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Abstract In real world, there are many artificial objects. We propose a new method to
reconstruct the 3D structure of the artificial objects from the scene pictures using orthogonality
and parallelism. The new transformation group “semi-metric space” is defined and using that
we describe the artificial scenes effectively. Through the analysis of the plane and parallax, the
relative distance between a line and the reference plane is estimated, and it gives us a partial
3D structure from a single image. The algorithms are verified with real image captured with
camera in commercial mobile phone.

1 Introduction

In recent years, imaging systems have come into
wide use in public. Most popular imaging systems
are digital cameras. Under one thousand dollars, we
can get a public digital camera which has four mil-
lion pixels or more. There are even mobile phones
which have imaging capturing modules with about
three million pixels.

Even if you do not have a high quality digi-
tal camera, you can use high-quality digital im-
ages through broadcasts. Images of high-definition
television (HDTV) have very high resolution (1920
× 1080), and it is relatively same with one from
cameras with two-million effective pixels or more.
Cost for capturing HDTV images is under two hun-
dred dollars. In other words, there are so many
ways for people to have high quality images in these
days with very low cost. Although imaging captur-
ing devices flood into the public, computer vision
technologies are rarely distributed. Except making
panoramas with images from rotating cameras, peo-
ple have not used the information of their images
using vision algorithms or image analysis. Espe-
cially, high-quality images have much geometric in-
formation, but extracting the information requires
some specific knowledge about projective geometry.

To make geometric information in captured
scenes used in public, efforts to simplify the process
by users are needed. Especially, manual setting of
parameters of the algorithm is critical to simplify
the user intervention. We want to make a simple
framework to be used easily by the public.

Unfortunately there are few cases to obtain the
suggested independent information of the scene.
People can detect a parallelism of line set, and fur-
thermore, an orthogonality very easily. In fact,
most of visual illusions are based on the proper-
ties of the human visual system [1]. It means that
human visual systems have been well-trained to de-
tect the parallelism and the orthogonality. But it is
quite difficult to find an exact aspect ratio of rect-
angles in three dimensional space. As pointed out
in [2], this kind of information is critical to reveal
the correct structure of the captured scenes.

This can be a problem if we want to work with
unknown scenes. Sometimes, we cannot measure
the scene physically and we have no idea about the
cameras which are used to capture the scene. Prac-
tically, there are many cases that we have some rect-
angles whose aspect ratios are unknown. For exam-
ple, these cases occur when we want to use some
snapshot images captured in a travel, or captured
images from TV signal. What we can use is just
information from the human visual system, those
are the parallelism and the orthogonality.

In this paper, we study the possibility to use
only the parallelism and the orthogonality with one
or a few images in reconstructing artificial objects.
First, we propose a new transformation space called
semi-metric space. Next, we investigate a possibil-
ity to reconstruct structures of a scene from the
captured images using the properties of the semi-
metric space. In practice, we extract some partial
information of a scene from a single image using the
proposed framework with the image captured with



a camera in a mobile phone.

2 Semi-metric space

A semi-metric space is a space that is represented by
a semi-metric transformation. A semi-metric trans-
formation in P

2 is expressed as
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where R is a rotation matrix such that R
⊤

R =
RR

⊤ = I and t is a translation vector. s1 and s2

are scale factors which are independent along to the
orthogonal axis.

Note that eq.(1) is a kind of affine transforma-
tions and looks similar to the metric transformation
except the orthogonal scale matrix. In the semi-
metric space, the metric properties along the par-
allel lines which are aligned to the X,Y axis in the
warped plane are all preserved, but ones not aligned
to the axis are not preserved. Of course, affine prop-
erties are all preserved in the warped plane, because
it is one of affine transformations.

Strictly speaking, the semi-metric transforma-
tion cannot be a general stratification of projective
transformation because of these properties. How-
ever, the semi-metric space is one of good tools
to analyze scenes that have only information about
parallelism and orthogonality of some planes.

2.1 Warping to the semi-metric space

For metric rectification of a projective distorted
plane, there are some ways to find the rectifying ho-
mographys [2, 3]. Generally it is possible with five
independent orthogonal line sets, or with a rect-
angle whose aspect ratio is known, or with a line
at infinity and an orthogonal line set. Essentially,
these three conditions are all equivalent [2] to the
case with a rectangle whose aspect ratio is known.
If we do not have the sufficient condition, how can
we warp the plane into the semi-metric space?

There are two ways to warp an image to a semi-
metric space. First one is using orthogonal vanish-
ing points, and the other is using a standard rect-
angle.

2.1.1 Using orthogonal vanishing points

As derived in [4], a projected dual circle is given as

A
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and it is expressed as
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where D is a diagonal scale matrix and V is a ma-
trix which contains orthogonal vanishing points v1,
v2 and an origin of the target plane xc. Assume
that the plane homography is P. Without loss of
generality, the matrix V is expressed as

V = Pdiag (a, b, c) (2)

where a, b and c are proper scale factors that are
needed to correct the scales. This means that warp-
ing with matrix V

−1 makes planes independently
scaled along to the orthogonal axis, and this is a
semi-metric image. The resulting warping matrix
is V

−1.

1v

2v

Arbitrary:cx

1v

2v

Arbitrary:cx

Fig. 1: Elements of semi-metric transformation ma-
trix from vanishing points

This formulation is similar to other vanishing
point based algorithms [5, 6]. The key difference is
the third column of the matrix V. Previously, they
set it with the third orthogonal vanishing points,
but here, it is set with an arbitrary point on the
plane.

2.1.2 Using a standard rectangle

Finding vanishing points from a projected rectan-
gle is not easy. To warp an image to semi-metric
space, there is the other option to use the projected
rectangle itself. A warping from the projected rect-
angle to a standard rectangle is sufficient to build a
semi-metric space. A standard rectangle is a prede-
fined rectangle whose aspect ratio is known. Fig.2
shows the concept of the warping method using a
standard rectangle.

The warping matrix Hsm is computed by a con-
ventional plane homography estimation algorithm
using four points [3]. Due to some numerical issues,
a normalized algorithm with a standard rectangle
which is similar to the algorithm proposed by Hart-
ley [7] is preferred.
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Fig. 2: Semi-metric warping using a standard rect-
angle

The matrix Hsm is equivalent to a warping ma-
trix V using vanishing points, because the resulting
warped images from Hsm and one from V can be
transferred to each other by translating and orthog-
onal scaling.

3 About off-the-plane features

In this section, we study about features which are
not on the model plane. If we warp a projec-
tively distorted plane to a semi-metric space, there
are also some interesting properties regarding the
off-the-plane features. The properties are gener-
ally known as plane+parallax properties [3, 8–11].
However, by using semi-metric warping, a simpler
derivation is possible.

Also we can make a semi-metric projection ma-

trix from the semi-metric warped image. The semi-
metric 3D structure is obtained from a single image
of a projectively distorted scene with some addi-
tional knowledge of the scene, which is similar to
the method proposed in [12,13] without three strong
vanishing points.

3.1 Points off the reference plane in semi-
metric space

Because the original image is fully transformed pro-
jectively, there are some feature points that are not
on the reference plane. Although the semi-metric
warping is achieved, a projective distortion along
to the third orthogonal direction is remaining. In
this section, we investigate the position of the off-
the-plane points after the semi-metric warping.

Without loss of generality, we use a matrix V
−1

as a semi-metric warping transformation. By the
general pin-hole projection model, a projected point
of an obtained feature point X whose coordinates
are (X,Y,Z) is given as

x ∼ K
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]
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where K denotes a camera matrix describing inter-
nal parameters of the camera.

By warping x in eq.(3) and V
−1 in eq.(2) to the

semi-metric space, the warped point x′ is

x′ ∼ V
−1x. (4)

Eq.(4) can be rewritten as
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where m is defined as m ,
[
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]−1
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. Using inhomogeneous coordi-

nate, the point in the semi-metric spcae is expressed
as
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Note that the scale factors c/a and c/b can be
canceled out because the point is in the semi-metric

space.

3.2 Relative-Z estimation

Based on the eq. (6) , we can extract some useful
information of the scene.

Assume that there are two points (X0, Y0, 0) and
(−X0,−Y0, 0) on the reference plane. A length be-
tween the two points on the semi-metric space is
calculated from eq.(6) as

l0 = α1

c

a
2X0 (7)

where α1 is a scale factor to describe an arbi-
trary semi-metric warping. In the same semi-metric
space, a difference of X direction in the semi-metric
space between two equal-Z points (X1, Y1, Z) and
(X2, Y2, Z) is given by

l = α1

c

a

X1 − X2

1 + Zm3

. (8)

From eqs.(7) and (8), the length ratio is given as

l

l0
=

1

1 + Zm3

L

L0

where L is a difference of X coordinate between two
points which have common Z coordinate, and L0 is
a difference of X coordinate between two points on
the reference plane. Some tedious manipulations of
the equation make

1

1 + Zm3

=

(

l

l0

/ L

L0

)

, L′.

So the relative Z, that is Zm3, is calculated easily
as

Zm3 =
1 − L′

L′
.



It is not necessary to know m3, because this equa-
tion gives us only relative-Z coordinate, if we know
the ratio of differences of X or Y coordinates of
the two line segments in metric or Euclidean space.
Generally these values are easily obtained through
a semi-metric warping of a target plane using the
property of a semi-metric space that conserves the
length ratio along to the orthogonal axis.

3.3 Semi-metric projection matrix

Once we find the information about relative-Z’s of
scene features, we can define a semi-metric 3D space

of the scene. We can derive a formulation about the
3D-2D relationship of semi-metric space. We call it
a semi-metric projection matrix.

Eq.(6) can be rewritten as
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Here, the leftmost matrix diag(1/a, 1/b, 1/c) is one
of semi-metric transformation matrices. Therefore
we define a pure semi-metric projection matrix as


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m3 1


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[

e1 e2 m e3

]

where e1 =
[

1 0 0
]⊤

, e2 =
[

0 1 0
]⊤

and e3 =
[

0 0 1
]⊤

.
To complete the semi-metric projection matrix,

the only remaining problem is to compute a vector
m.

3.3.1 Physical meaning of m

From eq.(5), m is defined as

m =
[

m1 m2 m3

]⊤
=

[

r1 r2 t
]−1

r3.

Assume that m is a point in a semi-metric space.
If we try to warp the point into a projective space
with semi-metric warping matrix V

−1, the point m′

is given as

m′ = Vm = Kr3 = svsm,

where vsm is a vanishing point whose direction is
orthogonal to the reference plane in the projective
space, that is the third vanishing point.

We can conclude that the vector m is the scaled
third vanishing point in a semi-metric space. If we
know the position of the vanishing point in a semi-
metric image, we have to find a proper scale factor
to complete the semi-metric projection matrix.

3.3.2 Computing m

If we know the relative-Z’s with respect to the ref-
erence plane, we can calculate the X and Y coor-
dinates of the point in the semi-metric space from
eq.(9). Some basic manipulations with eq.(9) give
us

X = xsm(1 + m3) − m1Z

Y = ysm(1 + m3) − m2Z.
(10)

We can make two algorithms to compute m from
eq.(10). The first one is to obtain the scale s if
we know the orthogonal vanishing point vsm in the
semi-metric space. The second one is to find the
vector m from some scene constraints directly.

1) Algorithm with known orthogonal van-
ishing point vsm

Assume that there are two points which have the
same X coordinate in Euclidean world. Because
m = svsm and X = xsm(1 + m3) − m1Z, for the
two points with the same X coordinate, we obtain

X = xsm1(1+m3)−m1Z1 = xsm2(1+m3)−m1Z2.

Therefore, we can derive the scale s from the equa-
tion as

s =
xsm2 − xsm1

vsmx
(Z2 − Z1) + (xsm1Z1 − xsm2Z2)

where the orthogonal vanishing point vsm =
[

vsmx
vsmy

1
]⊤

.
If it is the case that two Y coordinates of the

points are equal, the same derivation is possible.
The required constraint is that there are two points
which have the same X or Y coordinate in Euclidean
(or metric) world. This condition is occurred often
in treating an image of real worlds.

2) Algorithm to compute m directly from
some scene constraints

If we have more pairs of points that have common
X and Y coordinates, it is possible to estimate m
with a proper scale directly. We can make basic
equations as

X = xsm1(1+m3)−m1Z1 = xsm2(1+m3)−m1Z2

and

Y = ysm1(1+m3)−m2Z1 = ysm2(1+m3)−m2Z2.

These equations are rewritten as

(−Z1+Z2)m1+(xsm1Z1−xsm2Z2)m3 = xsm2−xsm1

(−Z1+Z2)m2+(ysm1Z1−ysm2Z2)m3 = ysm2−ysm1.



You can notice that it needs one more equation
to make it over-constrained. Therefore the minimal
condition is two pairs of points which have the same
X and Y coordinates. Of course, pairs of points
which have only one common X or Y coordinates,
not both, are helpful to make the equation over-
constrained.

3.4 Semi-metric 3D reconstruction with a
single view

Using the methods described in the previous sec-
tions, we can build a semi-metric 3D model with a
single view. An algorithm is summarized as follow.

1. Warping to a semi-metric space

Using methods described in section 2.1, warp-
ing to a semi-metric space is possible. Tracking
of the orthogonal vanishing points or tracking
of rectangular features is sufficient to warp an
image to a semi-metric space.

2. Computing relative-Z’s

Relative Z, that is a ratio of the orthogonal
distances from the reference plane, can be ex-
tracted by a method represented in section 3.2.
To compute relative Z of the features, ratios
of physical length of line segments which are
parallel to the reference plane are needed, and
it can be obtained from setting by humans or
from another semi-metric warping with respect
to a plane which contains the line segments.

3. Estimating semi-metric projection matrix

For this, we can utilize the methods in section
3.3. Essentially, the objective of this part is to
obtain a third vanishing point whose direction
is orthogonal to the reference plane and to find
a proper scale factor. We only need some pairs
of points that have common X or Y coordi-
nates and their relative-Z’s.

4. Computing X and Y coordinates

From eq.(10), X and Y coordinates of fea-
ture points are obtained directly. Reversely,
if we know X or Y coordinates of feature
points, a proper relative-Z can be estimated
from eq.(10), which is similar with the method
proposed in [13].

5. Constructing a semi-metric 3D structure

Construction of a semi-metric 3D structure is
possible by linking features topologically. The
topology, which means the connection between
features, is determined manually using prior
knowledge about the scene.

3.4.1 Experiment with a real image

In this section, we show an example of reconstruc-
tion of semi-metric 3D with a real image. Fig. 3 is
an input image of a building scene. The image is
captured using a camera module attached in SAM-
SUNG SPH-2500 mobile phone, whose intrinsic pa-
rameters cannot be adjusted. There are several ar-
tificial planes, and we can easily detect parallel line
segments in the image. We selected three planes in
the image to be reconstructed.

Fig. 3: Real input image for verification of proposed
algorithm

Fig. 4 shows a reconstructed 3D structure in
semi-metric 3D space. Note that the lines along to
the orthogonal axis are all orthogonal to each other,
although we didn’t apply any kind of robust meth-
ods for estimating seme-metric 3D reconstruction.
We used only easily-obtainable information of the
scene, for example, a rectangle, parallel lines to find
the orthogonal vanishing points, and constraints for
line segments whose length are all equal. Note that
there were no extrinsic measurements in the pro-
cess.

Fig. 4: Reconstructed semi-metric 3D structure
(VRML) model

4 Conclusion

In this paper, we propose a new method to recon-
struct 3D structures of captured scenes using paral-
lelism and orthogonality. For this, we propose a new



transformation group named as semi-metric space

and we reveal the properties of the space and its
benefits. In semi-metric space, the metric proper-
ties aligned to each predefined orthogonal axis are
preserved, but ones not aligned to predefined axis
are not metric invariants. If we have some infor-
mation of parallelism and orthogonality, upgrade
to the semi-metric space can be simply achieved.
From the semi-metric space, the partial structure
of the scene can be retrieved from a single image
and its easily-obtainable scene constraints. The re-
sulting 3D is called semi-metric 3D, and we can find
the scene structure up to semi-metric transforma-
tion even if we have only one image and no external
measurements.
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