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ABSTRACT

In this paper, feature point matching is formulated as an

optimization problem in which the uniqueness condition is

constrained. We propose a novel score function based on

homography-induced pairwise constraints, and a novel opti-

mization algorithm based on relaxation labeling. Homography-

induced pairwise constraints are effective for image pairs

with viewpoint or scale changes, unlike previous pairwise

constraints. The proposed optimization algorithm searches

for a uniqueness-constrained solution, while the original

relaxation-labeling algorithm is appropriate for finding many-

to-one correspondences. The effectiveness of the proposed

method is shown by experiments involving image pairs with

viewpoint or scale changes in addition to repeated textures

and nonrigid deformation. The proposed method is also

applied to object recognition, giving some promising results.

Index Terms— wide-baseline stereo, affine regions, pair-

wise constraints, relaxation labeling

1. INTRODUCTION

Feature point matching is one of the fundamental problems in

computer vision, where applications include 3D reconstruc-

tion, object recognition, and content-based image retrieval.

One of the difficulties in feature point matching is that the

regions projected from the same preimage, such as the same

part of an object, are different if their viewpoints are different.

There have been efforts to resolve this problem by detecting

regions covariant with the underlying viewpoint change and

by describing the regions invariantly so that the regions pro-

jected from the same preimage will have similar descriptors

[1, 2, 3].

Although covariant detection and invariant description

have enabled feature points to be matched in the presence

of significant viewpoint or scale changes, there remains the

inherent problem of ambiguity. The descriptors of the regions
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projected from different preimages may be similar because

the detected regions are often too small to include sufficient

distinguished textures. For this reason, matches based on the

most similar descriptors are not always correct.

In this paper, we aim to reduce the ambiguity in fea-

ture point matching for an image pair by finding a set of

correct matches from a set of candidate matches. Correct

matches satisfy the uniqueness condition, namely that a

feature point in the first image corresponds to at most one

feature point in the second image and vice versa, whereas

candidate matches may not satisfy this uniqueness condi-

tion. Our main assumption is that object surfaces are locally

smooth, at least between two feature points, which allows

us to use homography-induced pairwise constraints between

correspondences.

Approaches that use pairwise constraints [4, 5] have re-

ceived a great deal of attention because of their ability to

match feature points of nonrigid objects. In these approaches,

feature point matching is usually formulated as an optimiza-

tion problem aiming not only to maximize a score function

but also to satisfy the uniqueness condition. Efforts have been

made to develop good optimization techniques but less effort

has been applied to pairwise constraints. Pairwise constraints

have been designed to fix the distance or orientation between

feature points, but it is questionable whether they remain ef-

fective when there are significant scale or viewpoint changes

between images.

We define pairwise constraints based on the similarity of

local feature transformations [6] between matches, where the

term local feature transformation denotes a homography that

transforms the neighborhood region of a feature point to the

corresponding neighborhood region. In this paper, we show

that homography-induced pairwise constraints enable robust

feature point matching between image pairs with viewpoint or

scale changes. In addition, we propose an optimization algo-

rithm that finds one-to-one correspondences for image pairs

with high ambiguity and nonrigid deformation.
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2. DETECTION OF CANDIDATE MATCHES

In this section, we explain how to obtain a set of candidate

matches between images, and describe our notation.

We use affine invariant features (MSER-SIFT) [2, 1], al-

though the proposed method can be generalized to use other

features, because significant viewpoint changes between im-

ages are assumed. A feature point x (the gravitational center

of an MSER) in image I is tentatively matched to a feature

point x′ in image I ′ if the SIFT vector distance d is smaller

than a threshold value τd (= 0.5). We also limit the number N
of candidate matches for reasons of computational tractabil-

ity, such as Nmax = 20000, by selecting at most the Nmax

matches that have the smallest SIFT vector distances.

We denote detected candidate matches by:

mi = (xi,x′
i), i = 1 . . . N, (1)

where xi and x′
i are tentatively corresponding feature points

between images I and I ′. For each mi, we consider not only a

photometric observation di (the SIFT vector distance between

xi and x′
i) but also a geometric observation Hi, where Hi

is the local feature transformation from xi to x′
i [6, 7]. If

necessary, we write mi = (xi,x′
i,Hi) to include Hi.

3. PAIRWISE GEOMETRIC CONSISTENCY SCORE

In this section, we define a pairwise geometric consistency

score based on homography-induced pairwise constraints.

First, a pairwise transformation error eij between any two

candidate matches mi and mj = (xj ,x′
j ,Hj) is defined as

the sum of the symmetric errors produced by transforming

a feature point using the local feature transformation of the

other match:

eij = ei(j) + ej(i),
ei(j) = ‖x′

j − Hi(xj)‖ + ‖xj − H−1
i (x′

j)‖,
ej(i) = ‖x′

i − Hj(xi)‖ + ‖xi − H−1
j (x′

i)‖,
(2)

where H(x) denotes the Euclidean coordinates of x trans-

formed by H.

The error eij will be small if Hi and Hj are similar, and

large if they are dissimilar. If mi and mj are detected from a

smooth surface, then we can expect the error eij to be small,

although the converse is not always true.

Finally, we define a pairwise geometric consistency score

fg(eij) as a smoothly decreasing function of eij , so that a ge-

ometrically consistent pair of matches can have a large value:

fg(eij) = exp(−e2
ij/2σ2

g), (3)

where σg is a parameter that can be computed adaptively.

Currently, our chosen σg value is:

σg =
1
N

N∑

i=1

(minj=1...N (eij)), (4)

where min denotes the minimum value.

4. FORMAL PROBLEM DEFINITION

In this section, we formulate feature point matching as an op-

timization problem with the uniqueness constraint.

Let S denote the set of candidate matches:

S = {mi = (xi,x′
i) : i = 1 . . . N}. (5)

Two subsets of S can be defined for each mi. The first is a

conflicting set S¬i, whose elements are all incorrect if mi is

correct, and mi is incorrect if at least one of whose element

is correct, via the uniqueness condition:

S¬i = {mk = (xk,x′
k) : mk ∈ S−{mi}, xk = xi or x′

k = x′
i}.

(6)

The second subset is a supporting set Si, defined as:

Si = {mj = (xj ,x′
j) : mj ∈ S−{{mi}∪S¬i}, eij < τg},

(7)

where τg usually takes the value 3σg .

We define a hidden variable pi ∈ {0, 1} as the belief in

the correctness of mi. pi = 1 if mi is correct, and pi = 0
otherwise. We also define auxiliary sets of beliefs as:

P = {pi = belief for mi : mi ∈ S},
P¬i = {pk = belief for mk : mk ∈ S¬i},
Pi = {pj = belief for mj : mj ∈ Si}.

(8)

Finally, a score function f(P ) is defined as:

f(P ) =
∑

pi∈P

pifd(di) +
∑

pi∈P

∑

pj∈Pi

pipjfg(eij). (9)

The uniqueness constraint can be written as:

pi +
∑

pk∈P¬i

pk = K, ∀pi ∈ P, (10)

where K must be 1 if pi = 1, and K may be one of 0,1, or

2 if pi = 0. If K = 1 for all pi such that pi = 1, then we

can say that the uniqueness constraint have been satisfied; in

this case, pk = 0 for all mk in conflict with mi. Indeed, our

updating rule introduced in the next section aims to satisfy

this condition.

The score function is composed of two kinds of terms:

a unary score fd(di) that favors local appearance similarity,

and the pairwise score fg(eij) that was defined in Section 3.

In principle, the score function f(P ) has the same form as

those of previous pairwise approaches [4, 5]. The novel part

is our homography-induced pairwise geometric consistency

score fg(eij).
The unary score fd(di), which favors similar SIFT vec-

tors, is designed as a smoothly decreasing function of the

SIFT vector distance di, which varies in the range di ∈ [0, 1]:

fd(di) = 1 − di. (11)

Our problem is to find the P that maximizes f(P ). After

finding an optimal P , the final solution S� is decided as S� =
{mi : mi ∈ S, pi ∈ P �}, where P � = {pi : pi > pk,∀pk ∈
P¬i}.
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5. PROPOSED ALGORITHM

In this section, we introduce an algorithm to maximize the

score function (9), while imposing the uniqueness constraint.

The belief pi is relaxed to take a real value from [0, 1] to

avoid combinatorial searching, and we propose a variant of

the original relaxation labeling algorithm [8, 9] to maximize

the score.

We define a local support qi as a partial derivative of the

score function [9]:

qi =
∂f(P )
∂pi

= fd(di) + 2
∑

pj∈Pi

pjfg(eij). (12)

By defining qi as in (12), piqi becomes a contribution of mi

to the score f(P ). In addition, piqi can be considered as a

confidence measure for mi, with a large piqi meaning that

mi is a good match in terms of local appearance similarity

and geometric consistency. An idea that follows naturally is

that pi should be amplified if piqi is large.

An updating rule is given by:

pi ← piqi, ∀pi ∈ P, (13)

pi ← pi

pi +
∑

pk∈P¬i
pk

, ∀pi ∈ P. (14)

Here, pi is first replaced by piqi, and then suppressed by the

conflicting beliefs pk ∈ P¬i.

The major difference from previous relaxation-labeling

algorithms [8, 9, 5] is that the normalization (14) is not con-

ducted for a fixed number of labels. The proposed algorithm

searches for one-to-one correspondences, whereas previous

relaxation labeling algorithms seek a label (a feature point

in image I ′) for a site (a feature point in image I), which

means that a feature point in I ′ may correspond to many fea-

ture points in I .

The proposed algorithm is similar to the cooperative al-

gorithm [10] in the sense that both algorithms are based on

the match-space formulation and search for one-to-one cor-

respondences between images. Many interesting properties,

including convergence to a uniqueness-constrained solution,

can be shown for the proposed algorithm. However, we omit

these them for reasons of space.

Relaxation labeling is known to be a local algorithm that

finds a local maximum [9], so good initialization has been

considered crucial in achieving a good solution. Although

we cannot guarantee that a consistent solution can be pro-

duced from an arbitrary initialization, good results are pro-

duced from a naive uniform initialization, such as pi = 0.5
for all pi ∈ P . This uniform initialization was used for all the

image pairs considered in this paper.

6. EXPERIMENTS

We first evaluated the proposed method using image pairs for

a chessboard pattern with significant deformation, as shown

in Fig. 1, which are examples with high ambiguity. We man-

ually counted correct matches in the evaluation for the image

pair in Fig. 1(c) because the nonrigid deformation prevented

ground-truth parametric models from being used. For the pla-

nar image pair in Fig. 1(a), we used ground-truth homography

in the evaluation.

For comparison with our proposed method, we imple-

mented texture, a texture-descriptor-based method [11]. We

also developed a simple method, which had a simple pair-

wise constraint similar to the last constraint in [4], coupled

with the proposed optimization algorithm of Section 5. The

fourth implementation, spectral, involved the homography-

induced pairwise constraint coupled with the spectral method

of [4]. For the three pairwise methods, namely simple, spec-
tral, and proposed, we used the same initial set of candidate

matches. For all four methods, including proposed, the de-

tected matches were sorted in either ascending or descending

order of an appropriate measure, such as the ascending order

of the ratio between the best and the second-best dissimilari-

ties in the texture method.
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Fig. 1. A chessboard pattern with significant deformation.

(a,c) The top 30 best matches detected by the proposed

method. The yellow lines represent the detected matches.

(b,d) Matching results for the image pair (a) and (c), respec-

tively. The graphs show how many of the top k best matches

are correct (k = Sample size).

Figures 1(b) and (d) give the quantitative matching re-

sults, with the graphs indicating how many of the top k best

matches are correct. The simple method produced better re-

sults than the texture method for the image pair with a small-

scale change (Fig. 1(a)). However, it did not produce bet-

ter results for the image pair with a large-scale change (Fig.

1(c)). The proposed method produced the best results for both

image pairs, while the spectral method failed to find correct

correspondences for the image pair in Fig. 1(c), finding in-

stead strongly structured false matches.

We applied the proposed method to other image pairs with
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ambiguity, such as those in Fig. 2, and it produced the best re-

sults. For all the tested image pairs except the one in Fig. 1(c),

the spectral method produced similar results to those of the

proposed method. Both the proposed method and the spec-
tral method use the homography-induced pairwise constraint,

and the experiments show that these two methods are more

effective for the image pairs with scale or viewpoint changes

than the simple method, which does not use the homography-

induced pairwise constraint.
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Fig. 2. Plant scenes with viewpoint changes. Left: The top 30

best matches detected by the proposed method. Right: Match-

ing results for the image pair on the left.

Finally, we applied the proposed method to object recog-

nition in a cluttered environment. For this experiment, we

used images from KAIST-104 DB [12]. Fig. 3 shows some

examples. Feature points from the cluttered background are

often matched to feature points from the objects. For this rea-

son, the success rate was 71.15%, classifying 74 images cor-

rectly in 104 query images [12]. We classified each cluttered

query image by first matching it to all of the 104 data images

using the proposed method, and then selecting the data im-

age that maximized the score (9) of the matches in the largest

GAM (Groups of Aggregated Matches) [7], where the score

was divided by the number of feature points in the data image,

to discourage an incorrect data image with a large number of

feature points from getting a larger gain than a correct data

image. For the fairness of the comparison, we used a fixed

parameter (τg = 30) for the clustering and the score compu-

tation. We could classify 85 images correctly, which is about

a 10% improvement on state-of-the-art methods [12].

Fig. 3. Examples of query-and-data image pairs from KAIST-

104 DB [12]. Matches detected by the proposed method are

displayed for both of the image pairs.

7. CONCLUSIONS

In this paper, we proposed a robust feature point matching

method that combines the advantages of the homography-

induced pairwise constraint and a matching algorithm based

on optimization. The homography-induced pairwise con-

straint was shown to be effective for image pairs with view-

point or scale changes, and the proposed optimization al-

gorithm found good solutions despite high ambiguity and

nonrigid deformation between images. The proposed algo-

rithm sometimes found a better solution than state-of-the-art

algorithms such as the spectral method [4].

The major drawbacks of the proposed method are its

high computational complexity and memory requirements

for computing pairwise constraints, and we are currently

investigating an effective method to reduce them.
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