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Design of Survivable Communication
Networks with High-connectivity Constraints

Seok J. Koh *: Chae Y. Lee **

Abstract

Designing highly survivable interoffice telecommunication networks is considered. The problem is
formulated as a minimum-cost network design problem with three node connectivity constraints. Three valid
and facet-defining inequalities for the convex hull of the solutions are presented. A branch and cut
algorithm is proposed based on the inequalities to obtain the optimal solution. With the lower bound by the
cutting plane algorithm, a delete-link heuristic is proposed to obtain a good upper bound in the branch and
bound procedure. The effectiveness of the branch and cut algorithm is demonstrated with computational
results for a variety of problem sets: different lower bounds, two types of link costs and large number of
links. The cutting plane procedure based on the three inequalities provides excellent lower bounds to the

optimal solutions,

1. Introduction

Survivability becomes an important issue in the design of fiber optic communication networks. To
restore services from catastrophic failures, such as the complete loss of a transmission link or the
failure of switching facilities, additional connectivity is necessary in the network. Services could be
restored by routing traffics through other links and nodes of the network. Clearly, a high level of
redundant . connectivity for improved network survivability requires the increase of overall network
cost. This leads to the problem of designing a minimum-cost network that meets certain required
connectivity constraints,

As an example, an interoffice telecommunication network consists of hub and central offices. A
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hub is a switching office through which all the demand from each central office are sent and routed
for connection to other hub offices, Each central office is connected to a hub via a fiber optic
system. They constitute clusters [16] such that a cluster contains one or two hubs and several
central offices. Two connectivity is usually considered between two different central nodes in a
cluster to guarantee the network survivability. It is supported by employing a self-healing ring or
diverse protection architecture, On the other hand, the network topology with high connectivity is
necessary among important hub nodes to provide reliable network services. Central offices in the
network employ the add-drop multiplexers, while hubs are equipped with switching facilities such as
digital cross-connect system.

Recent trends on designing survivable communication networks have mainly focused on network
models with two connectivity constraints. The cutting plane approach based on integer programming
model [5, 6, 7. 10] and various heuristics [2, 11] have been proposed for the survivable network
design. However, the increased traffics and the development of new equipments such as add-drop
multiplexers and digital cross-connect systems require more than two connectivity in the design of
interoffice communication networks [16]. The requirement of high connectivity has resulted in the
research on the related polyhedral theory and integer linear programing [1, 5] for the network design
problem. However, theoretical results and algorithms are still in an early stage of development for the
high node connectivity problems.

In this paper the network design problem w:th high connectivity, in particular three node
connectivity constraint, is considered. Differently from the study in [5], the solution procedure to
design the three connected network is presented with stronger polyhedral results. The underlying
network consists of switching offices each of which is either hub or central office. Potential links
between offices are assumed to be established with fiber facilities. Each link in the network has
fixed cost of establishing fiber facilities. For the survivability of the network, at least three node
disjoint paths are required between each pair of hub offices. However, such a requirement is not
necessary for the central offices. The goal is to design a network that satisfies the survivability with
minimum total link cost.

The design problem with three connectivity can be classified into two cases: unweighted link cost
and weighted cost. It is known in [13, 14, 15] that the problem with unweighted link cost can be
solved in linear time. However, the problem with weighted link cost is NP-complete even if a given
initial graph is two-connected. In this paper, the design problem with weighted link cost is
considered.

Section 2 presents the integer linear programing model of the survivable network design with three
node connectivity constraints. In Section 3 we present three valid and facet-defining inequalities for

the convex hull of the solutions to the problem, The branch and cut procedure which combines a
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cutting plane approach and a branch and bound technique is presented in Section 4. The
effectiveness of the proposed algorithm is discussed with computational results in Section 5, and

Section 6 concludes the paper,

2. Problem Description

In this section, we formalize the network design problem that is being considered in this paper. A
set V' of nodes is given which represents locations of the switching offices that must be
interconnected into a network in order to provide the desired services, A collection E of possible
links is also specified which represents the possible pair of nodes between which a direct transmission
link connection can be placed. Let X V.E) be the graph of possible link connections. Each link
e € E has a nonegative fixed cost ¢, of establishing the link connection. The cost of establishing
a network N(V,F) which consists of a subset F < E of links is the sum of the costs of the
individual link contained in F. The goal is to build a minimum-cost network so that the required
survivability conditions, which we described below, are satisfied.

The survivability conditions require that the network satisfy node connectivity requirement.
Groetschel and Monma [5] introduced a nonnegative integer 7, for each node » € V which
represents its connectivity type. They studied basic polyhedral properties for three connected polytope.
However, no computational analysis is appearing for the effectiveness of the theoretical study. This
paper expands the polyhedral properties which is necessary to design an efficient solution procedure,
We also develop a branch and cut algorithm for the optimal three node connected network based on
the polyhedral results.

We consider the case that the connectivity requirement satisfies 7, € {1, 3} for all v € V.
The node set V is divided into a set of hub nodes Vy and a set of central nodes V. Each hub
node v € Vg with 7, = 3 requires three node connectivity. In other words for any origin and
destination pair of hub nodes at least three internally disjoint paths must exist. The central node
ve Ve with 7, = 1 on the other hand needs one connectivity. That is, it is enough for a
central node to have a connection with any other nodes in the network. We consider the three node

connectivity (3NCON) problem as follows.

Given a graph G(V,E) and W, Z S V., we use the following notations,
IW):={jeE|] ieW je VAW?} : the cut induced by W :
E(W) := {4 e Eli je W) the set of links induced by W:
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GIW]:= (W, E(W)): the subgraph induced by W;

G/W : the graph where WE V is shrunk to a node:

G—Z : the graph obtained by removing each node z € Z and its incident links from G
Se-AW):={ieE|l ie W\2 je V\(WUZ)}:

HW):= max{ r;| s € W} : the connectivity type of W.

Let us now introduce, for each link e € E, a variable x, and the vector space RE such that
every subset F € E induces an incidence vector X¥ = RE by setting Xf = 1if e € F,

and XT := 0 otherwise, For any subset of links F S E, we define x(F) := e;F x.. We
now formulate the 3NCON problem as the following integer linear program,

(1) Minimize 2, Co X, subject to
e€ E

) x(&8(W)) >3 forall W& V with {W) = AV\W) = 3;
(i) (8 AW =1 forall ZC V with |Z] = 2 and

for all WS V\Z with (W) = AV\(WUZ)) = 3:
(i) x((W)) =21 forall W< V with AW) = 1or AV\W) = 1;
(iv) %, {0, 1} forall e € E.

In the model, each cut inequality of type (i) requires three link disjpint paths for each
origin-destination hub pair, The node cut inequality of type (ii), on the other hand, requires three
node disjoint paths. The inequalities of type (iii) require the network to be connected. The solution
space of the problem (1) can be described with the following connected polytope

3NCON( G) := convix € R® | x satisfies (#), (i), (##) and (iv)}
where conv denotes the convex hull operator, By deleting inequalities (iii), we obtain a special

3NCON problem with a node type », = 3 foral ve V.

3. Valid Inequalities for SNCON Polytope

In this section, we assume the survivable network design problem with a node type 7, = 3 for

all v € V. Thus the following connected polytope is considered.
3NCON( G) := convix € RE| x satisfies (i), (#) and (i)},

Three classes of valid inequalities for 3NCON( G) and conditions under which they define a facet
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of 3NCON( G) are considered. The inequalities will be employed to implement a branch and cut
procedure for the problem with a node type » {1, 3}".

An inequality a%x < b is valid with respect to a polyhedron Pif P S { x| ¢’x < 4 } and
the set F,:={x € P| a®x = b} is called the face of P defined by a®x < b, If dim( F,) =
dm(P) - 1 and F, #+ @, then F, is a facet of P and a’x < & is called facet-defining or
facet-inducing. Given a graph G(V.E), the inequalities (1)-(i} and (ii) are known to be valid and
define a facet of 3NCON( G) [5].

3-1. Partition Inequalities

Let us introduce the so-called partition inequalities that generalize a class of cut inequalities
(1)-(i). Consider a graph G(V,E) and a partition of V into node disjoint nonempty sets,
W, Wo, ..., W, p = 2. A collection W, Wa, ..., W, of subsets of V is called a partition
of V. Then the partition inequality induced by Wi, W, .. Wpis given by

@) 1/2 Z; H{S(W)) = [3/2 * £,

where [x] denotes the smallest integer not smaller than x.
Suppose that each W, be composed of a node in V for i = 1,..., |Vl. Then the partition
inequality (2) can be expressed as

(3) #(E) = [3/2 = |V]].
The following theorem shows the inequality (3) defines a facet of 3NCON( G).

Theorem 1. Given a graph G(V,E) where |V] is odd and a node type re 3}, if G
contains two node-dispint spanning cycles C;, C, S E (See Figure 1(a)), then the partition
inequality (3) defines a facet of 3NCON( G ).

(Proof) Let F,:= {x = 3NCOMG) | x(E) = [3/2%|V]1}). Clearly, F, is a face of
3NCOM(G) since the partition inequality (3) is valid for 3NCON(G). Also, F,+@, since G
satisfies four node connectivity. That is, a SNCON network with 3/21V| links is always constructed
on the given network G as described below. Now. to prove that F, is a facet of 3NCON( G), we
construct |E| affinely independent vectors in F, as follows, This implies that dim( F,) = | E]| -
1 = dim( 3NCON(G)) - 1.

First, take a cycle C) of G(V,E), and then for a node ¥ € V a set of links T C C,, we



64 Seok J. Koh - Chae Y. Lee BEEENEEE

call T a matching forest, may be added to C; as follows:;

(i) two incident links to the node % such as (#, w;), (u,ws) are added to Ci.

(i) then a subset of links in C, that no two are adjacent in C, are added (each link such as
(w,, ws), (wy, wg) is called a matching link).

Note that such a matching foret 7T where |T| = [|VI/2] always exists in C, and the
incidence vector X” where D := C \U T isin F,. By applying this argument for each node
in V successively we can construct | Cy! affinely independent vectors in F, (affinely independence
can be shown easily).

Now, take a cycle C; of G(V,E) and apply above arguments for each node in V. Then we
can construct | Cy| affinely independent vectors in F,, which are also affinely independent of above
|Cyl vectors. Until now, we have shown that |C;| + |C,l affinely independent vectors exist in F,.

For any other link ¢ = wv € E\(C;\UC,) we want to construct a cycle C and its matching
forest T using € but no other link of E\(C;\UGC,). so that the corresponding incidence vector
X? D:= C\UJ T, exists in F,. This can be easily done by finding a cycle including e and
constructing its matching tree in the remaining components of C;lUJC; (See Figure 1(b)). This

vector is affinely independent of all the others exhibited so far because all of those satisfied

x%. = 0. So we have | E| affinely independent vectors in F,. This completes the proof. o

Given a partition Wi, W, ..., W, of V,let G" be G/W;/Ws/.../W, where each node set
VV, is shrunk to a node w; of type W) for i = 1, ..., B G" is called the shrinking graph
of V. Grotschel and Monma [5] presented conditions under which valid inequalities for the NCON
( G*) on a graph G* can be lifted to valid inequalities for high-dimensional NCON( G) on a graph

G that contains G* as a subgraph. Such a lifting theorem helps to simplify the proofs for
facet-defining inequalities, With the help of the lifting theorem, we claim the following result without

proofs.

Corollay 1. Given a graph G(V,E), let G be a shrinking graph G/W/We/.../W, of G
where p is odd. Then the partition inequality (2) defines a facet of 3NCON( G) if the following
conditions hold

(a) G" contains two disjoint cycles spanning every W, for ¢ = 1, ..., » and

(b) Each G[ W] is three node connected for ¢ = 1, ..., p.

We note that a partition inequality induced by a partition with p = 2 is exactly the cut
inequality 2(8(W)) = 3. However, such a inequality does not define a facet of 3NCON( G)if p

is even.
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3-2. Node Partition Inequalities

The node cut inequalities (1)-(ii) can also be generalized to node partition inequalities. Given a
graph G(V,E) and 2z, 2, € V,let W, W, ..., W, be a partition of W{z1, z9}. Then the
node partition inequality induced by z,, z; and W, W, ..., W, is given by

(4) 1/2 Z; MBo-AW) 2 p — 1 where Z = {25, z,).

Given a graph G(V,E) and » € {3}", Grotschel and Monma characterized the conditions under
which the node partition inequality (4) defines a facet of 3NCON( G) [5]. However, since some of
the conditions are too strict and have redundancies, we propose simple and reasonable conditions for

the node partition inequalities to define a facet of SNCON( G) as follows,

Theorem 2. Given a graph G(V,E), a node type r € {3}' and 2], 23 € V, let
W, Wo, ..., W,, p =>4, be a proper partition of W{z;,2;}. Let G(V',E") be the
shrinking graph of G. Then the node partition inequality (4) defines a facet of 3NCON( G) if the
following conditions hold

(a) z; and z, are adjacent to all W, for ¢ = 1, .., p and

(b) G*(V*,E") is two node connected and
(c) Each G[W] — e is three node connected for all e € E{W], i = 1, .. p.

(Proof) The node partition inequality can be written as x(E*) > p — 1 in the graph G". Note
that condition (c) is necessary only for lifting the inequality to the inequality (4). Thus we need to

prove that x(E") 2 p — 1 defines a facet of 3NCON( G*) if conditions (a) and (b) hold.
Suppose that G'(V*,E®) satisfies conditions (a) and (b) (See Figure 2(a)). Set F L=
{x € BNCOMG") | (E") = p — 1}. Let E = E'U E where E = Nz U 6(z2y).
Clearly, F, is a face of 3NCOMG") since the inequality x(E") = p — 1 is valid for
3NCON(G"). Now, to prove that F . is a facet of 3NCON( G*), we construct | E| affinely
independent vectors in F,, This implies that dim( F,) = | El - 1 = dim( 3INCON(G")) - 1.
We first show that for every spanning tree T of G* the link set D:= T U E’ is three node
connected such that X2 € F o Let T be a link set in E*. Then
- For z; and z,, clearly three node disjoint paths exist not using 7.
- For z; (or z3) and u# € V*, take two node dispint paths not using 7' (path 2~ u
and path 2y > v — 2, = u where v #+ w in V*) and another disjoint path using 7 but not
using v (path z; > T — u).
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- For u, v € V*, take two node-dispint paths not using 7 (path # — z; — v and path
u — z; — v) and another disjoint path using 7 (path w— T — v),
Since G" is two node connected, we can find | E*| affinely independent vectors of the form
XP e F,in G5l
Now let D:= T\JE'\{& for each link ¢ = z,u € E. We want to show that |E'|
affinely independent vectors X° in F, . exist. To do so, for each link e = z;u we construct a
spanning tree T in E" such that = is not a leaf of T (See Figure 2(b)). Consider the three
connectivity between z; and . Suppose nodes v, w and y are on T. Then we can find three
node disjint paths in D {path z;, = w —u, path 2; > v — % and path z; = y — 2, — ),
By applying this argument for each e in E  successively, we can construct | E'| vectors of the
fom XP e F . in G. These vectors are affinely independent of all the others exhibited so far
because all of those satisfied x, = 1. So we have | El = |E*| + | E'| affinely independent

vectors in F,. ©

In [5] instead of condition (a) and (c), a condition that each G[WAJZ] — ¢ is three node
connected for all e € EIW;], i = 1, ... p was used to prove that F, is a facet of 3NCON( G).
Note that conditions (a) and (c) are more simple and reasonable than conditions in [5] on a graph
G(V,E). The node partition inequality induced by a partition with p = 2 is exactly the node cut
inequality x(d¢-AW)) = 1.

3-3. Cycle Partition Inequalities

In this section, we propose two new classes of valid inequalities on low dimensional 3NCON( G )
that can be lifted to high dimensional 3NCON( G) by using lifting theorem. Such inequalities as
variants of the partition inequality (3) can be employed for an effective implementation of the

branch and cut procedure.
Given a graph G(V,E), let C S E be a cycle ( C may not span ) V. Then we define two

inequalities as follows. On the cycle C which spans a set of nodes V, we define the crown
inequality (See Figure 3(a)) as

(5) *W(E\C) = TICl/2]1.

When the cycle C does not span a node set V' ,let Z C V be a set of nodes spanned by the

cycle C. Then on a set of nodes Z and a set of links C we define the wheel inequality (See
Figure 3(b)) as
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(6) (dNZ)) + (EEZNC) =21 + [[Cl+1 /2]

Given a graph G(V, E) with a type vector » & {3}7, the following lemmas show that the two
classes of inequalities are valid for SNCON( G ).

Lemma 1. The crown inequality (5) is valid for 3NCON( G).

(Proof) We know that the partition inequalities (3) is valid for 3NCON( G). Thus we obtain
HE) = =(E\C) + x(C) = IC| + [IC)/2]. By setting x, = 1 for all e € C, the result
follows, o

Lemma 2. The wheel inequality (6) is valid for 3SNCON( G ).
(Proof) Let Z C V be the node set spanned by the cycle C. From the partition inequalities
(3) we obtain the following inequality

HE) 2 (AVZ)) + x(E@\C) + x(C) 2 ICl + 1 + [(IC|+1)/2].

By setting x, = 1 for all e & C, the result follows, o

4. Branch and Cut Procedure

In the previous section we discussed the polyheral properties of the 3NCON( G) with a type

vector 7 € {3}" and showed three strong valid inequalities to define the facet of 3NCON( G).
This implies that the partition, node partition and cycle inequalities may give a good effect on

solving the problem. Note that the identification problem of these facet-defining inequalities is very
difficult since the problem is NP-hard. However, those inequalities are very helpful to solve the
problem efficiently, Now, to solve a survivable network design problem (1) with » & {1, 3}V, we
need the following condensing operation.

Given a connected graph G(V,E) where V = Vg U V. condensing of a set V. of nodes
to a set Vg consists of shrinking every node # € V. into a node » = Vy connected to the
node #. Note that each node u = V¢ satisfies its connectivity requirement since G is connected.
All links that were incident to either # or v in G are now incident to the node v. The

resulting graph consists of nodes only in Vg notin Vg.
Given a condensed graph, the branch and cut procedure is employed based on the cutting plane

method proposed in [7] and a simple branch and bound procedure, Thus the solution procedure is
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divided into the cutting plane stage and the branch and bound stage.
4.1 An Outline of the Branch and Cut Procedure
The inputs of the survivable network design problem are an underlying network G(V, E) with

link costs ¢ € RE and node types r € {1, 3} Y To solve the integer linear program (1), we
consider a sequence of the following linear programming relaxations;

(7 min ¢’x subject to
(&) = 3 forall v € Vg
#(&(v) =21 forall v e Vi:
0<x <1 for all e € E.

Note that the problem (7) contains the degree constraint of each node in the network, that is, a
subset W of nodes is equal to a single node in (1)-(i) and (iii). Suppose that the current
LP-relaxtion is solved and an optimal solution vy is obtained. If y satisfies the survivability conditions
(1)-(), (i), (i) and (iv), then the problem is solved. If y does not satisfy any of the four
conditions, then we try to generate either partition, node partition or cycle partition inequality that is
violated by y (we call this a separation routine). If we can produce such inequalities, we add the
inequalities to the current LP, solve the new LP, and repeat these steps.

It may happen that y is not an integer solution and that we are unable to find a valid inequality
violated by y. In this case with the lower bound of the 3NCON problem (1) the branch and bound
stage is started. With inequalities obtained from the cutting plane stage and integer constraints, we

solve the integer programming problem by a branch and bound technique and obtain an integer

solution ¥*. Clearly, the solution y* satisfies the integer constraint (1)-(iv), but may not satisfy the
other constraints (1)-(i), (ii) and (iii). Thus the inequalities that are violated by 3" need to be
generated as in the cutting plane stage. If no valid inequality violated by " can be found, then the

current solution 3* is an optimum of 3NCON problem (1) since y is an integer solution satisfying
the survivability constraints (1)-(i), (i) and (iii).

Branch and Cut Procedure for the 3NCON Problem
A. Cutting Plane Stage
1. Solve the LP (7). Let y be an optimal solution to this LP.
2. Do the following steps if y is not feasible for the SNCON( G).
2-1. Find the partition inequalities violated by ¥y and add them to the LP.
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2-2. Take E' = {e€ E|y, 2 1/2} from G(V,E) and .
If G(V,E’) is not connected, go to Step 1.
Else condense V¢ to Vy and let G be the condensed graph.

2-3. Try to find node partition and cycle partition inequalities violated by y in G* and
add them to the LP.

At this point, the graph of G(V, E’) satisfies SNCON( G ).
Go to the branch and bound stage (B). Else go to Step 1.

B. Branch and Bound Stage
3. Consider an integer program with inequalities obtained from (A) and integer constraints
(note that, fortunately, if the solution y obtained from (A) is an integer, such an integer
solution ¥ is an optimum).
3-1. Perform the branch and bound procedure.
Then let ¥* be an optimal solution to this integer program.
3-2. Try to find the inequalities violated by y* as in Step 2 of (A).
If no inequality can be found (this means that the graph induced by »" satisfies
3NCON( G)), then stop.
Else add them to the integer program and go to Step 3-1.

4.2 Separation Routines

By assuming that y is a feasible solution obtained from the current LP (or integer program in
the branch and bound stage), we need to check whether y satisfies all inequalities described in
Section 3. Since each class of inequalities contains a number of inequalities that is exponential in
| W, it is impractical to consider all these inequalities explicitly,

For the cut inequalities (1)-(i) and (iii), an efficient exact separation procedure exists, It works by
using Gomory-Hu algorithm [4, 12]. The separation problems for the node cut inequalities (1)-(ii)
can be solved in a similar manner by first deleting two nodes so that the resulting graph becomes
disconnected (these two nodes are called a separation pair [9]) and applying Gomory-Hu algorithm
to the resulting graph, and repeating this for all separation pairs in V. Note that these operations
are done on the condensed graph.

In theorem 1 and 2 of Section 3, we showed the partition and node partition inequalities are valid
and facets of 3NCON polytope. However, the separation problems associated with partition and node
partition inequalities are known to be NP-hard [7]. We employ efficient heuristics [7] to generate

violated inequalities in the branch and cut algorithm. The inequalities generated in the algorithm are
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valid for 3NCON problem, and they may be a facet of 3NCON polvtope. However, it is difficult to
check whether a valid inequality is a facet or not, since the related separation problem is NP-hard.
The separation problem for the cycle partition inequalities is also NP -hard since those inequalities
are derived from the partition inequalities. Thus a separation heuristic for cycle partition inequalities
is designed as follows. Given a condensed graph G(Vy, E), let z;, 2, be a separation pair of
G(Vy, E). We first identify a cycle spanning nodes 2; and 2,. This is done by combining two
node disjoint paths: a path from 2; to 2z, and a path from 25 to 2;. Let C € E be a cycle
found by such a procedure and let Z C Vp be the set of nodes that are spanned by the cycle C.
To generate the crown inequality (5), each node # in Vg\Z is shrunk to a node ¢ in Z that
is connected to the node #. Then the graph G(V, E) is partitioned into a set of nodes in Z. For
the wheel inequality (6), each node # € Vy\Z is successively shrunk to a node w € V\Z that
is connected to the node % Then the Gomory-Hu algorithm is applied to generate the cycle

partition inequalities violated by the current solution .

4.3 Delete-Link Heuristic for Obtaining Upper Bound

The cutting plane routine gives a lower bound to the subsequent branch and bound stage for
3NCON problem. To design more efficient branch and bound procedure, it is reasonable to use a
good feasible solution as an upper bound. To get an upper bound, the delete-link heuristic is
presented.

Let the solution obtained from the cutting plane stage be y. Usually the solution is not an

integer. Thus by taking links in £ = {e e E| y, = 1/2}, the solution becomes feasible for
3NCON(G). Then this solution has redundant links which are not necessary for the three node

connectivity constraint. From this solution, the delete-link heuristic improves the network cost by
deleting expensive links in the current solution until no further cost improvement is made. The

procedure of the delete-link heuristic is presented as follows:

Delete-Link Upper Bound Heuristic

1. Perform the cutting plane stage. Then let ¥ be a lower bound solution.
2. Take E'={e € E|y, 2 1/2} from the solution y and G(V.E).
3. From the network G(V,E’), sort all links in descending order of link costs.
Do the following steps for all links in E’,
3-1. Let e be the most expensive link in G(V,E) that is not considered.
3-2. If G(V.E"\{e}) is feasible for the NCON( G).
Then delete the link e from G(V,E").
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Note that the above heuristic improves the network cost such that the feasibility is maintained and
gives an upper bound to the subsequent branch and bound procedure. The delete-link procedure is

applied for all links in E’ and requires to check if the network satisfies the three node connectivity.

5. Experimental Results

Computational experiments are performed to test the effectiveness of the branch and cut procedure
for the survivable network design with three connectivity, We examine the performance of the
cutling plane procedure and the gap of lower and upper bound from the optimal solution. We also
compare the branch and bound with two different lower bounds: a linear programming relaxation
and a cutting plane method.

All the computational results reported in this section are performed on HP-UX 9000/715
Workstation, The branch and cut procedure is coded in C programming language and uses the
LP-solver CPLEX and IP-solver CPLEX-MIP. All separation routines outlined in Section 4 are also
coded in C.

Figure 4, as an example, shows a problem with 50 nodes where‘squares and circles represent hubs
and central offices repectively. In the figure 100 candidate links are located in 400 by 400 Euclidean
plane and each link cost is given as the distance between two nodes. Figure 5 demonstrates a three
node connectivity solution obtained by the branch and cut algorithm,

Five instances are generated and averaged for each problem with 50, 100, 150 and 200 nodes. In
each case it is assumed that |Vyl = |V¢| = |V|/2. The computational results of the twenty
problems are summarized in Table 1 - 5. In Table 1, 2 and 3, the underlying network of each
problem is generated with 2|V| candidate links where each link cost is given as Euclidean distance
between two nodes. In Table 4 and 5, the experiments are performed with various link costs and
different number of candidate links.

Table 1 shows the performance of cutting plane procedure for 3NCON problem. In the table, valid
inequalities generated during the cutting plane procedure are shown for each problem. Partition and
node partition inequalities generated in the cutting plane procedure give good effects in obtaining the
lower bound for 3NCON problem. On the average, partition inequalities are generated approximately
twice of the number of nodes while node partition inequalities about 1/2 of the number of nodes.
The use of crown and wheel inequalities are relatively small and indifferent to the number of nodes.
This implies that the partition and node partition inequalities give better performance than the crown

and wheel inequalities.
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Table 2 shows gaps of lower and upper bounds from the optimal solution. Linear programming
relaxation and cutting plane lower bound are compared with optimal solution. Each gap represents
the percent relative error from the optimal solution, ie., 100(bound-optimum)/ optimum. The table
shows that the cutting plane procedure provides excellent lower bounds compared to the LP
relaxation, The gap is approximately 0.8 % in problems with 50 nodes and 51 % with 200 nodes.
The delete-link heuristic gives a good upper bound with the gap of approximately 6 - 11 % for all
problems.

Table 3 shows the performance of the branch and bound with different lower and upper bounds.
Two lower bounds, LP-relaxation and cutting plane, are employed for branch and bound procedure.
Each case is then compared with the procedure with upper bound. The table shows the
computational time of each procedure for optimal solution. The cutting plane method is much more
efficient than the LP-relaxation for all problems, In problems with 200 nodes, two methods with LP
relaxation fail to obtain an optimal solution within 3 hours. The cutting plane method with the
delete-link upper bound is the most efficient among the four procedures.

Table 4 shows the results of the branch and bound with two different link costs. The cutting
plane with upper bound procedure, which is the most efficient, is employed. The random links are
generated by assuming uniform cost distribution over the integers 1, 2, .., 400. In the table, the gap
of lower and upper bound from the optimal solution is shown with the CPU time of the branch and
cut procedure. It is clear from the table that the problem with random link cost is more difficult
than that with Euclidean link cost.

Table 5 illustrates the branch and bound with three different sizes of candidate link set. The
number of candidate links in the three sets are 2|V:, 3IV! and 41VI respectively.

Link costs are assumed Euclidean. As shown in the table, when |El = 3|V| problems with 150 and
200 nodes are not solved within 3 hours. When the problem size becomes /El = 4|V|, optimal

solutions could be obtained only in problems with 50 nodes within 20 minites.

6. Conclusions

The problem of designing survivable telecommunication networks is considered. Valid and
facet-defining inequalities for the three node connectivity solutions are proposed. Partition, node
partition, crown and wheel inequalities are developed for the cutting plane procedure to obtain a good
lower bound. It is demonstrated that the partition and node partition inequalities give better

performance than the crown and wheel inequalities.
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The computational results show that the cutting plane procedure provides excellent lower bounds
compared to the LP relaxation, The gap from the optimal solution by the cutting plane is
approximately 08 % in problems with 50 nodes and 51 % with 200 nodes. However, the LP
relaxation method failed to obtain an optimal solution within 3 hours in problems with 200 nodes.
The use of delete-link heuristic is promising for a good upper bound. The cutting plane procedure
with the delete-link upper bound is proved to be the most efficient among the procedures
experimented. It is also demonstrated that the largest size of candidate links to obtain an optimal
solution within a reasonable computing time is |E| = 3IV] for problems with 100 nodes and IE| =
2IV| with more than 150 nodes.
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Figure 4. The Example Network with 50 Nodes

Figure 5. The Optimal Network with 50 Nodes
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Table 1. Performance of Cutting Plane Procedure for 3NCON Problem
No. of Nodes 50 100 150 200
Partition 114 202 256 287
Node-Partition 23 44 68 76
Crown 7 9 14 18
Wheel 12 17
Each value is averaged over five instances.
Table 2. Comparision of Lower and Upper Bounds from the Optimal Solution
No. of Nodes 50 100 150 200
LP-relaxation(LB) 2807.8 37738 4584 5 52154,
(-25.80%) (-26.14%) (-27.45%) (-27.71%)
Cutting Plane(LB) 3759.3 4986.2 6114.8 6845.5
(-0.76%) (-2.41%) (-3.21%) (-5.11%)
Delete-Link(UB) 4048 5547 6904 8024
(6.86%) (8.57%) (9.27%) (11.23%)
Branch and Bound 3,788 5,109 6.318 7.214
Each percent in the parenthesis represents the gap from the optimal solution,
Table 3. Branch and Bound with Different Lower and Upper Bounds
No. of Nodes 50 100 150 200
LP-relaxation 30.24 405.85 9,487.23 > 3 Hours
LP-relaxation with UB 19.25 262.54 6,824.09 > 3 Hours
Cutting Plane 7.32 4821 654.14 7,415.85
L Cutting Plane with UB 6.43 32.14 513.67 5,426.15
Each value represents CPU seconds
Table 4. Branch and Bound with Two Different Link Costs
No. of Nodes 50 100 150 200
Euclidean Cost
Cutting Plane(LB) -0.76% -241% -321% -5.11%
Delete-Link(UB) 6.86% 857% 9.27% 11.23%
CPU seconds 6.43 32.14 513.67 5426.15
Random Cost
Cutting Plane(LB) -1.04% 2.26% -4.25% -6.87%
Delete-Link(UB) 752% 19.21% 13.45% 15.88%
CPU seconds 742% 103.45 897.89% 7,457 82
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Table 5. Branch and Bound with Large Candidate Link Sets

No. of Nodes 50 100 150 200

[E|=2]V]|
Cutting Plane(LB) -0.76% -2.41% -3.21% -511%
Delete-Link (UB) 6.86% 8.57% 9.27% 11.23%
CPU seconds 6.43 32.14 513.67 5426.15

|E[=3| VI
Cutting Plane(LB) -2.34% -5.78% % 3
Delete-Link(UB) 8.34% 12.12% ¥ ¥
CPU seconds 78.94 1,076.34 >3 Hours >3 Hours

|El=4]V]|
Cutting Plane(LB) -5.67% 3 3 %
Delete-Link(UB) 11.34% 3 ¥ ¥
CPU seconds 1.197.23 > 3 Hours > 3 Hours > 3 Hours

¥The branch and bound fails

to obtain an optimal solution in 3 hours.



