Modelling Relational Databases on Multicomputer Architectures

Hyoung Jhang, Tag Gon Kim, and Raymond H. Dean
Dept. of Electrical and Computer Engineering
University of Kansas
Lawrence, KS 66045

ABSTRACT

This paper presents a methodology for the design and
performance evaluation of alternative relational algorithms
on multicomputer architectures. The methodolo employs
a unified knowledge representation scheme, called System
Entity Structure (SES) and Component Model Base
(MBase). Based on this representation scheme, we
demonstrate how the development of simulation model of
multicomputer architectures can be done systematically.

1. INTRODUCTION

During the last decade, many researchers attempted to
improve the performance of database machines by develop-
ing specialized database machine architectures. Usual Y,
bottlenecks are found and warts are added to correct them
[Boral, 1984]. The database machine architectures become
moving targets and makes hard to predict their perfor-
mance. The attempt failed to provide one good solution to
enhance the performance of DBS.

Recently, such failure has motivated a new research area
of improving performance by massively connecting general
purpose computers in known interconnection schemes
[Hwang, 1984; Hayes, 1986] and exploiting more paral-
elisms. As such, a considerable amount of work has been
done in developing strategies for the parallel execution of
database operations [Baru, 1987, DeWitt, 1985;
Richardson, 1987; Valduriez, 1984]. It is not only promising
in the economical point of view, but also each component
and the interconnection are well-defined in its operation.
More interestingly, there exist more possible ways of execut-
ing one query than on the conventional architectures. This
leaves more chances of optimization of a query [Ullman,
1982]. However, this flexibility of query execution also com-
plicates the performance evaluation of such architectures.

Although benchmarking can make reliable predictions
of the performance of database machines, its use is only
limited to the existing architectures. Analytical modelling
can provide useful insights into the design of multicomputer
database machines. Still, bottlenecks can not be easily found
this way.

The design of multicomputer architectures yields many
alternatives depending on the number of processors and the
type of interconnection scheme. Also, it leads to many

possible of executing queries. This vast choice of executing
a query complicates the construction of the simulation
model. However, there exists uniformity of communication
path between neighbors. This paper describes a systematic
methodology for constructing simulation models of
database systems on multicomputer architectures using
such uniform pattern of coupling. The presented methodol-
ogy is based on the SES/MBase knowledge representation
scheme. The examples are implemented in the DEVS-
Scheme [Kim and Zeigler, 1990], an implementation of the
DEVS (Discrete Event System Specification) formalism in
Scheme.

This paper is organized as follows. In section 2, we
present the overview of a unified knowledge representation
scheme in modelling and simulation, System Entity Struc-
ture (SES) and Component Model Base (MBase), which
allows a database designer to represent architectural and
behavioral knowledge of systems separately. In Section 3,
query model and its execution are presented, which is used
to construct a set of queries. In Section 4, simulation models
of multicomputer database architectures are presented
based upon the SES/MBase concept. We illustrate its use by
applying the methodology to construct the simulation model
of ring and cube architectures.

2. SES/MBASE FRAMEWORK

The System Entity Structure (SES) and Model Base
(MBase) framework, proposed by Zeigler [Zeigler,
1987;Kim and Zeigler, 1990], is a knowledge representation
scheme for structure and behavior of a system. The SES can
record three kinds of relationships; decomposition, multiple
decomposition, and specialization. Decomposition repre-
sents a coupled model made of smaller entities and indi-
cated by single vertical line. The specialization relationship
represents a way in which a general entity can be categorized
into special entities and indicated by a double vertical line.
Multiple decomposition is a special case of decomposition
relationship, which represents a special entity consisting of
a collection of homogeneous components. It is indicated by
a triple vertical line. A coupling scheme is attached to the
decomposition relationship, which defines how they are
connected to form the larger model.

Model base [Ziegler, 1984], a reusable behavioral
knowledge base, has a set of models that are either atomic
(models with no component models) or coupled (models
with component models). The model in the set represent
behavioral knowledge; how models behave when they

receive stimuli. New models can be saved in, and later
retrieved from, the model base. Models so retrieved may be
used to create isomorphic models that can be either atomic
or coupled. Model behavior so retrieved will be attached to
corresponding model structure to comprise a complete
model that functions as an abstract simulator. A coupling
scheme is attached to a coupled model, which defines how
smaller models are connected to form the larger conceptual
model of simulation.

The structural knowledge saved in the SES base guides
the synthesis of the final simulation model. The user is
queried for the multiplicity of the multiple relationship and
the selection of a particular entity of the specialization
relationship. This process is called pruning,

3.QUERY MODEL

Unlike the conventional database machines, more ex-
plicit control of query execution is required. Especially in
the parallel processing of queries, a complex control of
query execution and addition processing stages are re-

uirB(}i_); Processing of a query is done in five basic cycles of
the DBS:

'll)dquery preprocessing - query is compiled if not precom-
piled,

2) retrieving tuples page by page,
3; processing tuples in the retrieved page,
4) distributing non-local tuples to neighbor nodes if
necessary,

5) transmitting tuples to the host.

3.1 Query Representation

The entities of interaction between the host and the DBS
isaquery sent from the host and result tuples made available
to the host in the output buffer of each node. The proposed
methodology defines a set of queries, Q = {Qi | i= positive
integer }, which is passed to each node as a token. The set
of predefined queries resembles the one of the Wisconsin
Benchmarks [Bitton, 1983]. A query may involves more than
one relation. A query is represented by a set of parameters
which describes the load of the resources with respect to the
query. The name of relational algorithm is included in the
set of parameters describing each query and the relational
algorithm is executed when the query is passed to the node.
A query is represented as follows:

Qi= {ALG, {Rj} | i,j = positive integers}
Rj= {Nj,Lj, Cj, Pj | j= positive integer}

where ALG identifies a specific relational algorithm, Nj is
the cardinality of the relation Rj, Lj is the average tuple
length, Cj is the average number of bytes to be computed,
and Pj is the average number of tuples to be examined per

page.

Each relation in the query representation defines the
structure of the relation. All the relations involved in the
relational operation must appear in the set with the name of

the relational algorithm. The resultant relation must also
appear in the set as the last item. For the result relation, Cj
and Pj are ignored.

Suppose a relation, STUDENT, which has 5 attributes;
LAST&S:CHAR , FIRST(15:CHAR), ID(6:CHAR),
DEPT(4:CHAR), and ADDR(24:CHAR). (LAST
(15:CHAR) means the field is 15 byte long and its type is
character.) Let’s represent a query, SELECT * FROM
STUDENT. This queryis represented as Q10 = {SELECT,
{(1000, 64, 0, 8), (1000, 64, -, -)}} in the above repre-
sentation. Thisis interpreted as follows. It uses the relational
algorithm, SELECT, and it involves only one relation, which
has 1000 tuples and 64 bytes long. No comparison is to be
made to be selected (0 selection time) and all the tuples in
a page is to be examined based on the page size of 512 bytes.
This indicates the sequential processing since all the tuples
are examined in each page.

Suppose that the relation STUDENT has ID as a
primary key. The query, 'SELECT * FROM STUDENT
WHERE ID =43*, is represented as Q11= {SELECT,
{(1000, 64, 4, 1), (100, 64, -, -)}}. This query is interpreted
as follows. It involves the same relational algorithm and
relation as in the previous example, but comparison is done
on the field of 4 characters long. 100 out of 1000 tuples are
selected (selectivity = 10%). Since 1 out of 8 tuples in each
gage is to be examined to result in 100 tuples, its access is

ased on the primary key.

3.2 Relational Algorithm Representation

In the proposed methodology, relational algorithm is
represented in a state transition diagram. In the diagram,
each node represents passage of simulation time which is
depends on the relation. Each arc indicates the logical
sequence of the query execution. The feedback with a num-
ber attached to an arc indicates the number of iterations on
a particular path. This depends on the relation and/or num-
ber of neighbors.

Each node in the multicomputer database machine ar-
chitectures allocates one output buffer for each neighbor.
Output buffer is numbered 0 through M-1, where M is the
number of neighbors. Output buffer 1 contains tuples hashed
into those buckets whose addresses are identical to the
address of its associated neighbor. The figure 1 illustrates a
hybrid-hash join algorithm[Baru, 1987; DeWitt, 1985;
Richardson, 1987; Valduriez, 1984]. The join algorithm is
done basically in 8 steps. First, read local tuples of the
smaller relation into the input buffer page by page. A hash
table is built out of tuples hashed into the Iocal bucket. Other
tuples are placed into its output buffer. When all the hash
table is built out of all the local tuples, tuples in output
buffers are sent to its neighbors. At the same time, tuples
sent from its neighbors are received and placed into the
input buffer. Sending/receiving continues until there are no
more tuples to be received or sent. Tuples in the input buffer
are processed to complete the hash table in the same man-
ner. If tuples are unit%rmly distributed throughout nodes,
construction of the hash table in each node will be com-
pleted at almost at the same time. Tuple balancing techni-

que can be applied to achieve uniform distribution of tuples.

The same process can be applied for the larger relation
except for building the hash table, tuples addressed to the
local bucket are directly used to probe the hash table of the
smaller relation. Passage of simulation time has to be ex-
pressed in each state using simulation macro,
hold(time_of_hold), which time_of hold has to be calcu-
lated based on the structure of the relation passed as
parameters in query.

hash & put

hash & probe

Figure 1. Hybrid-Hash Join Algorithm.

4. SIMULATION MODEL

The simulation model of this paper is to compare the
performance of alternative relational algorithms on various
multicomputer architectures and measure the impact of the
number of processors and the type of interconnection
scheme have on the performance. The simulation model is
concentrating on the performance of different types of
queries like tﬁe ones of the Wisconsin Benchmarks [Bitton,
1983]. So, the simulation methodology does not include
workload modelling,

Each node consists of a processor, main memory, secon-
dary storage, and two independent communication proces-
sors capable of transmitting/receiving data simultaneously
via a number of links. The number of Iinks is determined by
the type of interconnection scheme and the number of
processors.

The simulation model consists of hardware and software
models. The software model defines a set of queries each of
which can be selected to measure its performance on any
multicomputer architecture. A query is represented by a set
of parameters as described in the previous section. The

hardware model is systematically created when the number
of processors and the type of interconnection scheme is
selected.

Figure 2 shows the SES representation of multicomputer
database systems, MUL-DBS. It shows that MUL-DBS
consists of a model, EF (EXPERIMENTAL FRAME) and
MUL-HARD. Further, EF consists of TRANS and
QUERIES. TRANS model measures the performance and
detects the end of the simulation period, while the
QUERIES model defines a set of queries.

MUL-ARCH is decomposed into SCH and NODES.
The SCH contains several known interconnection scheme
such as ring, cube, and star [Hwang, 1984; Hayes, 1986]. The
NODES consists of multiple NODE’s. Further, the NODE
model is decomposed into PROC and LINKS. The PROC
model will be defined into the model base. The LINKS
model consists of multiple LINK’s (M*). The interconnec-
tion scheme and the number of processors determine M*,
where * indicates that it is determined by the system when
the number of processors are given by the user.

MUL-TBS
I,: MUL-ARCH
TRANS QUERIES SCH NODES
J}z | Nl

[| | [| NODE

Q1 Q2 QL RING CUBE STAR
LINKS PROC
fll M

LINK
Figure 2. SES of Multicomputer Database Systems.

We donot consider the multiprogramming level of query
execution since the interest of study lies on how each type
of query performs on alternative architectures. The type of
interconnection scheme defines the pattern of interconnec-
tion, represented by a coupling scheme. Even if different
connection scheme defines different number of neighbors
depending on the number of processors, there lies unifor-
mity of such pattern of coupling between neighbors. This
uniform pattern s used to develop the NODE systematically
for any type of interconnection scheme.

As we mentioned earlier, the NODE model, a coupled
model, is decomposed into LINKS and PROC. LINKS is
decomposed into multiples of LINK, whose number is
determined by the type of interconnection scheme and the
number of processors connected. Figure 3 shows such for-
mula of defining M for ring, cube, and star, where N denotes
the number of processors.

ringg M = 2
cube: M = LOG2(N)
star: M = N -1

Figure 3. Formula of M.

When the type of interconnection scheme and the num-
ber of processors are given, M is determined using the
formula and the connections between neighbor nodes are
established. The coupling schemes are added to the NODE
and NODES using the uniformity of coupling pattern. The
algorithm is shown in Fig. 4.

FORi=0TO M-1 '
add a coupling gLINKi.Ol, NODE.Oi)

add a coupling (NODE.Ii, LINKi.I1
add a coupling (LINKi.O2, PROC.Ii
add a coupling (PROC.Oi, LINKi.I2)
END-FOR
NODE
S ,
J_Lailnumgz g—shiOC O0—>e
e
Jo1 12]OI.. o IS
ol

Figure 4. Node Coupling Algorithm.

Each node connected in ring architecture has 2 neigh-
bors and so 2 bidirectional links (M =2.) Figure 5 shows a
ring of 8 nodes and the model, NODE in detail. Similarly,
each node in cube architecture has Log2(N) neighbors and
links. Figure 6 shows a cube of 8 nodes and the model,
NODE.

NODE
1 LINKO PROC | LINK1 02
" 02 n 02 " 02 —>
€ ol o1 12 o1 12 01 12 L3

Figure 5. A Ring of 8 Nodes.

NODE 111
”1\ 11 02
<
< o1 2 PROC
"
o1
TINKA
2 "l o 12
<€ o1 2} 02
13
03
13 TN
ra 3 1] O
<12, 2

Figure 6. A 3-cube of 8 Nodes.

5. CONCLUSIONS

In this paper, a systematic way of constructing simulation
models of multicomputers based on SES/MBase formalism
was presented. Such methodology greatly eases the process
of evaluating performance of alternative relational algo-
rithms on various multicomputer architectures and thereby
finding optimal architectures of the desired performance.

REFERENCES

Bitton, Din, D. J. Dewitt, and C. Turbyfill (1983),
“Benchmarking Database Systems: A Systematic Ap-
proach,” Proc of the International Conference on
Management of Data, pp. 176-185.

Boral, Haran and D. J. DeWitt (1984), “A Methodology for
Database Performance Evaluation,” Proc of the ACM-

SIGMOD International Conference on Management of
Data, pp. 176-185.

C. K. Baru and O. Frieder,\“Implementing relational
database operations in a cube-connected multicom-
puter,” Proc. IEEE 3rd Int. Conf. Data Eng., Feb. 1987,
pp- 36-43.

D. J. DeWitt and R. Garber, “Multiprocessor hash-based
join algorithms,” Proc. 11th Int. Conf. Very Large Data
Bases, 1985, pp. 151-164.

Hawthorn, P.B. and D.J.DeWitt (1982), “A Performance
Analysis of Alternative Database Machine Architec-
tures,” IEEE transactions on Software Engineering, SE-8,
No. 1 pp. 61-78, Jan.

Hwang, K. and Faye A. Briggs (1984), Computer Architec-
ture and Parallel Processing: McGraw-Hill.

J. Hayes, et al., (1986), “Architecture of a hypercube super-
computer,” IEEE Conf. Parallel Processing, 1986, pp.
653-660.

J. Richardson, H. Lu, and K. Mikkilineni, “Design and
evaluation of parallel pipelined join algorithm,” Proc.
ACM SIGMOD Int. Conf. Management Data, 1987, pp.
399-409.

Kim, Tag Gon and B. P. Zeigler, (1989), “Knowledge-based
Environment for Investigating Multicomputer Architec-
tures,” Information and Software Technology, vol. 31, no.
10.

Kim, Tag Gon and B. P. Zeigler (1990), “The DEVS-
Scheme Simulation and Modelling Environment,” in
Knowledge Based Simulation: Methodology and Applica-
tions (Fishwick, P.A. and R.B.Modejeski eds): Springer
Verlag. New York, NY.

P. Valduries and G. Gardarin, “Join and semijoin algo-
rithms for a multiprocessor database machines,” ACM
Trans. Database Syst., vol. 9, pp. 131-161, Mar. 1984.

Ullman, J.D. (1982), Principles of Database Systems (2nd
ed.): Computer Press.

Zeigler, B. P. (1984), Multifacetted Modelling and Simula-
tion, London, UK and Orlando, FL: Academic Press.

Zeigler, B. P. (1987), “Hierarchical Modular Discrete Event
Modelling in an Object Oriented Environment,”
Simulation, vol. 49, no. 5, pp. 219-230.

