at each phase, Section 3 gives a
life cycle comparison of both processes, Section 4
investigates the QA activities in Spiral and XP
supported by a case study, and finally Sections 5 and 6
contain discussion and conclusion respectively.

2. Related Works

Currently available research works about XP varies
in its nature in terms of the ways how quality is
focused. Mainly practices like solo and pair
programming have been investigated for productivity
and quality. Mostly empirical data has been used by
researchers to prove their hypotheses in favor of QA
ability of XP; [2,14,15] have used different types of
data to prove the quality support in XP; [20] has
proved some drawbacks in XP based on some
empirical data. [8] Has made life cycle comparisons
between generic Agile and Waterfall process but there
is not any empirical investigation to support the claim.
On the whole, agile processes have not been
investigated thoroughly against the plan driven
methods. In general, empirical data has been used for
the validations of results on QA of XP. However, the
problem with these types of investigations is that data
may vary from place to place and situation to situation.
A same kind of validation may not hold true for all
situations. Our approach is different in this sense. We
have tried to make the validation based on the life
cycle similarities of both XP and Spiral life cycles,
rather than relying only on an empirical investigation.

2.1. eXtreme Programming (XP)

XP is one of widely used agile methods which can
deal with unstable requirements by using a number of
different techniques like simple planning, short
iteration, earlier release, and feedback from customers
on frequent basis. These characteristics enable agile
methods like XP to deliver product releases in much
shorter cycle time. XP was developed to address the
needs of small teams who have been confronted with

vague, unstable, and changing requirements. It has
gotten four core values that are used to guide its
employed practices. These values include
communication, simplicity, feedback, and courage (or
morale). A typical XP project has been applied to small
projects with less than 20 developers, and it is mostly
used for the projects without any strong base [2], i.e.
without much documentation. It is important to
understand the different phases of XP and role of each
phase in order to establish the link with any other
software process. Life cycle of an ideal XP project
consists of the following phases [4].

 Exploration: It deals with ensuring that one is
capable of going into production using XP. During
the phase, programmers experiment with the
limitations of the technologies they are supposed to
use. They also experiment every programming task
to figure out the exact time it would take while they
are developing the product; meanwhile the
customer is busy in writing the stories for the
desired system.
 Planning: Here customers and programmers agree
upon the date by when the smallest set of “stories”
will be completed. Planning for the first release
should be between 2 to 6 months; this commitment
schedule is further broken into the iterations of one
to four weeks duration. Each iteration will also
produce the set of functional test cases for each of
the stories.
 Productionizing: It tightens up the feedback
cycle. Performance of system must also be tuned up
for this phase. It is recommended to slow down the
software production at this stage so that the risks
become more evident for evaluation and mitigation.
 Maintenance: It deals with keeping the existing
system running while at the same time producing
the new functionality. The important thing about
maintenance is that you have to be prepared for
development interruption in case any production
problems occur; but on the other hand one must be
careful enough to change the design.
 Death: Dying well is also important for A good
life. If customers do not come up with new stories,
then it is time to wrap up the system. Customer’s
happiness is very important for this kind of death.
Another reason for death might be the inability of
system to accommodate further stories.

QA in XP is achieved by means of its different
practices like testing, refactoring, system metaphor,
pair programming, and Test Driven Development
(TDD). These core practices complement each
other.Testing is normally carried out by means of TDD
which determines not only the design but also ensures
that written code is defect free. Refactoring deals with

368368368

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

ensuring that code is always kept simple so that the
probability of faults is minimized. System metaphor
gives an understanding of system architecture. Hence
the possibility of things going wrong is reduced if
development is carried out based on the architecture.
Pair programming allows developers to work together
and share each other s’ knowledge and identify their
mistakes. All this ensures that developed product is
either fault free, or has minimum number of faults.

2.2. Spiral Model

Spiral model for software development was
developed with the basis of the various refinements of
the waterfall model [5]. It can accommodate most
previous models as a special cases and further provides
guidance for the selection of previous models which
best fits the given software situation. The spiral model
has four quadrants as shown in Figure 1.The first phase
begins with the identification of the objectives of the
product, its functionality, the alternative means of
implementing that specific portion of the product, and
the constraints imposed on the implementation of those
alternatives. The next step deals with evaluating the
alternatives relative to the objectives and constraints. If
user interface risks strongly dominate program
development risks, the next step would be an
evolutionary development which is a specification of
the overall nature of the product, or a plan for the next
level of prototyping which is more detailed one. This
risk consideration can lead to a project implementing
only a sub set of the steps in the model. On the other
hand, if the previous prototypes have already resolved
all the performance related risks, the third quadrant
follows the basic waterfall approach to incorporate the
further incremental development [5]. Planning for the
next phase starts after the end of this incremental
approach.

Quality is built into spiral model by means of
activities involved at each phase, like risk analysis,
prototype development, development plan, validation
and verification, integration and acceptance testing.
Each phase ensures that development is not moved to
the next phase unless the previous phase is satisfied in
terms of its activities. There is thorough analysis of
requirements and risks even before the development
starts, which guarantees that system contains only
those requirements that are feasible and possible to
implement. Further more, development phase of spiral
performs step by step analysis of the product which
ensures that no faults are escaped.

Evaluate Alternatives,

Identify & Resolve Risks

Dev
elo

p, V
eri

fy
Nex

t L
ev

el

Pro
duct

Plan Next Phases

Dete
rm

ine O
bjec

tiv
es,

Alte
rn

ativ
es,

 C
on

str
ain

ts

Figure 1. Spiral Software Process Model

3. Comparison of XP and Spiral Life Cycle

Spiral and XP are different models for software
development, yet their practices in development
sequence share some similarities. An agile process is a
bit different from the traditional software development
process in terms of life cycle practices because agile
methods go through development stages little at a time
because of short releases [4]. The steps may not be
clearly separated as they are in traditional plan-driven
software development methodologies. The Figure 2
illustrates a comparison between XP and spiral model
in terms of activities involved.

Since both XP and Spiral are iterative in nature, it is
possible to map phases of XP equivalent to phases of
Spiral model. Phases of XP seem to have built-in
similarities with the phases of Spiral model in terms of
activities defined. The first phase of Spiral starts with
Identification of objectives, alternative means of
development, and constraints applied on such
alternatives. The corresponding Exploration stage of
XP deals with identification of constraints in terms of
tools, techniques, and available resources. Continuous
experimentation figures out the limitation and
constraints of the approach and technology they are
using. Next phase of Spiral model deals with
evaluation of alternatives, identification and mitigation
of risks. The stage 2 and 3 of XP serve almost the same
purpose, especially in case of the risk identification and
mitigation. Planning focuses on making agreements
with customer for delivering the iterations. Test cases

369369369

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

Experimentation,
Constraints

Objectives, Story
Agreements, Iteration

Breaking

Feed Back Cycle,
Testing, Risk
Management

New Functionality,
Refactoring,
Technology

Story Ending,
Documentation

Determine Objectives,
Alternatives, Constraints

Evaluate Alternatives,
Identify & Resolve Risks

Develop & Verify Next
Level Product

Plan Next Phase

 Figure 2. Spiral vs. XP Life Cycle

are produced for each iteration. Initially stories for
those iterations are selected. Those stories represent the
major part of the system; deviations from plans are
monitored to check for consistency, and necessary
actions are directed to be taken. Since a system
prototype is developed, this stage is similar to the
prototype development of the system in second
quadrant of spiral model, where a system prototype is
formed with important set of functionalities to check
for anomalies during the system development.
Furthermore, the developed prototype can be refined if
desired results are to be achieved. Productionizing
stage of XP carries on the identification of risks by
focusing on feedback cycle. Software is allowed to go
into production only when it is assured to be tested
against risks. This stage of XP is slowed down so that
risks become more prominent [4]. Next phase of the
Spiral model concerns about the development and
verification of the product. This is the phase where
Spiral can accommodate any other model for software
development. The main purpose of this
accommodation of other process is to find a suitable
solution for the software development. Corresponding
Maintenance stage of XP ensures the production of
new functionality while maintaining the existing code.
Programmers use refactoring approach which basically
involves formulating the solution for the programming
problems [6]. Last phase of Spiral model integrates the
things for planning the next cycle of spiral. The
equivalent Death phase of XP is terminated when
users’ stories are finished and the cycle has to end.

Like the last phase of Spiral, Death also produces some
documentation which is related to the product.

4. Quality Assurance

 What makes Spiral different from other approaches
is its iterative approach and focus on risk mitigation.
This approach may itself serve as a source of assuring
quality, because major causes of failures and
hindrances are identified and mitigated. The same case
is true for the exploration phase in XP which focuses
on the functionality of software, resources required,
and plan for dealing with limitation of resources to
achieve the desired functionality. After risks are
mitigated, next phase of Spiral model can
accommodate any kind of development model
depending on the project characteristics; normally
steps of Waterfall development model are being
followed [5]. Waterfall model is an old model of
software development and is still being used in
industry. It includes well proven techniques such as
peer reviews, code inspection, and unit and integration
testing for quality assurance. It would make sense if we
compare the remaining stages of the XP with waterfall
method to prove the point that XP assures the product
quality like Spiral model, even with short time periods.
As far as Waterfall model is concerned, it uses both
static and dynamic techniques, whereas XP mainly
uses dynamic techniques [8]. XP can also adopt sub
development methodologies, e.g. pair programming.

4.1. Quality Assurance in Spiral and XP

As mentioned earlier, Spiral model can
accommodate other models (Waterfall) as a special
case, it is feasible to compare it with XP. Waterfall
model is termed as the simplest model for the software
development. Its development activities include:
system feasibility, software plans and requirements,
product design with verification and validation,
implementation with unit testing, integration and
implementation with verification and system testing,
and maintenance [7].

Figure 3 shows a Waterfall model with its
supporting phases and activities. The inputs to the next
phase should be validated by means of supporting
quality assurance processes. Quality assurance is
embedded into waterfall model at each phase by means
of supporting practices. Once requirements are defined,
they are validated and verified with the help of
reviews, prototyping, and model validation.

370370370

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

Fig 3. Waterfall Model with Supporting Practices

The generic development sequence of agile

processes is the same as one in Waterfall model [8]. In
XP, there are some practices that have both
development and QA responsibilities. This means that
developer may also have QA responsibilities. The
development and QA practices collaborate with each
other in order to maintain the pace of development. It
means that QA practices are mingled up with
development because of rush nature of XP; it is
difficult to figure out the nature and the role these
practices play in ensuring the product quality. By
comparing the QA practices of XP with those of
Waterfall model as a sub-process of Spiral model, it
can be understood that quality measures are addressed
in XP like Spiral model deals with them. For
comparison, we take the QA practices of a generic
agile method (Fig. 4). Any kind of agile development
method focuses on the development of system
metaphor which is the understanding of the whole
System[9].It also emphasizes on customers
understanding the metaphor along with the developers.
The indirect benefit is that it increases the
communication between customers and developers. In
XP, communication is of utmost importance, and it is
very difficult for an iteration process to result in project
success if there is no communication. It also helps for
the development of software architecture [10].

The requirement elicitation based on metaphor
helps to elicit the correct requirements, also because of
the fact that customer is present on the development
site most of the times. It can help the developers
throughout the development cycle. Customer
involvement in XP is much higher than the
requirement definition phase of Waterfall model; this
increased involvement may help developers to

Figure 4. QA in Agile Methods

 straighten the path in case they are deviating from the
actual requirements. Pair programming is a
development methodology in which two programmers
continuously work on the same code. It can also
improve design quality and reduce defects. Developers
under XP process also use refactoring for improving
the design of existing software without changing its
behaviors. Since each refactoring is small [8], the
possibility of going wrong is also small.

Refactoring has got some advantages, which may
serve the purpose of QA as well:

 It reduces the probability of errors in the system

since developers are continuously restructuring
the code which provides code inspection
privilege.

 It minimizes the chances that a system gets faulty
during the restructuring of refactored code.

 It requires continuous integration of code which
catches faults in the software.

 It reduces the time developers have to spend on
tracking the faults.

Acceptance testing is conducted as dynamic QA

technique in XP. The difference between an XP and
traditional acceptance testing is that occurring of
acceptance testing is quite more frequent in XP as
compared to traditional plan-driven software
development methodologies. Earlier feedbacks from
customer also serve as a precious characteristic of XP
since it helps developers to get valuable information
from customers. Development in XP is segmented in
small iterations and these small releases are a good
source of feedbacks; the shorter the release is, the
quicker the feedback would be.

4.2. Empirical Results from a Case Study

371371371

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

The data used in this paper is obtained from

different sources [11,12]. Four test iterations of spiral
enhanced model are compared with XP project data to
account for the level of QA obtained by both
processes. The fault rates for both models are
calculated as the sum of faults found during the
analysis, test, and system integration.

4.2.1. Description of Case Projects

Table 1 provides the summary of two types of Case
projects including their size, type, and iterations. Case
1 project used a modified form of Spiral model to
develop different iterations of a product. The product
in Case 2 followed an XP practice with main focus on
pair programming. Developers did not have prior
knowledge about the XP practice. The product in Case
1 was developed for external customer; Case 2 was
developed for internal use. Case 1 involved
professional developers and Case 2 involved both
students and professionals. The size of the former was
66 KLOC, while the later had around 7.7 KLOC.
Development language was “C” for the Case 1 and
Java for the Case 2. The number of iterations was same
for both cases. To convert the Case 2’s data into
KLOC/Year, we have assumed that there are 152
working hours in a month [13].

Table 1. Description of Case Projects

 Case 1 Case 2

Process Spiral XP

Product Type Telecommunication
System

Expert
System

Size (KLOC) 66 KLOC 7.69 KLOC

Programming
Environment C Eclipse/Java

Iterations 4 4

4.2.2. Comparison of Fault Rates
It is possible to compare the projects by driving the

relative ratios for QA to prove the point that quality of
XP project is not less than what is addressed by Spiral
model.

Fault Rate: Table 2 shows the fault density per KLOC
for each iteration of both Case projects. We have
considered the fault rate for analysis, test, and system
integration as a whole for each iteration of Case 1 so
that total rate can be obtained.

 Table 2. Comparison of Fault Rate

Fault Rate (Faults/KLOC)
 1 2 3 4 Total

Spiral 5.84 5.44 8.41 7.97 6.91
XP 2.19 2.10 2.04 8.70 1.43*

*Some design faults are excluded

Figure 5 shows that fault ratios for both processes.

It can be noticed that fault ratio for XP iterations is
smaller than those for Spiral, except for the fourth
iteration. The reasons for increased fault ratio in the
fourth iteration of XP project is the less use of pair
programming practice. The quality level of an XP
project is also dependant on the extent to which its
different practices are used.

Figure 5. Spiral and XP (QA Comparison)

4.2.3. Validation

Student’s t-test [14] is used to test the hypothesis
we developed with our case study results. We use this
test for comparing the means of two treatments, even if
they have different number of replicates. In simple
words, the t-test compares the actual difference
between two means in relation to variation in the data.
The t-test for quality is performed for both processes
with the corresponding data as shown in Table 3.

Table 3. t-Test for Fault Ratio
 Case 1 Case 2

Iteration 1 5.84 2.19
Iteration 2 5.44 2.10
Iteration 3 8.41 2.04
Iteration 4 7.97 8.70

X
Mean(total / n) 6.91 1.43*

σ 2

Variance 2.23 10.9

372372372

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

σd

Standard deviation

 2.25
=√σd

2 (the standard deviation
of the difference between the
means).

t =(1X - 2X /σd)

2.44
transpose 1X and 2X if

2X > 1X so that a positive
value is obtained.

*some design faults are excluded

By entering the t-table [15] at 6 degrees of freedom

(n1 + n2 -2), we get 2.44 (normally p= 0.05) as the
tabulated value of t, which is going up to a tabulated
value of 5.96 (p=0.001). Tabulated value is somehow
little greater (2.45) than our calculated value of t. It
indicates that the difference between the two means is
not highly significant. Clearly, the defect ratio of case
2 (XP) is less than case 1.

The analysis for t-test always considers variance,
and it is valid only if variances of iterations/cycles are
similar. There is a simple test to check if two variances
are equal in statistical terms: divide the larger variance
by the smaller (10.9/2.23=4.89) and compare the
resultant variance ratio with a value from table of ‘F’
[16] for p=0.05. For two treatments, there is one
degree of freedom between them. The tabulated F
value is 6.0. Our variance ratio (4.89) is less than this.
It means performed t-test was valid and both variances
do not differ significantly.

5. Discussion

The results of empirical analysis showed that XP
and Spiral address almost the same level of QA most
of the times. As empirical data suggested, no
significance superiority of one process to another
process was detected. This is in contrast with existing
studies that XP reduces the code quality because of
changing requirements and less process artifacts. The
examination of fault ratios of both development
processes did not identify any significant difference
between them. The findings of the case projects did not
indicate that code produced by XP had more fault
density in comparison with the second method. In fact,
the inverse was true.

Quality Assurance is important to the quality of the
software product regardless of the development
process we choose. An XP cycle might not be as much
detailed as the Spiral model cycle is; but considering
the fact that an XP project consists of small iterations,
an XP cycle can address the same concerns for an
iteration what spiral model suggests for the whole
project. XP consists of disciplined practices [18]
testing, metaphor, refactoring, pair programming,

continuous integration, that organizations can either
formally introduce into their existing processes, or can
use to supplement individual processes for project
management, change management, requirement
planning and testing.

Value based software engineering [19] has become
highly attractive to practitioners in the recent years
because of its emphasis on the value creation of the
developed products. Another unique aspect of XP is
the earlier delivery of business value to customers. In
other words we can say that XP has closer link with
value based software engineering, and key elements of
VBSE [20] are addressed by XP. BRA (benefit
realization analysis) is performed prior to starting
iteration in the form of informal meetings where pros
and cons of the project are discussed. These kinds of
meetings are also helpful to identify the non software
initiatives which may cause the realization of potential
project benefits along with elicitation and
reconciliation of stakeholders’ value based conditions.
The next element of VBSE deals with risk analysis and
management that pervade the entire system life cycle.
The productionizing stage of XP recommends slowing
down the development so that risks can be identified
and mitigated. Earned value management in VBSE
tracks whether project is meeting its original plan. In
XP, it is ensured in number of ways; e.g. system
metaphor is established and refactoring is continuously
performed to accommodate the changing requirements,
without allowing them to affect the existing system
behaviors. Above all, acceptance tests performed by
on-site customer ensure that project never deviates
from its proposed functionality, value measures are
considered properly while product is being developed.
XP has also got a capability to change as an
opportunity, taking effect both from inside and outside.
Changing requirements from customer can be the result
of change in market trends, or introduction of new
technology. Whereas XP itself is flexible enough to let
its users use its core practices according to their
requirements; e.g. pair programming can be introduced
as a part of XP.

6. Conclusion

There are two main contributions of this research: it
performs a detailed study to show that QA practices are
built into an XP process like they are addressed by
Spiral model. It provides empirical results related to
Quality Assurance activities in XP. It can be concluded
that an agile process like XP addresses quality issues
repeatedly and continuously as compared to a
traditional plan-driven software development method.
Risk identification and mitigation is also carefully

373373373

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

addressed in each iteration. The reason is that in
quality improvement activities like iteration planning,
refactoring; feedback occurs frequently and
continuously. These practices are not apparent in XP
because there is very small gap among them, or we can
say that these are on- going almost at the same time.
Because of iterative nature of XP, the frequency of
these activities is greater than Spiral model. XP focuses
on continuous QA because of built-in QA activities
repeatedly performed in each iteration and during the
same iteration as well. The use of these QA activities is
dynamic rather than static because an XP process goes
into development phase quickly so it is not feasible to
apply documentation based practices in it. Since
development involves major activities like iterative
development, refactoring, coding standard, collective
ownership; developers are also responsible for
performing QA activities which reinforces the quality
of software in XP.

7. Future Work

In this paper, we provided an answer to the issue
related to customer satisfaction in XP. Although there
are some limitations of this research, i.e. like small
sample size and no control over the case projects for
the comparison. Strong conclusions cannot be based
upon the results unless they are verified under different
environments by considering different variables. The
success or failure of any process lies in the success or
failure of the end product delivered to the customer.
Process management is an important task for any kind
of process; it is also important for all the stakeholders
to know the benefits of following a development
process before they follow it. The link between QA
practices and product quality must be to an extent that
participants are motivated to follow the practices
closely. Researchers are also encouraged to investigate
the relationship between XP and Value Based Software
Engineering.

8. Acknowledgements

This research was supported by the MIC (Ministry
of Information and Communication), Korea, under the
ITRC (Information Technology Research Center)
support program supervised by the IITA (Institute of
Information Technology Assessment).

9. References

[1]B. Boehm and R. Turner, "Using risk to balance agile and
plan-driven methods," Computer, vol. 36, pp. 57-66, 2003.
[2]Frank Maurer, Grigori Melnik, “What You Always
Wanted to Know about Agile Methods But Did Not Dare to
Ask”, ICSE ’05, IEEE 2005.
[3]Barry Boehm, Richard Turner, “Balancing Agility and
Discipline: A guide for Perplexed”, Addison Wesley, August
2003.
[4]Kent Beck, “Extreme Programming Explained”; Addison
Wesley 2000.
[5]Barry W. Boehm,“A Spiral Model for Software
Development and Enhancement”, Volume 21, Issue 5, May
1988 Page(s):61 – 72.
[6]James NewKirk, “Introduction to Agile Processes and
Extreme Programming”, ICSE ’02, IEEE 2002.
[7]A. Abran and J. W. Moore, "Guide to the software
engineering body of knowledge : trial version (version
0.95)." Los Alamitos, CA: IEEE Computer Society, 2001.
[8]Ming Huo, June Verner, Liming Zhu, Mohammad Ali
Babar, “Software Quality and Agile Methods”, COMPSAC
’04, IEEE 2004.
[9]J. Grenning, "Launching extreme programming at a
process-intensive company," Software, IEEE, vol. 18, pp. 27-
33, 2001.
[10]Jean-Guy, Schneider, Rajesh Vasa, “Agile Practices in
Software Development- Experiences from Student Projects”,
ASWEC ’06, IEEE 2006.
[11]Noboru YAMAMICHI, Taka-aki OZEKI, Kouji
YOKOCHI, Tetsuji TANAKA, “The Evaluation of New
Software Developing Process based on a Spiral Modeling”,
1996 IEEE.
[12]Pekka Abrahamsson, Juha Koskela, “Extreme
Programming: A Survey of Empirical Data from a Controlled
Case Study”, ISESE’ 04, IEEE.
[13]Barry W.Boehm, Ellis Horowitz, Ray Madachy, Donald
Reifer, Bradford K. Clark, Bert Steece, A. Winsor Brown,
Sunita Chulani, Chris Abts, “Software Cost Estimation with
COCOMO II”, Prentice Hall, 2000.
[14]http://helios.bto.ed.ac.uk/bto/statistics/tress4a.html.
[15]http://helios.bto.ed.ac.uk/bto/statistics/table1.html.
[16]http://helios.bto.ed.ac.uk/bto/statistics/table3.html.
[17]Barry Boehm, Richard Turner, “Management Challenges
to Implementing Agile Processes in Traditional Development
Organizations”, IEEE Software, 2005.
[18]Arthur English, “Extreme programming, it's worth a
look”, ITProfessional, Volume 4, Issue 3, May-June 2002
Page(s):48–50,IEEE.
[19]Barry Boehm, “Value-Based Software Engineering:
Overview and Agenda”,USC-CSE-2005-504, February 2005,
Copyright USC-CSE 2005.
[20]Barry Boehm, “Value-Based Software Engineering:
Seven Key Elements and Ethical Considerations”, USC-
CSE-2005-503, February 2005 Copyright USC-CSE 2005.

374374374

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on May 12,2010 at 00:39:42 UTC from IEEE Xplore. Restrictions apply.

