
Formal modeling and analysis of hybrid systems:

A case study in multi-robot coordination

R. Alur?, J. Esposito??, M. Kim�, V. Kumar��, and I. Lee�

Abstract. The design of controllers for hybrid systems (i.e. mixed discrete-
continuous systems) in a systematic manner remains a challenging task.
In this case study, we apply formal modeling to the design of communi-
cation and control strategies for a team of autonomous robots to attain
speci�ed goals in a coordinated manner. The model of linear hybrid au-
tomata is used to describe the high-level design, and the veri�cation soft-
ware HyTech is used for symbolic analysis of the description. The goal of
the project is to understand tradeo�s among various design alternatives
by generating constraints among parameters using symbolic analysis. In
this paper, we report on di�culties in modeling a team of robots using
linear hybrid automata, results of analysis experiments, promise of the
approach, and challenges for future research.

1 Introduction

A hybrid system typically consists of a collection of digital programs that in-
teract with each other and with an analog environment. Examples of hybrid
systems include manufacturing controllers, automotive and
ight controllers,
medical equipment, micro-electro-mechanical systems, and robots.

Designing reliable hybrid systems is a challenging task. Control theoretic
tools enable the design of continuous controllers in a single mode of operation.
While nonlinear switching controllers have been designed for systems with sev-
eral modes of operation (see [Bra95,Utk77,ZB98]), the techniques are generally
only applicable for simple systems with relatively few modes. Nonlinear systems
are, in general, solved on a case by case basis. Even when solutions exist, the
properties of the design such as stability, convergence and reachability only ap-
ply within certain limited operating regimes. Typically the state-space for hybrid
systems can be partitioned into many regions so that within each region a dif-
ferent control law with predictable performance can be designed. Variations on
this theme can be found in the literature on variable structure systems [Utk77]
and on multimodal systems [NBC95]. By selecting the state-space partitions so
that regions of interest overlap and by designing controllers with stable equi-
librium points which lie in the overlap, it is possible to control the transition
from mode to mode with predictable performance. However, requiring stable

? Department of Computer and Information Science, University of Pennsylvania.
Email: alur,moonjoo,lee@cis.upenn.edu

?? Department of Mechanical Engineering and Applied Mechanics, University of Penn-
sylvania. Email: jme,kumar@grip.cis.upenn.edu

equilibria to lie in the given regions is di�cult in all but the simplest topological
spaces. A game-theoretic approach to designing controllers for hybrid systems
with a hierarchical structure is shown to be applicable to automated highway
systems [LGS95,TPS97]. However, the the hierarchy is designed manually, and
the solution often requires very strict assumptions and constraints.

Inspired by the success of automated formal methods in discovering subtle
errors in hardware designs (cf. [CK96]), a current trend is to investigate if these
techniques can be generalized to obtain design aids for hybrid systems (the
proceedings of the workshops on hybrid systems provide an excellent survey of
emerging trends [GNRR93,AKNS95,AHS96,Mal97,HS98]).

The methodology advocated by formal approaches to system design requires
construction of a high-level description or a (mathematical) model of the system.
The model can then be subjected to a variety of mathematical analyses such as
simulation, model checking, and performance evaluation. Such modeling and
analysis can be performed in early stages of the design, and o�ers the promise
of a more systematic approach and greater automation during the design phase.

The formal analysis of the mixed digital-analog nature of hybrid systems re-
quires a mathematical model that incorporates the discrete behavior of computer
programs with the continuous behavior of environment variables such as time,
position, and temperature. The model of our choice is the hybrid automaton|a
�nite automaton augmented with a �nite number of real-valued variables that
change continuously, as speci�ed by di�erential equations and di�erential in-
equalities [ACH+95]. Algorithmic analysis of hybrid systems is a challenging
problem since the presence of continuous variables results in an in�nite state-
space, and even the simplest analysis problems turn out to be undecidable. How-
ever, useful analysis can be performed for a class of hybrid systems called linear

hybrid automata. The analysis procedure involves symbolic �x-point computa-
tion over state-sets that are represented by linear constraints over system vari-
ables, and can be implemented using routines to manipulate convex polyhedra.
The procedure has been implemented in the tool HyTech [AHH96,HHW97],
and has been applied to case studies such as audio-control protocol [HW95] and
steam boiler [HW96].

In this paper, we explore the application of formal modeling and analysis to
design of multi-robot coordination based upon an experimental testbed of a sys-
tem of autonomous, mobile robots. We consider a task that involves exploring a
room with unknown geometry and with obstacles, and identifying and locating
an obstacle. The experimental system and the task is motivated by military ap-
plications (scouting, reconnaisance, and surveillance) and the need to minimize
human intervention in hazardous environments a wide range of civilian appli-
cations including space and nuclear facilities. Typically, the sensory capabilities
of each robot yield only imperfect information about the world and in partic-
ular, each robot has only estimates about the positions of the obstacles. Our
robots are equipped with omnidirectional cameras, and they operate in a two-
dimensional world. We make the realistic assumption that the errors in estimates
of the position and geometry of a candidate object (target or obstacle) decrease

as the robot gets closer to the object. The control of a single robot requires
image processing algorithms for interpreting the visual information, computer
vision algorithms for building a model of the objects around the robot and for
localizing the position of the robot, and planning algorithms for selecting a local
direction for steering or for selecting a control law. We can abstract this problem
and reduce it to the two subproblems of building estimates of the positions and
shapes of objects around the robot and of planning a path around the objects
to a target goal. When there are multiple robots that can communicate with
one another, they can communicate and share knowledge about the world. For
instance, two robots can exchange their individual estimates about a speci�c
obstacle, conclude that the obstacle must lie within the region consistent with
both the estimates, and employ this information for better path planning. The
challenge, then, is to design communication protocols, in conjunction with con-
trol strategies, so that the team of robots achieves its goal in a coordinated and
optimal manner. This design problem is not unlike the design problems encoun-
tered in a wide range of hybrid systems including intelligent vehicle systems and

ight management systems.

Traditionally, veri�cation tools such asKronos [DOTY96],Uppaal [LPY97]
and HyTech have been used to detect logical errors by checking whether a
high-level model satis�es a temporal logic requirement. For us, the goal of for-
mal modeling and analysis is to explore and compare various design alternatives.
For instance, even for simple communication and control strategies, we need to
set various parameters such as the number of robots, the initial positions of the
robots, the frequency of communication, the cost of communication (e.g., time
required to process messages), and the positions of obstacles and target. Stan-
dard simulation, using a tool like Matlab (see www.mathworks.com), requires
�xed setting of all such parameters. In a veri�cation tool such as HyTech, such
parameters can be left unspeci�ed, and the tool performs an exhaustive symbolic

search for all possible settings of the parameters. The information computed by
the tool, then, can be used to understand the various tradeo�s.

After reviewing the basics of formal veri�cation of hybrid automata and the
state of the art in design of hybrid controllers in Section 2, we explain the gen-
eral scenario of experimental testbed of coordinating robots in Section 3. The
main e�ort in this case study concerns modeling the application scenario using
linear hybrid automata. The modeling issues are discussed in detail in Section 4.
Linear hybrid automata require all expressions to be linear, and all di�eren-
tial constraints to be constant rectangular inclusions. It is worth noting that in
previous case studies in formal veri�cation of hybrid systems, the challenge in
modeling was approximating complex dynamics by rectangular inclusions. For
us, the continuous dynamics is quite simple, but a signi�cant approximation is re-
quired to make guard conditions and update rules linear. For instance, we model
obstacles and their estimates as rectangles, approximate Euclidean distance by
Manhattan distance, and require the robot to move only along horizontal or
vertical directions.

The results of the analysis experiments are reported in Section 5. Since the
analysis is computationally expensive, we could successfully analyze only special
cases of the scenario. In particular, for two robots and one obstacle, HyTech
could synthesize the region of the possible positions of the target for which
communication improves the distance traveled. While modest, this experiment
does yield information that is computed automatically by a general-purpose tool.

In summary, the paper serves two purposes. First, it shows the promise, and
the road-map, for applying tools for formal modeling and analysis to the problem
domain of multi-robot coordination. Second, we believe that the outlined sce-
nario will serve as a challenge problem to guide the research in formal veri�cation
of hybrid systems.

2 Veri�cation of Hybrid Systems

A hybrid automaton [ACH+95] is a formal model to describe reactive systems
with discrete and continuous components. Formally, a hybrid automaton H con-
sists of the following components.

{ A �nite directed multi-graph (V;E). The vertices are called the control modes

while the edges are called the control switches.
{ A �nite set of real valued variablesX . A valuation � is a function that assigns
a real value �(x) to each variable x 2 X . The set of all valuations is denoted
�X . A state q is a pair (v; �) consisting of a mode v and a valuation �. The
set of all states is denoted �. A region is a subset of �.

{ A function init , that assigns to each mode v, a set init(v) � �X of valuations.
This describes the initialization of the system: a state (v; �) is initial if � 2
init(v). The region containing all initial states is denoted �I .

{ A function
ow , that assigns to each mode v, a set
ow (v) of C1-functions
from R+ to �X . This describes the way variables can evolve in a mode.

{ A function inv , that assigns to each mode v, a set inv(v) � �X of valuations.
The system can stay in mode v only as long as the state is within inv(v),
and a switch must be taken before the invariant gets violated.

{ A function jump, that assigns to each switch e, a set jump(e) � �X ��X .
This describes the enabling condition for a switch, together with the discrete
update of the variables as a result of the switch.

{ A function syn , that assigns to each switch e, a label syn(e) from a set of la-
bels (names). When di�erent components of a complex system are described
individually by hybrid automata, the event-labels on switches of di�erent
components are used for synchronization.

The hybrid automaton H starts in an initial state. During its execution, its
state can change in one of the two ways. A discrete change causes the automaton
to change both its control mode and the values of its variables. Otherwise, a
continuous activity causes only the values of variables to change according to
the speci�ed
ows while maintaining the invariants. The operational semantics of
the hybrid automaton are captured by de�ning transition relations over the state

space �. For a switch e = (v; v0), we write (v; �)!e (v
0; �0) if (�; �0) 2 jump(e).

For a mode v and a time increment � 2 R+, we write (v; �) !� (v; �
0) if there

exists a function f 2
ow(v) such that f(0) = �, f(�) = �0, and f(�0) 2 inv(v)
for all 0 � �0 � �. The transition relations !e capture the discrete dynamics,
while the transition relations !� capture the continuous dynamics.

A key operation on hybrid automata is the product operation. For two hy-
brid automata H1 and H2, the product H1kH2 is de�ned to be another hybrid
automaton that describes the behavior of the composite system with two con-
current components. The formal de�nition of product can be found in [AHH96].
Note that the component automata can have shared variables to communicate,
and in addition, can synchronize transitions using common labels on jumps.

Algorithms for symbolic reachability analysis of hybrid automata manipulate
regions. Let � be a region of H . The successor region of �, denoted post(�),
contains states q0 such that q !e q0 for some q 2 � and some switch e, or
q !� q

0 for some q 2 � and some � 2 R+. A state q is said to be reachable if
q 2 post i(�I) for some natural number i. The set of reachable states of a hybrid
automaton H is denoted reach(H).

The central problem in algorithmic formal veri�cation of hybrid systems is to
compute the set of reachable states of a given hybrid automaton. The set of all
reachable states of a hybrid automaton can be computed by repeatedly applying
post to the initial region. For a special class of automata, called linear hybrid

automata, all the regions encountered during the computation can be described
by boolean combinations of linear inequalities over automaton variables.

A hybrid automaton H = (V;E;X; init ;
ow ; jump; syn) is called linear if

1. For each mode v, the sets init(v) and inv(v) are described by boolean com-
binations of linear inequalities over the variables X .

2. For each switch e, jump(e) is described by a boolean combination of linear
inequalities over the variables X [X 0, where the primed variables X 0 refer
to the values of the variables in X after the switch.

3. For each mode v, allowed
ows at a mode v are speci�ed by a conjunction
of linear inequalities over the set _X of dotted variables representing the �rst
derivatives of the corresponding variables in X . That is, a C1-function f

belongs to
ow(v) i� the �rst derivative _f of f with respect to time satis�es
each linear inequality for all times � 2 R+.

The above requirements ensure that for each i, the set post i(�I) can be de-
scribed by a boolean combination of linear inequalities [ACH+95]. Furthermore,
such sets can be computed e�ectively. The software HyTech [AHH96,HHW97]
supports model checking of hybrid systems based on the above principles. The
implementation is based on routines to manipulate convex polyhedra.

The input of HyTech consists of two parts: system description section and
analysis section. The system description section has a textual representation of
linear hybrid automata. The user describes a system as the composition of a
collection of components. The analysis section veri�es the system against user-
de�ned properties. This section contains de�nitions of regions, each of which
represents a set of states in the system and commands for manipulating these

regions. Properties are checked by reachability test of region. For example, to
verify a property that a robot never collides with obstacles, we de�ne a region
of collision states. Then we show this region is not reachable from the initial
region.

The input to HyTech can include design parameters|symbolic constants
with unknown, but �xed values. Such parameters are treated just like any other
system variables. Given a correctness requirement, HyTech uses the symbolic
computation to determine necessary and su�cient constraints on the param-
eters under which violations of the requirement cannot occur. This feature of
parametric analysis is central to our application as discussed later in Section 4.

3 Multirobot coordination

3.1 A typical scenario

Consider the scenario in which a small team of robots enters a room with ob-
stacles, identi�es and locates a target object, and retrieves this object from the
room as shown in Figure 1. In the �gure, the team consists of �ve robots, des-
ignated as R1 through R5. The obstacles are denoted by A through E and the
target is denoted by T . In order to keep the problem simple we assume that
the geometry is two dimensional. Each robot is equipped with a camera that
allows it to identify other robots, obstacles and the target. The sensor has errors
in estimating the position of objects (obstacles, targets and other robots) that
decrease as the robot approaches the object. Typically, it is necessary for the
robot to get within some threshold distance before it can make a positive iden-
ti�cation. In addition, each robot has the ability to determine its own position
and orientation. This may come from an independent sensor or from the camera
and landmarks in the environment. The robots are able to communicate over a
wireless local area network. However, because of the bandwidth limitations and
the possible clandestine nature of the mission, the communication either may
not be possible, or may be limited to sporadic broadcast of a small volume of
data. Each robot is controlled independently and is able to move in the room.
Although there is no central controller, it is possible to have a situation in which
a robot assumes the role of the leader, issues commands to and obtains reports
from all other robots in the team, and thus all the decision making is centralized.
Finally, the target's shape and size are such that it requires at least two robots
to cooperatively transport the object.

As shown in the initial con�guration in Figure 1, the team of small robots
enters the room. They may or may not have a nominal model of the room. Even
if they have a nominal model, there will always be a need to identify and locate
features (obstacles, targets and the walls) in the room. The robots disperse to
search the room. As they search the room, they identify and locate obstacles.
The communication protocol allows the robots to exchange information about
their position and orientation, the identity and the position of objects in the
room. They may also be able to communicate with each other, and thus, the
actions of one can depend on the plans of others.

D

B

R5

A

C

R4

T

E

R2

R3

R1

D

B

R3

R1

R2

A

C

R4

T

E

R5

INTERMEDIATE CONFIGURATION FINAL CONFIGURATION

D

B

R1

A

C
E

INITIAL CONFIGURATION

R2
R3

R4

R5

T

Fig. 1. A robot team searching a room with obstacles, to locate and retrieve a target

One of the robots (R3) eventually locates the target as shown in the inter-
mediate con�guration in the �gure. When the other robots get this information,
they stop searching for the target and organize themselves into a formation.
Two or three robots (R4, R3, and R5 in the �gure) organize themselves around
the target object in order to move the object. The other robot(s) (R2 in the
�gure) may lead the robots with the target object and act as scouts as shown
in the possible �nal con�guration in the �gure. It is quite possible that one or
more robots may fail. As shown in the �gure, robot R1, the team leader in the
initial con�guration, has an actuator failure and is left stranded. However, the
team, which now consists of the four remaining robots, successfully completes
the mission.

In this scenario, each robot is driven by actuators and sensors that are in-
trinsically continuous. The dynamics are derived from laws of physics and are
represented by continuous mathematics. Therefore the robot behavior is contin-
uous. However, this behavior changes, possibly discontinuously, as new informa-
tion becomes available or as new events occur. For example, a robot pursuing
the identi�cation of an object that is possibly the target object, abandons this
course of action when it is told that another robot has identi�ed the target. The
exchange of information changes the behavior of the robot. A robot approaching
a target changes its control strategy when it makes contact with the target. The
event of making contact changes the behavior (dynamics) of the robot.

3.2 The speci�c example

In the speci�c case used in formal modeling, we consider two robots, two static
convex obstacles and a goal target position for both robots as shown in Figure 2.
The solid lines indicate the actual obstacle location while the dotted lines indi-
cate the initial obstacle model. Note that in the initial model the two obstacles

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

OBSTACL
E

OBSTACL
E

TARGET

ROBOT 1

ROBOT 2

OPEN LOOP,
CONTINUOUS

SENSOR BASED,
NO COMMUNICATION

SENSOR BASED,
WITH COMMUNICATION

INITIAL MODEL
OF OBSTACLE

INITIAL MODEL
OF OBSTACLE

Fig. 2. A simple scenario that illustrates how cooperation between two robots can
improve the performance of the team in locating and reaching a target in a partially
known environment.

appear to overlap. An open loop control for each robot without any communi-
cation or sensing yields the dotted paths labeled \open loop: continuous." Each
robot follows a continuous control law. There is only a single control mode. When
each robot gets sensory information from its camera and re�nes its world model,
we get discrete changes in the path as shown by the black lines labeled \sen-
sor based: no communication." Now the robot controllers are hybrid controllers.
The performance, judged by the length of the path has improved but not signif-
icantly. There is still no interaction between the robots. In the third case, the
two robots exchange information about their world models at discrete intervals.
The corresponding paths followed by the robots are labeled \sensor based: with
communication." Because the robots pool their information, the path followed is
more e�cient | they are able to take advantage of the narrow opening between
the two obstacles while avoiding collisions.

3.3 Assumptions

While it is possible to analyze the problems discussed above via simulation, our
goal is to pursue symbolic methods and to develop veri�ed control strategies.
In order to keep the analysis of the problem simple, we will make a number of
simplifying assumptions.

First, we will restrict our attention to mobile robots operating in planar
environments. Robots will modeled as points in <2. In other words, we ignore
the orientation of the robot. We also ignore the nonholonomic constraints that
may limit the robots' direction of motion, as in the case of wheeled carts. Further,
we will model the dynamics by a set of �rst order di�erential equations:

_x = u1

_y = u2

Fig. 3. A rectangle provides a reasonable approximation to most convex polygons, as
compared to a circle.

Fig. 4. Non-convex shapes can be well approximated with several overlapping rectan-
gles

where (x; y) are the coordinates of a robot and (u1; u2) are the control inputs, in
this case velocities. Note the equations are linear, which would not be the case
if the orientation of the robot is included in the description.

Second, we will discretize our model of the robots' environment. We will su-
perimpose a grid on the x�y plane and assume that robots can only move along
the grid. Thus, arbitrary point-to-point straight line paths are not possible and
must be approximated by \stair case"-like motions consisting of an alternating
series of left/right and forward/back steps. Note that successively �ner direc-
tional discretizations could be made to describe complicated trajectories at the
price of computation time.

Another implication of this assumption is that models of obstacles are limited
to rectangles or unions of rectangles. As shown in Figures 3 and 4, the use of
rectangles to describe objects in the workspace is not necessarily a limitation.
Most general polygons can be reasonably approximated by a rectangle. Note that
non-convex obstacles can be approximated using multiple overlapping rectangles.

In the grid world, we will use the so-called Manhattan metric or the L1 norm
to measure the distance between two points. The Euclidean metric makes the
distance a nonlinear function of the state, but the Manhattan distance is linear.
The Manhattan distance, DM , from Point A to Point B is simply:

DM (AB) =j XA �XB j + j YA � YB j : (1)

Finally, we make some assumptions about the model for sensing and estima-
tion. Each robot is assumed to have some prior qualitatively correct knowledge of

the workspace (e.g. provided by satellite imagery or a human user). The informa-
tion is qualitatively correct in that it accurately re
ects the number of obstacles
in the environment and their general shape; however, their exact position, size or
geometry is unknown. In other words, we assume that is possible to parameterize
the uncertainties and the unknown information is limited to the value of certain
parameters. Further we assume that the robot sensor allows the estimation of
these unknown parameters and the estimates improve as the distance between
the robot and the obstacle decreases. Such uncertainty models are reasonable
approximations of sensor systems where errors are primarily geometric in origin.

For example, in vision applications in a two-dimensional world without oc-
clusions and problems due to segmentation, the accuracy is limited by CCD
resolution, especially at long ranges, and the estimates improve as the distance
to target decreases. This is also true with sonars. In Figure 5, a mobile robot
(black circle) is shown with a sonar array with a rectangular obstacle (shown
in gray). Here we have a situation where the robot has reasonably accurate in-
formation about some of the obstacle's parameters, while information about the
other parameters is subject to a considerable amount of uncertainty. The sonar
readings only indicate that there is an object within ensoni�cation cones 2 and 3
at a certain distance, while cones 1 and 4 are empty. The robot's worst case ap-
proximation is shown as a dashed rectangle. As the robot approaches the object
and the distance between them decreases the uncertainty in the measurement
also decreases.

1
2 3

4

1
2 3

4

Fig. 5. An overhead view of a mobile robot equipped with sonar arrays detecting a
rectangular obstacle. The sonars return the closest distance to an object which lies
somewhere within the ensoni�cation cone. At greater distances (left �gure) the uncer-
tainty can be rather large since the robot only knows that something lies within cones
2 and 3, while cones 1 and 4 are free. As the robot approaches the obstacle (right)
however its estimates get better.

4 Modeling

4.1 Robots

Each robot is described by coordinates (x; y). In our model of the robot and the
grid world, the robot only has four distinct modes of travel:

right : _x = vmax; _y = 0
left : _x = �vmax; _y = 0
forward : _x = 0; _y = vmax

back : _x = 0; _y = �vmax

(2)

where vmax is the robot's maximum speed. Since we are primarily concerned
with optimal motions (least time or shortest path), the restriction of the speed
to vmax does not create any limitations.

4.2 Obstacles and Workspace

Consider the problem of a team of such mobile robots Ri, for i = 1; : : : ; N
navigating an environment toward their respective goal con�gurations (Gi

x; G
i
y).

The environment is populated with multiple polygonal obstacles Oj , for j =
1; : : : ;M which occupy closed sets in <2. Note that these obstacles are assumed
to be in �xed positions. Therefore, the collision free space through which the
robot is permitted to move is:

W = <2 �[jOj : (3)

As discussed in Section 3.3, to ensure linearity and computational feasibility,
the obstacles are modeled as rectangles rather than arbitrary polygons. Each
rectangle can be completely described using only four parameters. In addition,
certain geometric operations that we are concerned with, such as shrinking,
growing, and intersection, can be performed on rectangles using strictly linear
functions. The importance of these operations will be described later.

4.3 Sensor Model

Let Y i
j (t) be a closed set in the plane which represents the ith robot's estimate

of the jth obstacle at time t. As discussed in Section 3.3, the initial map, Y i
j (0),

and any subsequent estimates, Y i
j (t), are strictly worst case representations with

no stochastic uncertainty. In other words, the uncertainty in a given estimate is
bounded in such a way that

Y i
j (t) � Oj ;8t � 0: (4)

Although it is not known where Oj lies in Y i
j (t), it is certain that Oj \

(:Y i
j (t)) = ;. As a consequence of the bounded uncertainty assumption, robots

can always determine if a new estimate is better than a previous one by compar-
ing the area of the two, the estimate enclosing the smaller area being superior.

The sensor also has the property that its estimation of the obstacles improves
as the distance from the robot to the obstacles decreases. In the limit, as the
robot touches the obstacle, Y i

j �! Oj .
Allowing all four parameters of the rectangular obstacle to vary proved to be

too computationally expensive, so the x coordinates of the right and left sides of
the obstacle were taken to be the only information subject to uncertainty. This
model was abstracted in HyTech as

XO
L (t) = XA

L + (XO
L (0)�XA

L)
d

d0
| {z }

error

;8t � 0: (5)

XO
R (t) = XA

R + (XO
R (0)�XA

R)
d

d0
| {z }

error

;8t � 0: (6)

here, XL and XR denote the X coordinates of the left and right sides of the
rectangle, superscripts O and A indicate observed and actual quantities, respec-
tively. The distance at which the measurement is taken is d and d0 refers to the
distance from the robot to the obstacle at time zero.

One limitation of the sensor model is its inability to capture the nonlinearities
that appear in real life. However, we argue that the above model captures the
essential characteristics of sensor model and higher dimensional linear approxi-
mations to sensor models can be used to improve the accuracy. A more serious
limitation is due to the use of the Manhattan distance. A sensor reading taken
at a point whose true distance to the obstacle is small may be no di�erent from a
reading taken further away if the distances are deemed equal in the Manhattan
sense. Thus it is possible the robot's estimate will not strictly improve as the
robot approaches an obstacle along certain paths.

4.4 Coordination

The robots collectively represent a team and therefore it may be advantageous
for them to exchange information periodically. For instance, at discrete time
intervals, robot Ri may send its current map of the environment to robot Rk.
Robot Rk must then fuse that information with its own representation of the
obstacles. Again, as a consequence of the bounded uncertainty assumption this
fusion is accomplished by, for all obstacles j,

Y k
j new = Y i

j \ Y k
j : (7)

Rk's resulting estimate of obstacle j, Y k
j new , will naturally have an area less

than or equal to Rk's previous estimate making it at least as accurate. This new
estimate is also guaranteed to completely contain the obstacle. Note that the pa-
rameters describing the updated estimates are linear functions of the parameters
describing the two old estimates.

4.5 Control strategy

The term control strategy is used here in reference to a mapping from the cur-
rently available information to a collision free kinematic trajectory. The planning
algorithm used here is essentially an exact cell decomposition approach. A com-
plete explanation of the algorithm can be found in [Lat91] . For this scenario,
the workspace decomposition used is shown in Figure 6.

6 5

3

4

7

8 1 2

T1A

T2A T2B

T1B

Fig. 6. Illustration of the exact cell decomposition planning method. The dark rectan-
gle represents the obstacle while the numbered regions are free cells in the workspace.

For a point robot navigating amidst rectangular obstacles, only two separate
cases need to be considered. First, suppose the robot is currently in cell 1 (the
cases for cell 3, 5, or 7 follow by symmetry). When the goal is in any adjacent
cell (8, 1, or 2), no special planning is needed since adjacency guarantees that a
collision free path exists. If the goal lies in cells 7 or 6 (or 3 or 4), a temporary goal
T1A (or T1B) is set. >From that point a collision free path to the target exists.
However, if the goal resides in region 5 the robot �rst proceeds to T1A (or T1B),
then it sets a new temporary goal T2A (or T2B) based on which intermediate
point will result in the shortest overall path. Once it reaches T2A (or T2B), it
can proceed to region 5 unobstructed.

The second case occurs when the robot is initially in a corner cell such as 8
(2, 4, or 6). In this case, collision free paths exist when the goal lies in cells 6, 7,
1, or 2. Paths to regions 5 or 3 are determined, similar to the previous case, by
setting temporary goals in cells 6 or 2 respectively. The degenerate case occurs
when the goal lies in the corner cell opposite to the robot's starting position, cell
4 in this case. Due to the lack of Euclidean metric and the fact that the robot
may only move in four directions, the clockwise and anti-clockwise paths around
the obstacle will always be of the same Manhattan distance. In this case, the
robot chooses the path nondeterministically. This cell decomposition algorithm

is optimal because it compares various choices of paths based on the length and
selects the shortest one. 1

A complete description of the robot's behavioral algorithm as a �nite state
machine appears in Figure 7. The behavior can be sketched as follows

while (reachedGoal == False) {

1. Use sensors to update the map of the world

2. Send or Process communication if appropriate

3. Plan a path

4. Travel for some time period

}

up down right left

choose_direction

set_temp_goal

communication

update_estimate

estimate

check_goal

if temp goal
isn’t reached

finish

if temp goal is
reached

if estimation improvesif estimation
doesn’t improve

if final goal is
reached

change_temp_goal

1 time unit passing

0.1 time unit passing

Fig. 7. Representation of the robot's behavioral algorithm as a Finite State Machine.

1 This cell decomposition algorithm is optimal in the Manhattan metric, not in the
Euclidean metric.

4.6 Cost model

As mentioned in the previous section the robots attempt to choose behaviors
which minimize some type of cost function. In this model, the cost function
indicates sum of the time taken to travel a path and the time taken to commu-
nicate.

The shortest path between two points is not unique when using the Manhat-
tan distance even in the absence of obstacles, Due to the fact that sensor and
communication information are only updated at discrete intervals and that the
robot's speed is constant - it turns out that the robot essentially travels on an
equi-spaced grid. In this case, when traveling from grid point (XA; YA) to grid
point (XB ; YB) there are

(N +M)!

N! �M!
(8)

distinct shortest paths, provided there are no obstacles in the region [XA; XB]�
[YA; YB]. Here N and M are positive integers indicating the number of grid
points, or steps, between point A and point B in the X and Y directions, respec-
tively.

Given a Manhattan distance DM , upper and lower bounds, Du and Dl, can
be placed on the corresponding Euclidean distance. As shown in Figure 8 these
bounds can be expressed as

Dl =

p
2

2
DM � DE � DM = Du (9)

where DE is the Euclidean distance. Note that
p
2

2
� 0:707, which implies that

the Manhattan distance, at most, over estimates the actual distance by approx-
imately 41 percent.

X

D l

D u

Fig. 8. The diamond shaped line represents the set of points equidistant from X. The
circles indicate the upper and lower bounds on the actual distance measured in the
Euclidean sense

It is also assumed that communication is a potentially expensive operation,
either due to the computational cost of processing the information, bandwidth
limitations or for security reasons. To re
ect this, a time penalty �comm is added
to the overall cost function each time a message is sent over the network.

If f is the frequency of communication, the overall performance index J i

which indicates a total time for Ri to reach the goal can be expressed as

J i =
Di
M

vi
+ �comm � f � D

i
M

vi
(10)

whereDi
M is a total distance traveled by Ri in the sense of the Manhattan metric

and vi is the speed of Ri.

5 Results

5.1 Example

Our scenario contains three identical robots (R1, R2 and R3), one �xed obstacle
and one �xed goal. R1 and R2 collaborate via communication, while R3 works
by itself. The initial positions of R1 and R3 are the same. Communication takes
a �xed amount of time for each time message exchanged. Thus, unnecessarily
frequent communication may increase the time to reach the goal. For veri�cation
purposes, the work space was restricted to a bounded rectangle with dimensions
of 150 by 160 units. Since optimal motions are of primary concern, all paths can
be expected to lie within the bounded region.

Initially R1 and R3 are located at (20,0). R2 is located at (60,10). The target
is located at (80,50). The obstacle is located somewhere within the region whose
corner-points are (20,20) and (60,40). Let us call the x position of left end of the
obstacle x1, and the x position of right end of the obstacle x2. Similarly y1 is the
y position of bottom end of the obstacle and y2 is the y position of top end of
the obstacle. R1 and R3 estimate x1 as 10 and x2 as 120 initially. R2 estimates
x1 as -30 and x2 as 70 initially. In other words, R1 and R3 estimate the obstacle
to be far larger toward right hand side, but R2 estimates the obstacle far larger
toward left hand side. All robots estimate y1 as 20 and y2 as 40 initially (i.e., all
robots have correct values for y1 and y2 as estimates). The direction of movement
is determined at the end of each iteration. A robot moves for 1 time unit once
direction is determined (see Figure 7). A robot moves 10 units of distance in 1
time unit. R1 and R2 communicate every time unit. Communication has a cost
of 0.1 time unit.

Initially R3 sets up a temporary goal as (0,10). It is because the estimated
length of left path toward the goal is shorter than the length of right path. It
chooses left path for reaching the goal. However, R1 gets a good estimation of x2
by communicating with R2. It sets a temporary goal at (80,10) then chooses a
right path. R3 takes 13 time units to reach the goal (80,50), whereasR1 takes 12.1
time units including communication overhead; it is veri�ed that collaboration
between R1 and R2 helps R1 to reach the goal faster than R3 in this scenario.

5.2 Parametric analysis

Setting x and y positions of the goal as parameters, we can compute the geomet-
ric region in which R1 reaches faster than R3 with the help of communication

-20-30

0

10

20

30

40

50

60

70

80

90

R1 and R2 communicate each other
R3 works alone(w/o communication)

Communication takes 0.1 unit
Communication takes place at every movement
 which takes 1 unit

Goal
region

faster than
R3

R1 reaches

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

-10 0 10 20 30 40 50 60 70 80 90 100 110

R2

120

R1 estimateR2 estimate

100

110

120

130

140

150

R3 path

R1 path

R1 R3

160

Fig. 9. The scenario of robot modeling

(see �gure 9). With the help of communication, R1 can choose a shorter path
which saves two time units compared to R3, when the goal lies in the shaded
region shown. However, R1 constantly communicates with R2 and this commu-
nication overhead accumulates so that this overhead cancels out the saving after
20 movements. That is why the region has a stair-like shape.

Also, we can compute the optimal frequency of communication for reaching
the goal. Setting the period of communication as a parameter, we modi�ed the
model so that a robot communicates only every period number of iterations. A
domain of period is �nite because period should be less than time for robots to
reach the goal. Thus, we can choose the frequency which leads to the minimal
total elapsed time.

We get a result that when R1 and R2 communicate once in two unit times,
R1 takes 11.5 time units to reach the goal (80,50).

In addition, two safety properties for a robot controller are veri�ed. First,
a robot never collides with the obstacle while it navigates to reach any valid
goal position. A valid goal position is any position outside of the 5 units ex-
tension of the initially estimated obstacle. We added a monitor automaton to
the description so that the monitor can check whether a position of a robot is
overlapped with the estimate of the obstacle. Second, the veri�cation establishes
that a robot does reach any valid goal position in the work space

5.3 Limitations of the analysis

We had to make several simpli�cations in order to make the analysis tractable.
For example, we had to model only one obstacle in the scenario because when
we modeled two obstacles, HyTech generated a memory over
ow error. Also,
only two parameters of the obstacle's geometry were estimated by the sensor
in our model due to similar limitations. We could not allow more than three
robots in the veri�cation. We limited the range of x between -30 and 120 and
the range of y between 0 and 160. Furthermore, we had to divide this region
into 21 partitions to make the analysis tractable. The robot model description is
around 1700 lines. We veri�ed this description using Sun Enterprise 3000 (4 X
250 Mhz UltraSPARC) with 1GB physical memory. Verifying each region took
up to 1.3 GB memory space and one hour2.

Another limitation is the internal arithmetic over
ow error of HyTech when
HyTech manipulates a complex region. A region is de�ned by a set of linear
constraints. A linear region becomes more and more complex at each iteration
of computation. Although linear constraints in the model description do not
look complex, HyTech can eventually generate an over
ow error after many
iterations. Therefore, we have to be careful to make the linear equations as simple
as possible. In modeling a sensor, linear equations can be complex depending on
which number we choose for a initial position of robot and obstacle. For example,
estimated x position of the obstacle is formulated as

x = xreal + (xinit � xreal)� j(xr � xreal)j+ j(yr � yreal)j
dinit

where xr ; xy are position of a robot. Let us see the equation of estimation of
x1 by R1, where x1 is a x position of left end of the obstacle. In the scenario
xreal = 20; yreal = 20; xinit = 10; dinit = 20. It generates a simple equation
x = xr1

2
+ yr1

2
when the obstacle is at the upper right side of R1. However, if this

equation becomes a little more complex, HyTech generates \Library over
ow"
error even with enough free memory.

6 Conclusions

We have reported a case study in applying formal modeling and analysis aimed at
exploring alternatives in the design of multi-robot coordination systems. Simul-
taneous design of control strategies and coordination protocols for interacting

2 We used top for checking memory usage.

dynamical systems is a signi�cant challenge. We believe that tools for high-level
design and analysis can greatly aid the design process.

The gist of our approach is to describe the system as interacting hybrid au-
tomata, and then employ symbolic analysis to compute the constraints among
various parameters for a given objective. Note the generality of this approach
compared to prevalent methods in simulation in which either the parameters
need to be set to speci�c values or the computation of the constraints for the
speci�c problem needs to be programmed. Even though we have reported only
modest success in the goals of the exercise, we hope that it illustrates the po-
tential of the approach.

It should come as no surprise that signi�cant advances in the formal veri�-
cation technology are needed for it to be applicable to our problem in its full
generality. Two speci�c obstacles are

Computational requirements. As reported in Section 5, all the parameters
had be scaled down to be able to get feedback from HyTech. Improving the
e�ciency of polyhedra-based analysis remains a signi�cant challenge.

Expressiveness. As described in Section 4, the linearity requirement forces us
to do a variety of approximations. While the issue of approximating complex
dynamics by rectangular inclusions has received attention in literature, for
us, issues such as approximating Euclidean distance by Manhattan distance
were particularly unsatisfactory. This problem suggests directions for further
research and tool development for more general classes of problems.

We conclude by noting that this is, to our knowledge, the �rst use of formal
methods in the analysis of multirobot coordination and communication. This
problem is particularly complicated because of the use of continuous controllers
and planners with discrete protocols for communication and for re�ning world
models. Our approach points a way to analyze the role of communication in mul-
tirobot coordination, and to establish the dependence of the team performance
on the number of team members and on the rate of communication.

Acknowledgements We gratefully acknowledge the support of NSF grant
CISE CDS 97-03220-001,NSF CAREER award CCR-9734115,NSFCCR-9619910,
ARO DAAG55-98-1-0393, ARO DAAG55-98-1-0466, ONR N00014-97-1-0505
and the DARPA ITO/MARS program. J. Esposito was supported by a De-
partment of Education fellowship.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3{34, 1995.

[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic veri�cation of
embedded systems. IEEE Transactions on Software Engineering, 22(3):181{
201, 1996.

[AHS96] R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems III:

Veri�cation and Control. LNCS 1066. Springer-Verlag, 1996.
[AKNS95] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems

II. LNCS 999. Springer-Verlag, 1995.
[Bra95] M. S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control.

PhD thesis, Massachusetts Institute of Technology, 1995.
[Bro93] R. W. Brockett. Hybrid models for motion control systems. In H. L. Trentel-

man and J. C. Willems, editors, Essays in Control: Perspectives in the The-

ory and its Applications, pages 29{53. Birkh�auser, 1993.
[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided veri�cation. IEEE Spec-

trum, 33(6):61{67, 1996.
[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In

Hybrid Systems III: Veri�cation and Control, LNCS 1066, pages 208{219.
Springer-Verlag, 1996.

[GNRR93] R. Grossman, A. Nerode, A. Ravn, and H. Rischel, editors. Hybrid Systems.
LNCS 736. Springer-Verlag, 1993.

[HHW97] T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: a model checker for
hybrid systems. Software Tools for Technology Transfer, 1, 1997.

[HS98] T. Henzinger and S. Sastry, editors. Hybrid Systems: Computation and

Control. LNCS 1386. Springer-Verlag, 1998.
[HW95] P.H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol.

In Proceedings of the Seventh Conference on Computer-Aided Veri�cation,
LNCS 939, pages 381{394. Springer-Verlag, 1995.

[HW96] T. Henzinger and H. Wong-Toi. Using HyTech to synthesize control pa-
rameters for a steam boiler. In Formal Methods for Industrial Applications:

Specifying and Programming the Steam Boiler Control, LNCS 1165, pages
265{282. Springer-Verlag, 1996.

[Lat91] J.-C. Latombe. Robot motion planning. Kluwer Academic Publishers, 1991.
[LGS95] J. Lygeros, D. N. Godbole, and S. Sastry. A game-theoretic approach to

hybrid system design. In Hybrid Systems III. Veri�cation and Control, pages
1{12. Springer-Verlag, 1995.

[LPY97] K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Springer

International Journal of Software Tools for Technology Transfer, 1, 1997.
[Mal97] O. Maler, editor. Hybrid and Real-Time Systems. LNCS 1201. Springer-

Verlag, 1997.
[NBC95] K. S. Narendra, J. Balakrishnan, and K. Ciliz. Adaptation and learning

using multiple models, switching and tuning. IEEE Control Systems Mag-

azine, pages 37{51, 1995.
[TPS97] C. Tomlin, G. J. Pappas, and S. Sastry. Con
ict resolution for air tra�c

management: A study in multi-agent hybrid systems. IEEE Transactions

on Automatic Control, August 1997. Accepted as a regular paper.
[Utk77] V. I. Utkin. Variable structure systems with sliding modes. IEEE Transac-

tions on Automatic Control, Vol. 22(2):212{222, 1977.
[ZB98] M. Zefran and J. Burdick. Stabilization of systems with changing dynamics.

In Hybrid Systems, 1998.
[ZDK96] M. Zefran, J. Desai, and V. Kumar. Continuous motion plans for robotic

systems with changing dynamic behavior. In 2nd Int. Workshop on Algo-

rithmic Foundations of Robotics, 1996.

