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 Abstract - Simultaneous Localization and Mapping is an 
important task for autonomous mobile robot. To let the robot 
explore a new environment without any prior map, real-time 
estimation of the geometrical relation between the robot and the 
environment is necessary. 
Extended Kalman Filter (EKF)-based approaches are the most 
common. However, they always have the risk of collapse where 
the assumption of Gaussian distribution is not applicable. It is 
well known that state estimation with a particle filter is very 
robust against clutter in dynamic and noisy environments 
because of its ability to represent non-Gaussian distributions. 
Unfortunately, particle-based posterior representation in high 
dimensions is extremely expensive. 
We propose an approach, named Partitioned Recursive SLAM, 
that overcomes the complexity problem arising in adopting a 
particle filter in SLAM. By partitioning the state and alternating 
the turns for the state update, the computational capacity 
required to process SLAM is reduced to scale linearly with the 
number of landmarks in the map. 
 
 Index Terms - PR-SLAM, particle filter, Catadioptric vision, 
ORP 
 

I.  INTRODUCTION 

 SLAM is a chicken-and-egg problem. As the robot 
moves, its pose estimates are corrupted by error in the robot’s 
motion. The perceived locations of objects in the environment 
are corrupted by both measurement noise and error in the 
estimated pose of the robot. In other words, because the 
robot’s path and the map are correlated, error in one part 
propagates to the other alternately. 
 One approach to SLAM is to estimate the most likely 
robot pose and map using batch estimation algorithm similar 
to those used in the Structure From Motion (SFM) literature 
[1]. Another approach is solving the equations generated with 
the trigonometry. But these methods are not appropriate for 
online operation where the SLAM is conducted on a set of 
observations and controls that grow without bound. 
Furthermore, these algorithms generally do not estimate the 
uncertainty. 
 Thus, majority of SLAM method adopt probabilistic 
algorithms for online operation. Recently, Extended Kalman 
Filter (EKF) based approaches are most common, thanks to 
the compact state representation and relatively good 

performance [2][3][4][5][6][7]. An EKF based SLAM 
algorithm was proposed that alternately estimated the vehicle 
state and the depth of the environment [8]. But, EKF based 
methods always have the risk of collapse where the 
assumption of Gaussian distribution is not applicable. 
 It is well known that the state estimation with particle 
filter is very robust to clutter in dynamic and noisy 
environment. The estimation recovery from the false belief is 
most prominent characteristic of particle filter, thanks to the 
ability to represent non-Gaussian distribution. But, because 
the state dimension drastically increase in proportion to the 
map size, direct particle representation of density in very high 
dimension is almost impossible [9]. Recently, modified 
versions of particle filter in SLAM are introduced and show 
partial solutions for the problem [10].  
 In this paper, we introduce an efficient SLAM algorithm 
structured in particle filter. In the particle filter framework, all 
the distributions are represented by the sample densities. The 
algorithm runs in the form that the state is partitioned and they 
alternate the turns of update between vehicle and landmarks. 
We name it as Partitioned Recursive SLAM (PR-SLAM) 
 

II.  CATADIOPTRIC VISION SYSTEM 

 In the two-dimensional bearing-only SLAM, the 
catadioptric vision sensor (omnidirectional camera) is used as 
an input device with a very wide field of view [11]. Another 
advantage of this camera is that it provides direct reports on 
horizontal bearing measurements. These facts simplify the 
problem of bearing-only SLAM. 
As shown in Fig. 1, if the surface of the mirror is formed by 
revolving a hyperbola around the Z axis, all the rays directed 
to the focal point of the mirror reflect on the mirror surface 
and turn to the principal point of the lens. Consequently, if the 
robot moves on a flat plane, the patterns on the height Z 
invariably appear on the same radius in the omnidirectional 
image, as shown in Fig. 2. The black circle is the horizontal 
line that is the projection of the horizontal plane in the 
omnidirectional image. As the robot begins to move and takes 
an image sequence, the points on the horizontal plane move 
only along the horizontal line. 
 
 



 
Fig. 1 The configuration of the omnidirectional camera 

 

 
Fig. 2 An omnidirectional image and a horizontal line  

 
 Fig. 3 is a special case of an omnidirectional 
spatiotemporal image, an Omnidirectional Route Panorama 
(ORP), which is the sequential stacking of horizontal lines 
taken by the robot moving on the plane [12]. 
A simple real-time edge operation with nonmaxima 
suppression [13] on ORP makes feature point tracking 
extremely easy. This means that the data association problem 
can be solved simply by tracing the edge of ORP. In addition, 
the representation of ORP can save memory for scene 
description. 
We can obtain the azimuth angle directly because of the 
proportionality between the azimuth of the feature direction 
and the feature location in the horizontal line. 
 

 
 

Fig. 3 Omnidirectional Route Panorama (ORP) 

III.  LOCALIZATION IN PROBABILISTIC APPROACH 

 Approached probabilistically, the localization problem is 
a density estimation problem, where a robot seeks to estimate 
a posterior distribution over the space of its poses coordinated 
on the available data. Given the map and the data accumulated 
by the robot, the posterior probability distribution can be 
written as 

),,( 1 MUZp tt
t

−s . 
 

where ts  is the current pose of the robot (in 2-dimensional 
case, it is composed of x-y-coordinates and its heading 
direction φ ). The posterior is conditioned on the set of all 

sensor readings },,1,{ tiZ i
t K== z  up to the current time 

step, control input }1,,1,{1 −==− tiU i
t Ku  up to the previous 

time step and the given map M . The posterior can be derived 
as the following recursive form applying Bayes rule, the 
theorem of total probability and exploiting the Markov 
assumption. For convenience sake, the belief on the robot’s 
state at time t  is denoted by )( ttb s  [14]. 
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(3) 
where tη  is a constant normalizer which ensures that the 
result sums up to 1. 
 

 The derivation follows 
(a) Bayes rule. 
(b) tZ  does not depend on 1−tU  and M  in the absence of 
other data. 
(c) The Markov assumption that specifies the conditional 
independence of future from past data given the knowledge of 
current location and the map. 
(d) The theorem of total probability. 
(e) Markov assumption. 
 
 It is simplified with the recursive form as 
 

1111 )(),,(),()( −−−−∫= ttttttttt dbMpMpb ssussszs η .    (4) 
 

This equation is general probabilistic form of recursive state 
update model combining motion update and measurement 
update. frame 

azimuth



IV.  PR-SLAM IN PROBABILISTIC APPROACH 

 Given the sensor reading accumulated by the robot, the 
most popular online solutions to SLAM are direct estimations 
of a posterior probability distribution over the space of all 
possible maps and all possible robot poses. The SLAM 
posterior is written as 
 

),,( 1−tt
t UZMp s . 

 

 Where },,2,1;{ NkM k K== m . km  is a single 
landmark, M  is a set of random vectors for all landmarks, 
and N  is the number of the landmark. 
 Generally, SLAM is implemented by combining the state 
to be estimated as follows. 
 

TT
n

TTT ),,,,( 21 mmmsx K=  
 

The posterior is then derived from the following form 
combining motion update and measurement update. 
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 Almost all the SLAM algorithms adopt this direct state 
estimation strategy based on EKF. Although the particle filter 
has a powerful advantage in representing arbitrary density 
distribution, satisfactory particle representation in such a high 
dimension is almost impossible. Therefore, we divide the state 
by modifying Equation (5), making it possible to represent the 
states by particles. The posterior of vehicle and each landmark 
is derived as an alternating recursive form by applying Bayes’ 
rule, the theorem of total probability, and exploiting the 
Markov assumption. The dynamics model of the map can be 
ignored because of the static world assumption. 
The process sequence and the derivation are as follows. 

 

Process: )()()()( 111 tttttt MbbMbb →→→→→ −−− susu  
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where )( 1−tt MM  is static. 
 

These complex equations are simplified with the alternating recursive form as follows. 

∫ ∫ −−−−−−−−
− == 11111111

1 )(})(),,(){,(),()( tttttttttttt
tt

tt dMMbdbMpMpUZpb ssussszss η                         (8) 

tttttttttt
tt

tt dbdMMbMMpMpUZMpMb sssz )(})()({),(),()( 111
1 ∫∫ −−−
− ′== η                                        (9) 

 

The vehicle pose is updated from the previous belief on the map, and the map is updated from the current belief on the robot pose 
from Equations (8) and (9). 



 To implement this, we need to specify the motion model 
),,( 111 −−− tttt Mp uss  that characterizes the effect of the robot’s 

actions on its pose, and the measurement model for the vehicle 
),( 1−ttt Mp sz  and for the landmarks ),( ttt Mp sz  that 

characterizes the perception between vehicle and landmarks. 
These models are assumed to be time-invariant. 
 

V.  MOTION MODEL 

 The state is defined for the vehicle and each landmark. 
 

T
vv yx ),,( φ=s  

 
T

mmk kk
yx ),(=m ; nk ,,2,1 K=  

 

 The motion update for differential-drive vehicle follows 
the dynamics model as 
 

),,( 111 −−−= tttt f wuss                       (10) 
 

where u  is robot control and w  is additive motion noise 
assumed as Gaussian. 
 

Tuu ),( 21=u , Tww ),( 21=w ; ),0(~)( QNp w  
 

where Q  is process noise covariance. 
 In the vector of robot control and additive motion noise, 
the first entry is for translation, and the second is for rotation. 
 Applying the “static world assumption” there is no motion 
model for each landmark. And the motion model for each 
entry of vehicle state is 
 

)()2/)(cos( ,1,1,2,211,, ttttttvtv wuwuxx +⋅+++= −− φ    (11) 
)()2/)(sin( ,1,1,2,211,, ttttttvtv wuwuyy +⋅+++= −− φ    (12) 

)( ,2,21 tttt wu ++= −φφ                                                 (13) 
 

Fig. 4 shows the posterior uncertainty generated from the 
motion model. Blue line illustrates a commanded robot path, 
and the shaded cloud illustrates the posterior distribution of 
the robot’s pose. 

 
Fig. 4 The posterior distribution with the probabilistic motion model 

 

VI.  MEASUREMENT MODEL 

The measurement vector is defined as 
 

T
N ),,,( 21 θθθ K=z  

 

which means all observable bearings on the landmarks. 

 
Fig. 5 The measurement model for the vehicle in PR-SLAM 

 
 As shown in Fig. 5, the measurement model for the 
vehicle is defined as follows. 

∏
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 The measurement procedure for a single vehicle sample 
(hypothesis) is as follows. 

1. Obtain angle measurements for each landmark. 
2. Project the rays to the direction of the measurement 

angles from the hypothesized vehicle state after the 
motion drift. 

3. Find the marginal densities for each direction of 
measurements. 

4. Set the measurement value as the product of 
measurements for each landmark. 

5. Repeat Steps 2 to 4 for all the hypothesized vehicle 
poses. 

 

 
Fig. 6 The measurement model for the landmark in PR-SLAM 

 

 The measurement model for each landmark is 
 

),|( ,, tjttj mzp s . 
 

 The measurement procedure for a single landmark sample 
(hypothesis) is as follows. 

1. Generate measurement density for each landmark 
from the measurement updated vehicle belief. For 
example, this can be the superposition of 
measurement rays from the vehicle belief (Fig. 6). 

2. Set the measurement value as the measurement 
density at the hypothesized landmark location. 

3. Repeat Step 2 for all the hypothesized landmark 
positions. 

4. Continue Step 3 for all landmark entries. 



VII.  EXPERIMENTS 

 We tested the PR-SLAM algorithm in indoor 
environments with a differential-drive mobile platform of 
Pioneer II (Fig. 7). It carries a laptop computer with a Pentium 
IV processor clocked at 1.6 GHz and an omnidirectional color 
camera capturing 30 frames/sec with the resolution of 

480640×  pixels. The experiment was conducted in real time. 
 

 
 

Fig. 7 System configuration 
 

 Before conducting the experiments, we tested PR-SLAM 
with a simulation in two different situations. First, we 
assumed very inaccurate odometer which reports only moving 
distance with 10% error (it means the standard deviation of 
added Gaussian noise is 10% of the real value) and doesn’t 
report rotation angle. Second, we conducted a simulation 
without odometry. Also, the measurement noise was added in 
both of the cases. The std. of the Gaussian noise was o3.0  in 
angle. It corresponds to 1 pixel in the given image resolution. 
The sample number used for the representation of the density 
was 1000 for vehicle and each landmark. In both of the cases, 
we could get successful results. 
 Fig. 8 shows the results of simulation conducted with an 
odometer of poor accuracy. The real path of the vehicle is 
denoted by black circles and the current position is denoted by 
a small red circle. The uncertainties of the states are 
represented by the cloud of dots. The red circle with a 
direction indicator is the mean pose of the vehicle state 
estimate, and the green circles are the means of the landmark 
state estimates. Initially, the samples both for the vehicle and 
landmarks are distributed uniformly in the state space. With 
the PR-SLAM algorithm, the robot and landmarks find the 
correct state according to the visual measurements. After the 
first iteration, the hypothesis of landmark position aggregates 
along the line of sight according to the measured direction of 
the landmark. As the robot moves on, all the sample 
hypotheses were examined and updated iteratively. The 
vehicle state was examined with the landmark beliefs of 
previous step and the landmarks were examined with the 
updated vehicle posterior density. The landmarks previously 

positioned with its small uncertainty play an important role in 
localization of the vehicle. With the corrected vehicle pose, 
the landmarks were continuously stitched together along the 
landmarks previously determined in position. With some 
observation on the experiments, we have come to know that 
the uncertainty of the landmark is the intersection of the 
previous uncertainty and the current observation. 
 Fig. 9 is the results of simulation conducted without 
odometry after step 10. For the first 10 step, we let the vehicle 
move according to odometer reading for the purpose of 
initialization. Even with the bearing measurement only, the 
results are satisfactory. 
 Fig. 10 is the simulation results tested in the situation of 
under-constrained condition. In chapter I, we mentioned the 
minimum geometrical constraints for the localization. Only 
two bearing measurements inform that the candidate location 
is on the circle passing through the vehicle and the two 
landmarks. In the experiment, we can observe the uncertainty 
expands on the circle. 
 Fig. 11 shows the experimental results for the proposed 
SLAM from the real indoor environment. We did not use the 
odometry information in the experiment. The real map of the 
corridor was overlaid to check the estimation accuracy. The 
location of the doors and signboards were accurately 
estimated. 
 The processing time is linearly proportional to the sample 
number and landmark number. 
The average processing time for a single iteration is 
 

(sec) 051.0  .*043.0                         
iteration single afor  consumed  timeThe

+= landmarkofno
  (15) 

 

 More efficient representation for the observation density 
will enhance the computational speed of the algorithm by far. 
 

VIII.  CONCLUSION 

 We proposed a novel SLAM algorithm named as PR-
SLAM. By partitioning the state and alternating the turns for 
state update, we overcame the complexity problem that arises 
in adopting particle filter in SLAM. 
 Taking the advantageous characteristic of particle filter 
such as the robustness to clutter in dynamic and noisy 
environment, PR-SLAM reduced the computational load to 
scale linearly with the number of landmarks in the map. 
 The practicality of the proposed algorithm was 
demonstrated by conducting the computer simulation in 
various situations. In addition, experiments in real indoor 
environment were conducted. 
 Work is currently underway on map management. We 
seek to find the confidence criteria based on the consistency of 
the feature from which landmarks are added and deleted. In 
addition, we plan to apply this algorithm to a large scale 
environment which contains hundreds of landmarks.  



 
 

Fig. 8 The simulation results of PR-SLAM conducted with an odometer of poor accuracy. 
The images are captured in frame 0, 1, 2, 5, 10, 15, 23, 31, 39, 47 

 
 

 
 

Fig. 9 The simulation results of PR-SLAM without odometry (after frame 10). The images are captured in frame 0, 1, 3, 6, 10, 15, 35, 55, 70, 84 
 
 

 
 

Fig. 10 The simulation results of PR-SLAM in under-constrained condition (there are only two landmarks). 
The images are captured in frame 0, 2, 8, 21, 26. 

 
 
 
 
 
 
 
 



 
 

 (a) Input images 
 

 
 

 (b) Estimated map & vehicle position 
 

Fig. 11 Estimation results for the vehicle and landmarks in an indoor environment. 
The real map of the corridor is overlaid to check the accuracy of the estimation. The images are captured in frame 0, 1, 3, 5, 8, 11, 13, 16, 19, 22. 
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