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Abstract

This article addresses information-based sensing point selection from a set of possible sensing locations. A potential
game approach has been applied to addressing distributed decision making for cooperative sensor planning. For a large
sensor network, the local utility function for an agent is difficult to compute, because the utility function depends on the
other agents’ decisions, while each sensing agent is inherently faced with limitations in both its communication and com-
putational capabilities. Accordingly, we propose an approximation method for a local utility function to accommodate
limitations in information gathering and processing, using only a part of the decisions of other agents. The error induced
by the approximation is also analyzed, and to keep the error small, we propose a selection algorithm that chooses the
neighbor set for each agent in a greedy way. The selection algorithm is based on the correlation between one agent’s
and the other agents’ measurement selection. Furthermore, we show that a game with an approximate utility function
has an e€— equilibrium and the set of the equilibria include the Nash equilibrium of the original potential game. We
demonstrate the validity of our approximation method through two numerical examples on simplified weather forecast-
ing and multi-target tracking.
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Introduction While these greedy algorithms are simple to implement,
and especially a sequential greedy algorithm guarantees
the worst-case performance when the objective function
satisfies submodularity. However, they are subject to
some limitations. Since each agent selects the sensing
locations by solving only one problem, these single-run
algorithms do not fully take advantage of possible
information flows, and thus the decisions can be arbi-
trarily suboptimal. The other direction is an iterative

The goal of cooperative sensor network planning prob-
lems is to select the sensing locations for a sensor net-
work so that the measurement variables taken at those
locations give the maximum information about the
variables of interest. This problem can be formulated
as an optimization problem with the global objective
function of mutual information between the measure-
ment variables and the variables of interest."® For the
distributed/decentralized implementation of the optimi-
zation problem, there are two main research directions. Department of Aerospace Engineering, Korea Advanced Institute of
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of steps required to solve a local optimization problem .
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algorithm, which generates a sequence of solutions to
converge to an approximate optimal solution."*!® An
iterative method solves the optimization problem
approximately at first and then more accurately with
an updated set of information as the iterations prog-
ress.'! A game-theoretic method is one of the iterative
algorithms, which finds a solution through a decision-
making process called a repeated game, that is, the
same set of games being played until converging to a
solution. Especially, a potential game approach pro-
vides a systematic framework for designing distributed
implementation of multi-agent systems and many
learning algorithms that guarantees convergence to an
optimal solution.'* ¢

In Choi and Lee,' we adopted a potential game
approach to a sensor network planning. Potential
games have been applied to many multi-agent systems
for distributed implementation due to their desirable
static properties (e.g. existence of a pure strategy Nash
equilibrium) and dynamic properties (e.g. convergence
to a Nash equilibrium with simple learning algo-
rithms).'*!” The formulation of a multi-agent problem
as a potential game consists of two steps: (1) game
design in which the agents as selfish entities and their
possible actions are defined and (2) learning design
which involves specifying a distributed learning algo-
rithm that leads to a desirable collective behavior of the
system.” For game design, we proposed the conditional
mutual information of the measurement variables con-
ditioned on the other agents’ decisions as a local utility
function for each agent. This conditional mutual infor-
mation is shown to be aligned with the global objective
function for a sensor network, which is mutual infor-
mation between the whole sensor selection and the vari-
ables of interest. For a learning algorithm, joint
strategy fictitious play (JSFP) is adopted. With these
two design steps, we showed that the potential game
approach for distributed cooperative sensing provides
better performance than other distributed/decentralized
decision-making algorithms, such as the local greedy
and the sequential greedy algorithms.

However, this conditional mutual information—
based local utility function may incur significant com-
putational burden, in particular when the random enti-
ties of interest take non-Gaussian distributions and/or
the size of sensor network is large, since the conditional
distribution of local measurement variables condi-
tioned on all other agents’ decisions are needed to be
quantified. The dependency of the local utility on all
other agents’ decisions may also lead to substantial
communication overload over the network. Therefore,
it is desirable to use an approximate local utility func-
tion that can capture the key dependency structure in
the mutual information without losing the computa-
tional tractability.

One way of approximation is to introduce some
notion of neighbors, only the decisions of which are
considered in the calculation of an agent’s local utility
function; this work particularly focuses on presenting
approximation schemes of this fashion and verifying
the effectiveness of them. We first propose a simple
neighbor selection algorithm based on network topol-
ogy, whose preliminary concept was suggested in our
previous work.'® Building upon this naive selection
method, we propose a greedy selection method that
considers the correlation structure of the information
space in which the cooperative sensing decision is made.
Then, theoretical properties of this type of approxima-
tion schemes in terms of closeness to a Nash equili-
brium are analyzed and discussed. Two numerical
examples on multi-target tracking in the joint multi-
target probability density (JMPD) framework and on
an idealized weather sensor targeting are presented to
demonstrate the feasibility and validity of our approxi-
mation algorithms. While the preliminary version of
the proposed methodology was reported in Lee and
Choi," this article includes theoretical analysis of the
proposed approximation schemes and also an addi-
tional numerical case study.

The rest of the article is organized as follows. In the
“Sensor network planning problems” section, we give an
overview of the sensor network planning problem. In the
“Sensor network planning as a potential game” section,
we present a background for a game-theoretic approach
and the problem formulation using a potential game. We
describe our approximation algorithm to address com-
putational and communication issues of the approach in
the “Approximate local utility design” section. Simulated
examples are presented in the “Numerical examples”
section.

Sensor network planning problems

This section describes a sensor network planning prob-
lem. A sensor network model is defined and provides a
formulation as an optimization problem with a global
objective function using mutual information.

Sensor network model

The primary task of a sensor network is to collect infor-
mation from a physical environment in order to esti-
mate the variables of interest, called target states. The
target states x, are the set of variables of interest we
want to know through the measurements. They are a
part of the state variables representing the physical
environment (see Figure 1). In a problem of our con-
cern, the physical environment is represented with a
finite set of measurable states, Xs = [X5,Xs,s - - -5 Xs5,,)
and the target states x, in spatial-temporal space. The
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Figure I. A graphical model for representing probabilistic relationships between states and measurement variables.

subscript § = {s1, 52, ...,su} denotes a set of possible
sensing locations for a sensor network and is referred
to as a search space, and each element x; represents the
state variable at the sensing location s € S.

We consider a sensor network consisting of N sen-
sing agents deployed in the search space. A sensing
agent can be a vehicle carrying sensors on it, such as an
unmanned aerial vehicle (UAV). In the case of sensor
nodes installed at fixed locations, a sensing agent can
be considered as a virtual agent that selects a set of sen-
sor nodes to turn on. Due to the dynamic constraints
on the sensing agents, the search space for each sensing
agent is a subset of the whole search space S; C S. For
a mobile sensor network, the search space for each sen-
sing agent can be obtained by discretizing the search
space which is available at the next time step.

The sensor measurements for the ith agent at the sen-
sing point s; € S; are a function of the state variable at
the point and the variables of interest

zg = h(xg, X;) + wg, we~N (0, Ry) (1)

where wy is white noise uncorrelated with any other
random variables. The observation function A4( - ) could
be a nonlinear or linear mapping of the states and the
target states. In a target tracking problem, the variables
of interest are the location of the target, and if sensors
observe the bearing or range to the target, then the
observation function /(- ) is expressed as a function of
relative geometry of s and the target location x,. In a
weather forecasting problem, 4( - ) depends only on the
state variable itself at the sensing location s, such as
temperature and pressure, then the observation model
becomes z; = x; + wy.

Since the target states x, are correlated with the
states in the search space and the sensors make observa-
tions of the states in the search space corrupted with
some noise, sensor measurements are correlated with
the target states and have information about the target.
The correlation between the target states and the other

states in a search space can be expressed as a joint prob-
ability distribution p(x;, Xs) of two sets of random vari-
ables, x; and xgs. Accordingly, the correlation between
the target states and the measurements can be repre-
sented by the joint probability distribution p(x,, zs). To
obtain the probability distribution of whole states, the
states are represented with a probabilistic model, and
moreover if the states evolve with time, we also should
establish a dynamic model of the states. With the mod-
els related to the states, a measurement model will give
an expression for the joint probability distribution of
the target states and the measurement.

Sensor planning problem for maximum information

The goal of sensor network planning problems is to
find out the optimal sensing locations that maximize
the information reward about the target states. Here,
the information reward can be thought of as a reduc-
tion in the uncertainty of the variable of interest due to
the information included in the measurement variables.
This uncertainty reduction is quantified with mutual
information, which is the difference between the prior

and posterior entropy of x, conditioned on z,*°
Z(xs;25) = H(x;) — H(x[zs) (2)
where
H(x,) =— Jp(x,)log p(x,)dx, (3)

H(x;|z) = — Jp(x,, z,)logp(x/|z,)dx,dz, (4)

‘H(x,) is the entropy of the target states distribution,
H(x|z) is the conditional entropy of the distribution
when conditioning on the measurements, and Z(x,; zy)
is the mutual information between the target states and
the measurements. The entropy of a random variable is
a metric of its uncertainty. As shown in the above
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definition, the entropy is not dependent on the value of
the random variable itself but rather depends on the
shape of the distribution. In the case of a Gaussian dis-
tribution, the entropy is computed by the determinant
of the covariance matrix P(X,), not using its mean value

H(x) = Mlog(2me) + Slog(Px)) (5

where n; is the dimension of the random vector x;.
When the states are jointly Gaussian and the measure-
ment model is linear and the observation noise is
Gaussian, then the mutual information can be expressed
with the prior and posterior covariance matrices

T(xi2) = yloa(|P(x)) ~ ylog(P(x[z))  (6)

Since a sensor network has limited resources, the
system should select the set of sensing points that give
the maximum information about the target states to
reduce the number of observations. Therefore, a sensor
network planning problem can be stated as selecting
the most informative set of sensing points
si.v = {s1,82, ...,sy} over the search space S

sty = arg max Z(X;Z,) (7)
S1.v S ES;

Note that ith sensing location s; is selected from its
designated region S;. zs,, = [zs, . --»Zs,] 18 @ random
vector that represents the measurement variables taken
at the locations s;.y C S. In a centralized approach, the
problem is a combinatorial optimization: it computes
the mutual information for every combination of sen-
sing points and then chooses the set giving the maxi-
mum mutual information. Thus, the computational
burden increases exponentially with the number of sen-
sing agents and the size of the search space. To address
this combinatorial computational complexity, we pro-
posed a potential game-based approach and showed
the validity of the proposed method through numerical
examples. In the following section, we will review a
game-theoretic framework for cooperative sensor plan-
ning and analyze the complexity of this formulation.

Sensor network planning as a potential
game

Potential games are applied to many engineering opti-
mization problems (such as cooperative control’! and
resource allocation®®) due to their static (existence of
Nash equilibrium) and dynamic properties (simple
learning algorithm).!” This section provides the
required game-theoretic background used to develop
the results in this article and describes a potential game
formulation of a sensor network planning problem.

Finally, we present limitations in applying the approach
to a large sensor network.

Game-theoretic architecture

Consider a finite game in strategic form consisting of
three components:*

e A finite set of players (agents): N ={l,
2,...,N}

e Strategy spaces: a finite set of actions (strategies)
S;, for each playeri € .

e Utility functions: a utility (payoff) function
U;: 8§ — R, for each playeri € NV.

Accordingly, a finite strategic-form game instance is
represented by the tuple (N, {S;};cnrs {Uiticn)- In this
setting, each player has an action set that the player can
select and has a preference structure over the actions
according to its utility function U;. A joint strategy
space of a game is denoted by S = [],.\ S;, which rep-
resents a set of all possible combinations of actions for
all players to choose at a time. s = (51,52, ...,sy) €S
is the collection of strategies of all players, called a
strategy profile, where s; € S; denotes the strategy cho-
sen by player i € . For notational convenience,
S ;=(s1,---»8_1,8+1, ---,5y) denotes the collection
of actions of players other than player i. With this nota-
tion, a strategy profile is expressed as s = (s;,S_;).

A utility function U(s;,s_;) for player i reflects the
preference of player i over its possible actions S;. Given
other players’ actions, each player would prefer an
action that gives the maximum payoff. If every player
selects the action with the maximum payoff given other
players’ actions and the chosen action is consistent with
the beliefs that other players assumed about the play-
er’s action, and it is also true for all the players, then no
player would change his action in this strategy profile.
This follows a solution concept in a non-cooperative
game, a Nash equilibrium. Formally, a strategy profile
s* € S is a pure Nash equilibrium if

Uilsis’,) = Uilsf.s7,) <0 )

for every s; € S; and every player i € A/. A Nash equili-
brium is a strategy profile in which no player can
improve its payoff by deviating unilaterally from its
profile.

A potential game is a non-cooperative game in which
the incentive of the players changing their actions can
be expressed by a single function, called the potential
function. That is, that the player tries to maximize its
utility is equivalent to maximizing the global objective
for a set of all the players.”*
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Definition I. A finite  non-cooperative  game
G = (N, {Si}icn» {Ui}icn) 1s a potential game if there
exists a scalar function ¢ : S — R such that

Ui(S/i,S—i) - Ui(S”i,S—i) = ¢(5lia57i) - (b(slli’sfi) )

foreveryi € N, sl,s!” € S;, and s_; € S_;. The function
¢ is referred to as a potential function of the game G.

The property of a potential game in equation (9) is
called a perfect alignment between the potential func-
tion and the player’s local utility functions. In other
words, if a player changes its action unilaterally, the
amount of change in its utility is equal to the change in
the potential function.

Potential games have two important properties.'’
The first one is that the existence of pure strategy Nash
equilibrium is guaranteed. Since in a potential game the
joint strategy space is finite, there always exists at least
one maximum value of the potential function. This
strategy profile maximizing the potential function
locally or globally is a pure Nash equilibrium. Hence,
every potential game possesses at least one pure Nash
equilibrium. The second important property is the pres-
ence of well-established learning algorithms to find a
Nash equilibrium by repeating a game. Many learning
algorithms for potential games are proven to have guar-
anteed asymptotic convergence to a Nash equilibrium.?'

In this article, our main focus is to approximate util-
ity functions of a potential game. To address strategy
profiles in a near potential game with approximate local
utility functions, a near Nash equilibrium is introduced.
A strategy profile s€ is an € — equilibrium if

Ui(sins%;) — Ui(s,s%,) <e (10)
for every s; € S; and every player i € V. In a Nash
equilibrium, every player chooses the action that gives
the payoff equal to or greater than the payoffs for
choosing other actions. In a near Nash equilibrium,
there can be an action which gives a better payoff by
no more than e. When € is equal to zero, an
€ — equilibrium is a Nash equilibrium.

Cooperative sensing as a potential game

From a game-theoretic perspective, each sensing agent
is considered a player in a game who tries to maximize
its own local utility function, Uj(s;,s_;), where s; is the
set of sensing locations for sensor i, and s_; represents
the set of sensing locations other than sensor i’s selec-
tions. In our previous work,' we showed that the condi-
tional mutual information of sensor i’s measurements
conditioned on the other agents’ sensing decisions leads
to a potential game with a global objective function

¢(Siﬂs—i) = I(Xf;zsiﬂzs—i) = I(XT;ZSH\') (11)

Algorithm I: Learning Algorithm (U;, F;)

Choose an initial action with some specific rule.
while Convergence criteria not satisfied do
foric {l,...,N} do
Update the strategy according to the learning rule,
P,‘(t) = F,‘(S(O), ey S(t — |), U,)
Choose an action according to p;(t)
end for
end while

The local utility function can be represented by

Ui(si,s—i) = I(Xs; 2,

(12)

With this local utility function, the designed poten-
tial game is solved by repeating the game for
t€{0,1,2, ...}. At each time step ¢, each agent i € N
chooses an action according to a specific learning rule
(such as fictitious play, better/best response, and log-
linear learning®), which is generally represented as a
probability distribution p;(¢) over i’s action set S;. p;(¢)
is obtained from the utility values of agent i based on
the other agents’ decisions up to the previous stages.
The general structure of learning algorithms is sum-
marized in Algorithm 1.

The learning algorithms are varied according to a
specific update rule F;. To solve a sensor network plan-
ning problem, we adopted JSFP'? as the learning rule.
In JSFP, each agent assumes that other agents play
randomly according to the joint empirical frequencies,
f-i(s_;; 1), which represents the frequency with which all
players but i have selected a joint action profile s_; up
to stage t — 1. In a strategy update step at each stage ¢,
a player computes the expected local utility for action
s; € S; based on the empirical frequency distribution of
its opponents as

ZS—i )

Ui(sist) = Er [Ui(si,s-i)]

In Marden et al.,'? it is shown that the expected utili-
ties U;(s;; t) for each s; € S; can be expressed with a sim-
ple recursion rule

—1
Ui(sist) = %Z Ui(si,s—i(7))
7=0 (13)
= %Ui(s,-;t— 1)+ ;Ui(sias—i(f— 1))

Having computed U;(s;;f) for all s; € S;, agent i
selects the best action that gives the maximum expected
utility. Although JSFP does not guarantee convergence
to a pure Nash equilibrium even for a potential game,
a JSFP with inertia was proven to reach a Nash equili-
brium. In our previous work,! we showed that the
JSFP for a sensor network planning problem can be
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converged to a Nash equilibrium by using'? (Theorem
2.1) and specifying the termination condition of the
algorithm.

Computational complexity analysis

As described in Choi and How,® the potential game-
based approach to cooperative sensor planning enables
one to find out the informative set of sensing locations
with much less computation than an exhaustive search.
However, a conditional mutual information condi-
tioned on the other agents’ sensing locations has limita-
tions when applied to a large sensor network, because
every agent needs information about the decisions made
by the other agents in the previous stage. If the commu-
nication network is strongly connected, one agent’s
decision can be forwarded to all the other agents, and
then the next stage can be initiated after this informa-
tion exchange has happened. This decision sharing
among all the agents incurs substantial communication
cost/traffic. In addition to this communicational burden
on a network, the conditional mutual information itself
increases computation load on each agent’s processing
unit for obtaining utility values. In this section, we will
analyze the computational complexity for JSFP algo-
rithm applied to sensor network planning in more
detail.

As shown in Algorithm 1, the distributed solution of
a potential game is obtained by repeating a one-shot
game until it converges to equilibrium. In JSFP, at each
stage ¢, agent i € N/ updates its expected utility values
Ui(si;t) over the possible actions s; € S;, and then
chooses the best action that gives the maximum
expected utility. To obtain Uj(s;;f), an agent should
first compute the utility values U;(s;,s_i(t — 1)) based
on the previous decisions of the other agents as shown
in equation (13) and then update the expected utility
with the weighted sum of the previous average utility
Ui(s;;t — 1) and the utility Uj(s;,s_;(t — 1)) obtained
from a one-step look-back scheme. The resulting com-
putation time for agent i to reach a solution is then

T; = LNs,N,, Ty, (14)

where L is the number of repeating a game until conver-
gence, N, is the size of an action set S;, and N,, is the
number of computations of the local utility for each
play of a game. Ty, corresponds to the time taken to
calculate the local utility function for a given strategy
profile. Here, N, is constant for the specific learning
algorithm and L is related to the convergence rates of
the learning algorithms for a potential game. Although
its relation to the game size has not been fully estab-
lished for a general potential game, it has been shown
that many of the learning rules converge to a solution
within reasonable time for specific potential game

structures® and especially JSFP applied to a sensor net-
work planning problem has shown to converge to a
close-to-optimal solution with computation cost less
than greedy strategies.! Thus, we focus on the term 7, U,
to analyze the computation time for a potential game
approach.

The main reason for the computation load of Ty, is
due to conditioning the decisions from all of the agents.
For example, in case of a multivariate normal distribu-
tion, a local utility function (equation (12)) can be
rewritten using the backward scheme in Choi and How®
and the mutual information for Gaussian variables
(equation (6)) with additive white Gaussian measure-
ment noise

Ui(si»s—i)
= I(XZ;ZS:|ZS—,') = H(ZSi|ZS—i> - H(ZSI'|XDZS—:)

1 1
Elog P(ZAYi|ZS—i)| - 510g|P(ZSi|Xl’ Zs—i)
1 _
= 510g|P(Zs,-) — P(xg, %5 )P(25 )7 P(Xs x|

xl)ilp(xs—i’xsi|xf)|

(15)

where P(z5) = P(xs) + Ry and P(zs|x;) = P(xs|X;) + R
denote the covariance matrices of measurement vari-
ables at sensing selections s, and Ry denotes the mea-
surement noise covariance. As shown above, the
computation of the inverse of matrices relating to the
other agents’ decisions is needed to obtain a local util-
ity function. Inversion of nXn symmetric positive
matrix requires approximately (2/3)n floating-point
operations,?” and thus computation time for the condi-
tional mutual information increases proportional to the
cubic of the number of sensing agents (O(N?)). For a
large sensor network, the computation of a utility func-
tion for an agent becomes intractable. Therefore, to
keep the game approach scalable as the number of sen-
sors increases, we need to approximate the local utility
function.

1
_Elog|P(ZSi|Xf> - P(XSNXS—I'|X!)P(ZS—:'

Approximate local utility design

In this section, an approximation method is proposed
to reduce the computational and communicational bur-
den of computing the local utility function. The method
modifies the form of a local utility function itself by
removing some of the conditioning variables, which
represent the decisions of other agents.

Approximate utility function

The proposed approximation method for computing
the local utility function is to reduce a number of the
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conditioning variables using the correlation structure
of the information space, making the local utility func-
tion depend on the part of the decisions

Oilsivsn) = T (xii7, 2, ) (16)
where sy, is the set of the measurement selections corre-
lated with sensing agent i’s decision, referred to as a
neighbor set of sensing agent i, and z,, denotes the cor-
responding measurement variables. The neighbor set sy,
is a subset of s_;. To reduce the computation, the neigh-
bor set should be a strict subset of s_;. In some applica-
tions, this allows for less memory requirement for each
agent (as, for example, an agent only needs to carry
covariance matrix for the random vector associated
with its own and neighboring agents’ sensing regions).
The following lemma shows the quantification of the
error incurred by the approximation.

Lemma [. Let Ay, denote the difference between the
approximate local utility for sensor i and the true value
of equation (12), then

Ay, = c1(s_) — z(x,;zwi|zsl_UsN‘,) (17a)

) (S—i) + I (ZS,'USNI ; ZS—Nf) - I (ZS,'USNi ; ZS,Ni

x,) (17b)

where s_y, 2 siv\{s; Usy, } is the set of the chosen sen-
sing locations of the sensors other than sensor i and its
neighbors. ¢i(s_;) and ¢;(s_;) encompass the terms that
are constant with respect to the ith sensing agent’s selec-
tion; thus, they do not affect the preference structure of
Sensor i.

Proof. The conditional mutual information of equations
(12) and (16) can be expanded using chain rule®

Ay = T(xazl7s, ) = Txiz, 2.

= |:I(Xt7 ZS[;N) - I(XZ; ZS/\/[.) - I<Xl7 ZS—NZ- |ZSiUSNl.):|
—[T(xs26,) — T(xs525,)]
(18)
Canceling out common terms results in the first
equation (17a). To obtain the second equation (17b), a

preliminary result is given for exchanging of condition-
ing variables in mutual information®
T (xg;xpxe) = T (xa5xp) — L (xa; %) + I (xa5xc|x5)

Equation (17b) follows by rewriting the third term of
equation (18) using the above property

AU’ = I(Xt, ZS,,-) — I(X[, ZSN,) — I(X[; ZS’M’)
+7 (Zs,-USNl ; ZS,N,,) -7 <ZS,'USNI yZs_y, |Xt)

=cy(s—;) + I(zs‘., Zsy ; ZSA/,-) - I(zs,., Zsy 3 Zs |X,)

Remark I. In a target tracking example, the difference
(equation (17b)) between the approximate local utility
and the true local utility can be simplified as

AU: = C(S,i) + I(ZsiUSNi;ZS—N,)

Applying the assumption that the measurements are
conditionally independent given the target states, the
last term in equation (17b) becomes zero, then the error
can be represented with mutual information between
the sensing selections related with sensing agent i and
the others. In this case, the sensing locations that are
correlated with sensing agent i’s search space are
selected as a neighbor set of sensing agent i regardless
of the variables of interest.

Remark 2. In cooperative games, the common terms
ci1(s_;) and cy(s_;) for all the strategies of agent i in
equation (17) do not affect its preference structure,
because the payoff difference [Uj(s},s_;) — Ui(s},s_;)]
quantifies by how much agent i prefers strategy s; over
strategy s; given that the other agents choose the
actions s_;.!” Note that a Nash equilibrium is defined
in terms of payoff differences, suggesting that games
with identical preference structure share the same equi-
librium sets. Thus, if the sum of the last two terms in
equation (17) is zero, a game with approximate local
utility functions will have the same equilibrium sets as
a game with a true value of equation (12).

To keep the error incurred by the approximation
small, we propose two neighbor selection algorithms:
geometry-based and correlation-based. These methods
differ in the definition of the distance between sensing
points. In geometry-based selection, the distance
between two sensing points is the spatial distance as the
name suggests. It can be obtained simply by calculating
the Euclidean distance between the sensing locations.
On the other hand, the correlation-based method uses
the correlation between measurement variables taken at
the sensing points as a measure of closeness. In most
cases, the geometric closeness of the sensing points can
be translated into correlation between the measure-
ments taken at those locations. That is, the more closely
located sensors are, the more correlated their measure-
ments. Therefore, the geometry-based approach is suffi-
cient for neighbor selection in many applications.
However, when the target states exhibit highly
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nonlinear spatiotemporal dynamics, the closeness in
sensing locations has nothing to do with the correlation
between the corresponding measurements. Thus, we
propose the correlation-based selection algorithm to
address this nonlinearity issue.

Geometry-based neighbor selection algorithm

Intuitively, the simplest way to determine the neighbor
set for each agent is by defining the neighborhood by
closeness in geometric distance. In many cases, such as
monitoring spatial phenomena as in Krause et al.,* geo-
metric closeness of two sensing locations can be trans-
lated into correlation between corresponding
measurement variables taken at those locations. In this
section, we propose a selection algorithm in which
neighbors are selected as agents located within some
range from each agent. We refer to this selection
method a geometry-based neighbor selection.

One technical assumption made in this section is that
the communication network can be represented as a
connected undirected graph, G = (W, £). In this graph,
the closeness is defined by the number of hops if multi-
hop schemes are used in inter-agent communication.
Then the neighbors of agent i can be represented as
N; = {1 (i,j) € £}. Tt is beneficial to limit the neighbors
in this way, because the geometry-based selection can
obtain both computational and communicational effi-
ciency at the same time. To find out how the solution
property of the game is changed, we will first investigate
whether or not the localized utility function in equation
(16) is aligned with the global potential ¢(s;,s_;) in
equation (11). Using the expression for Ay, in equation
(17), then difference in the utility between two admissi-
ble sensing actions sy and s can be expressed as

U[(S/ia Sfi) - Oi(sﬂi’ Sfi) = [d)(sliasfi) - d’(S"i, Sfi)]
- |:I (XZ; Zs—va |ZS/,'USNI.) - I (Xt; ZS—N{ |ZS//,'USNi )i|

Difference in potentiality

(19)

From equation (19), a game defined by the local util-
ity in equation (16) is not necessarily a potential game
with potential function in equation (11), because the
last bracket termed difference in potentiality does not
vanish in general. (This statement does not exclude pos-
sibility of a potential game with the same local utility
function for a different potential function.) Instead,
further analysis can be done to identify the condition
under which this localized version of the game constitu-
tes a potential game aligned with the objective function
of the cooperative sensing.

The last term in equation (19) can also be repre-
sented as

I (Xh ZS—N, |ZS,-USN,.> =

z(zs,;zsw_|zs,\,f) —I(zsl.;zstl_|xt,z§N,) +e3(s)  (20)

Effect of x,on conditional dependency of iand—N;

by using equation (16). Noting that the last term in
equation (20) does not depend on agent 7’s action, the
difference in potentiality represents how significantly
the verification variable x, changes the conditional
dependency between an agent (i.e. z;) and further
agents (i.e. zs_, ) conditioned on the nearby agents (i..
Zs, ). One meaningful case is when Z(zy;2s  |2s,,)
T(zy3 75, |Xt,ZsNi) = 0.

Proposition [. If z;, and zs , are conditionally indepen-
dent of each other conditioned on z,, , for all s5; € S; for
all 7

I (ZS,'; ZS—N, |ZSN‘- > y) = O

for any y. Therefore, the localized utility in equation
(19) constitutes a potential game with the global poten-
tial ¢ in equation (11).

Proof. Proof is straightforward by noting that
Z(a;blc) = 0, if a and b are conditionally independent
of each other conditioned on c.

In other words, if z,, is conditionally independent of

_y» then once zg, is known there is no information
that can be addltlonally obtained from z, , to have
better idea about z,. Furthermore, the statement in
Proposition 1 can be further extended as follows.

Proposition 2. If there exists K such that z,, are condition-
ally independent of outside of its Kth order neighbors
when conditioned on the up to Kth order neighbors,
Ug_ 25, , where Nj is kth order neighbor, then the loca-

i

constitutes a potential game with global potential
(equation (11)).

There are some contexts that the conditional inde-
pendence condition is at least approximately satisfied.
Many physical phenomena are associated with some
notion of time and length scale. If the correlation length
scale of the motion of interest is order of inter-agent
distance, there will be no too significant dependency
between agents far from each other; then, the condi-
tional independence assumption in the previous propo-
sitions can be satisfied. This statement certainly is

lized utility function

(1)

1

~K )
Ur = I <Xt7 ZS,’ |ZSN1 s
i
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domain and problem dependent; it is not appropriate
to make some general statement of satisfaction of the
conditional independence assumption.

Correlation-based neighbor selection algorithm

As shown in equation (17), the error incurred by the
approximation of the local utility function can be con-
sidered in two ways. In the first equation, the error is
the mutual information between the target states and
the measurement variables which is not in the neighbor
set of agent i. If after conditioning on the measurement
selections of sensing agent i and its neighbors, the mea-
surement variables at s_y. have little information about
the target variables, and the error becomes small
enough to approximate the local utility function with
sufficient accuracy. That is, the measurement variables
at s_y, have information about the target states which
is already included in the measurements at s; and sy;.

For the second way, the error can be considered as
the difference between the prior mutual information
and the posterior mutual information conditioning on
the target states. This amounts to the mutual informa-
tion of the variables at s; Usy, and s_y, projected onto
the subspace generated by the target states.*®

To make the error sufficiently small, the method to
select the neighbor set for each agent should be deter-
mined. In most cases, measurement variables taken at
close locations are correlated with each other, and mea-
surements taken at distant locations from sensing agent
i’s search space have little correlation with agent i’s selec-
tion. Thus, each sensing agent can approximate its utility
function by considering the neighbor set consisting of
sensing agents close to each agent. However, for example,
in sensor planning for weather forecasting, the assump-
tion that closeness in Euclidean distance means correla-
tion between variables is broken. Weather dynamics is
highly nonlinear, and thus, the neighbor set should be
chosen in different ways from usual cases. For nonlinear
target dynamics, such as a weather forecast example, a
sequential greedy scheme is proposed. Every sensing
agent conducts the greedy scheme to determine its neigh-
bor set. The algorithm simply adds sensing agents in
sequence, choosing the next sensor which has maximum
mutual information about the target states conditioned
on the measurement variables of a sensing agent’s search
space and its pre-selected neighbors. Using the first error
bound in equation (17), the algorithm greedily selects the
next sensing agent j that maximizes

I (Zs/; Xy |ZS[USN[) = H (Zx/ |ZS[UXN".> - H (Zsj |Zs,»USNI. s Xt)
(22)

Algorithm 2 shows the greedy neighbor selection
algorithm.

Algorithm 2: Neighbor Selection Algorithm for Weather
Forecast Example (i, Py = P(zs_), P = P(zs_|x:))

w un
| Z
pd
i)
En@
2
—
©

)
S
m
—

,...,n}do
fory € s_y, do
_ Po(z)
= log| 22/
€y Og(pt(z,))
end for
y* =arg maXyes_y, €y
sn, == SN, Uy”
S_N; 1= SN\
10: Py =P (lst,> —Po (zst, > ZY*>P° (ZY*’ oo > /Po (Zy*)

Il: P.=P <ZLN,) — P, <zst,,zy*>Pt (zy*, zst,>/Pt(zyx)
12: end for

VoONS U AWNT

If we leave out measurement variables that have lit-
tle correlation with the selection of sensor i, we can
approximate the local utility function with a small
error. This approximation reduces the burden of com-
putation significantly, making the potential game
approach to the sensor network planning problem fea-
sible. However, it cannot be guaranteed that the
approximate local utility function satisfies the align-
ment with the global objective; thus, a game with an
approximate local utility function may not be a poten-
tial game. Fortunately, the bound to the Nash equili-
brium of the potential game can be obtained from the
difference in local utility functions.

Analysis of approximate potential game

The approximate utility functions cause a change in the
preference structure of the players and break the align-
ment condition for a potential game. It follows that the
game cannot guarantee the existence of a pure Nash
equilibrium which exists in the potential game with the
true utility function. However, if the approximation
error in a utility function stays small, we can expect that
a game with the approximate utility functions has simi-
lar properties to that of the potential game.”” Before
presenting the theorem for the equilibria of two games
that are close in terms of payoffs, we first introduce the
following lemma from Candogan et al.'”

Lemma 2. Consider two games G = (N, {8}y
{Uliex) and G = (N {8} ex- {Ui} ). which differ
only in their utility functions. If |U;(s) — U;(s)| <A, for
every i € N and s € S, then every & — equilibrium of G
is an € — equilibrium of G for some € <2A, + € (and
vice versa).

The difference between € and € is always less than
twice the maximum difference of utility functions. This

upper bound can be expressed by another measure of
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the closeness of games: maximum pairwise difference
(MPD).*

Definition 2. The MPD between two games G = (N,

{S}ien {Ubien) and G = (N {Si}icp {Uidiey) s
defined as

A

oy max

i€EN, si, 571 €Si,S_i€ES_;

- (Ui(sia S_i) — i]i(si’v S—i))|

|(Ui(si,s—i) — Ui(si,s-i))

(23)

The MPD represents the distance between two
games in terms of the difference of unilateral utility
changes rather than the difference of their utility val-
ues. This notion of distance between games identifies a
strategic equivalence between them.?” This is because,
as mentioned in Remark 2, the preference structure is
determined by the amount of the utility improvement
due to unilateral deviations of each agent |Ui(s;,s_;)—
Ui(sr,s—;)| and not by the utility value Uj(s;,s_;) itself.
Then, the inequality of Lemma 2 is expressed as

€<8, + & (24)

This result comes from the proof of Lemma 3. Let s*
be an € — equilibrium of G. Then

Ui(sins™;) — Ui(sf.s%y) < Ui(sis™;) — Us(s.s%))
—(f]i(si,sii) - U,‘(S?,Sii)) + Egﬁu + €

In case G is a potential game, we refer to G as the
approximate potential game of G. Two games that are
close to each other in their utilities have similar equili-
brium. The lemma shows the extent of how close the
€ — equilibria of two games are. Specifically, if G has a
Nash equilibrium, then the other game has an
€ — equilibrium, such that e <2A, or € <§, from equa-
tion (24). Therefore, if we make a game sufficiently
close to the existing game with a Nash equilibrium,
then an equilibrium property of an approximate game
can be identified. The following theorem shows that
the equilibria of two games can be related in terms of
the difference in utilities.

Theorem [. Consider a potential game §G= (N,
{Sitien» {Uiticpr) and its approximate game G with
approximate utility functions {U;},.,, that is,
G = (N, {Si}icn> {Uiticnr). Assume that |Ui(si,s_;)—
Us(si»s_;)| <A, for every i € N and (s;,s_;) € S. Then
every Nash equilibrium of G is an e — equilibrium of G
for some € <§,,.

Proof. Since a Nash equilibrium is an € — equilibrium
with € = 0, the result follows from Lemma 2 and equa-
tion (24).

This result implies that the Nash equilibria of a
potential game with the true utility function are
included in the approximate equilibria of the game with
approximate utility functions. That is, if we let the set
of € — equilibrium of the game G be X, and the set of
Nash equilibria of the potential game G be X, then
Xy C X.. Since the potential game has at least one
Nash equilibrium, there exists at least one
€ — equilibrium in the approximate game G. In a special
case, Nash equilibria of the potential game can be
maintained in its close potential game with approxi-
mate utility functions. If the differences in utility for
each player between playing its best response and play-
ing the second-best response at a Nash equilibrium are
greater than 6,, then Nash equilibria of the potential
game can be included in the set of Nash equilibria of
the game. More specifically, if for every s* € X

lJi(S:(’ S*,,‘) - (]i(sia S*,,‘) 2 811 (25)
for every i € N and for every s; € S;, s; # 57, then every
Nash equilibrium of G is a Nash equilibrium of G. In
this case, we can guarantee the existence of a Nash equi-
librium in the game with approximate utility functions.
That is, X, # (and Xy C X, where X, is a set of Nash
equilibria of Q

Corollary I. Consider a potential game G = (N,
{Sitiea> {Uitien- @) with global objective function
defined in equation (12) and local utility function
defined in equation (13) for cooperative sensor network
planning and its approximate potential game G =
<N> {Si}iej\/" {Ui}ie/\f>' Suppose A, = max;en, s;e8;
T(Xs5 25y, 2,08y, )- 1f for every s* € Xy

H(zs,.lxt,zs;) - H(zs,.*lxt, zs§,> > 24,

for every i € N and for every s; € S;, si # s;, then there
exists at least one Nash equilibrium in G and Xy C &X.

Proof. A, = maX;cy ses, Z(Xs; Zs |zs,.Ule_) means that
the approximation changes the preference structure of
G with the error less than 2A, by Lemma 1 and Lemma
2. That is, 6, = 2A,,. Since

Ui(s;,s%;) = Ui(sins?;) = I(ZS;«;XI\ZS;) - I<Zsi;xt|zsii)
= H(Z‘Yi|xt’ Zsi,-) - H(ZSI* X;, ZS*,,)

there exists at least one Nash equilibrium in G and
Xy C Xy by the above discussion about the set of Nash
equilibrium points.

0, is the maximum difference in utility values except
the common terms. After selecting the neighbor set for
every agent by conducting Algorithm 2, A, is computed
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by finding out the maximum value I(x,;zsti|zsiUsN[)
over the whole sensing agents. When the upper bound
for € is not sufficiently small, we can add more neigh-
bors for the agent that gives the maximum value.

We have demonstrated the existence of equilibrium
points in the games with approximate utility functions,
but there remains an issue about efficiency of the
resulting equilibrium points. Candogan et al.* pro-
vided a learning dynamics for a near potential game
and showed that convergence to a small neighborhood
of the equilibria from the original game can be estab-
lished. However, we still have an efficiency issue of the
equilibria. For a potential game, log-linear learning is
shown that it guarantees on the percentage of time that
the strategy profile will be at a potential maximizer.*°
However, it is not known how quickly this learning
dynamics converges to the best solution. In Choi and
Lee,! we demonstrated the validity and efficiency of the
JSFP method through numerical examples. Likewise,
we will show the efficiency of the resulting equilibrium
with numerical simulations.

Numerical examples

The proposed approximation method is demonstrated
on two numerical examples with nonlinear models: sen-
sor management for multi-target tracking and sensing
point targeting for weather forecast. In the first exam-
ple, we apply the localized utility function to a sensor
selection problem for multi-target tracking. In target
tracking, the sensors gain information about the kine-
matic state of a group of target and the measurement
model is generally nonlinear, such as the range to the
target or bearing only measuring Infrared (IR) sensors.
A particle filter has been successfully applied to esti-
mating the target states with better performance than
Kalman filters. However, computation of mutual infor-
mation for a particle filter grows exponentially with the
number of sensing points; thus, it is impossible to cal-
culate entropy with full information. The first example
shows that the approximation method enables a poten-
tial game approach to be applied to a sensor planning
problem with a large sensor network. Also it demon-
strates the efficiency of the geometry-based neighbor
selection algorithm, because the geometric distance
between sensing points is related with the amount of
information about the target states. The other example
is sensor targeting in the context of numerical weather
forecast. While the first example shows the perfor-
mance of the approximation local utility itself and the
simple neighbor selection method is sufficient to limit
the conditioning variables, the weather forecast exam-
ple allows comparison of two neighbor selection algo-
rithms: a geometry-based method and a correlation-
based method. Since the weather dynamics is highly

nonlinear, the closeness in sensing locations has noth-
ing to do with the correlation between the correspond-
ing measurements.

Multi-target tracking

To demonstrate performance of the proposed game-
theoretic approach under a nonlinear and non-
Gaussian sensor model, a multi-target tracking exam-
ple is investigated. A similar example using the JMPD
technique introduced in Kreucher et al.*' has been
referred.

JMPD is a specialized particle filter method which
helps estimate the number of multi-targets and state of
each target effectively. JIMPD approximates the multi-
target state with N particles of [x),w,], which is
expressed as follows

i

xp = [xp,l,xpﬁz, '--axp,n,}

where x;'] is estimating multi-target states, w; is a likeli-
hood weight of the particle, n; is the estimated number
of targets, and x, 4 is a state of the kth target. To realis-
tically design a simulation, each agent is assumed to
carry its own particles. Using the JMPD framework,
the probability distribution of the multi-target state
(which is equivalent to the verification variable) can be
approximated as shown below

plx,) =~ XN; w;6 (x, — x})

In this example, a fixed sensor network tries to esti-
mate the number and states of multi-targets moving
within a 2400 m X 2400 m region with nearly constant
speed. In this space, image sensors are uniformly
arranged to detect targets. Each sensor gives detection
(1) or non-detection (0) as a measurement value accord-
ing to the range-based detection rate as follows

Py (I") =Py oeir/Ro

where r is the distance between the nearest target and
the sensor, and P, o and Ry are sensor parameters.

The objective of this sensor problem for the multi-
target tracking is finding a set of sensing points maxi-
mizing the mutual information about the multi-target
states at a given situation. Similarly, as in the next
weather forecasting example, each agent needs to evalu-
ate the local utility to obtain a cooperative solution.
The local utility and its approximate version can be
evaluated by using equations (12) and (16), respectively.
Mutual information under a particle filter framework
can be computed using the Monte Carlo integration
technique below (see Hoffmann and Tomlin® for more
detailed derivation). Here, the computation of the
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integral is equivalent to a finite sum since the possible
measurement is only 0 or 1

)= = [ |35 (ool = - 4))|

7 i=1

log lZN: (w,-p (ZX =zlx, = x}))] dz (26)

i=1

H(z ) =

_J <i Wip(zs =z|x, = x;)logp(zs =2y, = x[i))>dz
z

(27)

Note the variables in the equation; local utility each
agent evaluates cannot coincide with each other if each
agent does not share the same particles. Especially in a
situation when agents have poor information about the
multi-target, it is highly probable that each agent will
have different particle sets. Then each agent will esti-
mate different values of the utility even with the same
observation result, interrupting cooperation among
sensor networks. However, this problem can be solved
easily by assuming that agents have the same random
generator and share the same random seed so that they
can generate exactly the same pseudorandom numbers.

The proposed game-theoretic method has been
tested for two different sensing topologies: six sensors
ina3 X 2 grid and six sensors ina 6 X 1 grid, where
each grid corresponds to a 400 m X 400 m region
over a 2400 m X 2400 m space, as described in Table
1. Each sensor is located in the center of its grid. A sen-
sor can select maximum #; sensing points, and each
sensor can also choose the same sensing points multiple
times. None of sensing regions overlap for any two
sensors

SiNS; =0,Vi#j (28)

As a simulation scenario, a two-target scenario after
one observation with each JMPD step is considered. A
detailed situation is described in Figure 2. As shown in
the figure, sensors estimate the multi-target states under
high uncertainty; thus, proper choice of sensing points
becomes important to obtain a large amount of infor-
mation using the same sensor resources.

The proposed method is compared with greedy stra-
tegies and the JSFP algorithm with full information.
The global optimum solution is not evaluated since it is
hardly obtained in tractable time under the particle fil-
ter framework. Instead, full information JSFP algo-
rithm has been assumed to give a near optimal solution.
The compared approaches are (1) greedy strategies in
which each agent makes a locally optimal decision using
partial information, (2) JSFP learning algorithms in

Table |I. Topology of multi-target tracking example cases
(a X b: a grids in horizontal, b grids in vertical).

Case N n; S|;N S;
I 6 2 3 X2 2 X3
2 6 2 6 X | | X6

which a local utility is obtained using full information
about the other agents’ decisions, and (3) JSFP learning
rule in which a local utility function is approximated by
limiting conditioning variables to the neighbor’s deci-
sions. Neighbors are defined in two different ways. One
is determined in terms of multi-hop in communication
and the other defines neighborhood with correlation in
search space. These distributed methods are presented
in detail as follows:

e Local greedy: Local greedy strategy maximizes
the mutual information of its own selection as
shown below

max 7 (z,; x;)

¢ Sequential greedy: Each agent selects the sensing
location, which gives the maximum mutual infor-
mation conditioned on the preceding agents’
decisions

max I(Zs[ 3 Xt |ZSH71 )

e JSFP with inertia: Implementation of Algorithm
1 with inertia, that is, an agent is reluctant to
change its action to a better one with some prob-
ability (in this example, with probability a = 0.3,
an agent chooses a better action).

e JSFP without inertia: Implementation of
Algorithm 1 without inertia.

e Approximate JSFP with two-hop neighborhood
with inertia: Iterative process with local utility
functions defined in equation (16). In this strat-
egy, the neighbors are determined in terms of
multi-hop in inter-agent communication—that
is, by the geometry-based selection algorithm.

e Approximate JSFP with correlation-based neigh-
borhood with inertia: Iterative process with local
utility functions defined in equation (16). The
neighbors are determined by Algorithm 2 using
the correlation structure of the search space.

The resulting objective values for six different strate-
gies are given in Table 2, and the histories of objective
values in the iterative procedure are shown in Figure 3.
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Figure 2. Scenario and sensing points determined by the correlati

on-based approximate JSFP in each case. Red stars: true positions

of multi-targets. Green dots: particles estimating the state of multi-target.

Table 2. Objective values for six different strategies.

Case | Case?
Local greedy 0.6299 0.7370
Sequential greedy 0.6386 0.7524
JSFP—full without inertia 0.6415 0.7558
JSFP—full with inertia 0.6415 0.7543
JSFP—approximate two hops with inertia 0.6415 0.7543
JSFP—approximate correlation with inertia  0.6415  0.7543

JSFP: joint strategy fictitious play.

Primarily, the JSFP with full information gives the
best solution compared to other strategies as expected.
In addition, the approximate JSFP gives a better solu-
tion than greedy strategies. As seen in case 1, approxi-
mate JSFP gives the same solution as JSFP with full

forecasting example, the correlation-based approximate
JSFP does not always show better performance than
the geometry-based approximate JSFP. The first reason
is that there is no complex correlation between the sen-
sors, and the correlation is highly related to the
Euclidian distance. Second, approximate JSFP algo-
rithms sometimes exhibit an interesting feature in that
it may meet the optimal solution during its iteration
but does not adopt it, as shown in the correlation-based
approximate JSFP of the second example. This is
because local utility approximation breaks the potenti-
ality, and agreement among sensors no longer guaran-
tees cooperation. Most importantly, the approximate
JSFP algorithm can reduce the computational burden
of the JSFP algorithm efficiently while still obtaining a
good cooperative solution. Note that calculating the
local utility through equations (26) and (27) incurs pro-

information. However, unlike in the weather portional costs to 21siUsil 1 other words, computational
Case 1 Case 2
0.642 0.756 [ = m = m e e memmmmaaaaaa e
r 1
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20632 o 0.742 ——jsfp w/ inertia
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J 0.74 ———jsfpappr w/ inertia w/ corr
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0628 . . . . . . . ) 0.736 . . . . . . . )
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Figure 3. Histories of objective values with stage count for two cases.
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cost can be reduced exponentially by the number of
considering measurement variables Zgsy, decreased by
neighboring approximation. Hence, approximate JSFP
can be efficiently used in a particle filter framework
with a high order of sensing points which needs
increased computation time to evaluate the local utility
of JSFP or sequential greedy strategies.

Sensor targeting for weather forecast

The proposed game-theoretic method is demonstrated
on a sensor targeting example for weather forecast
using Lorenz-95 model. The Lorenz-95 model*? is an
idealized chaos model that is implemented for the ini-
tial verification of numerical weather prediction. In this
article, we consider a sensor targeting scenario as Choi
and How® in which a two-dimensional (2D) extension
of the original one-dimensional (1D) Lorenz-95 model
was developed and adopted. The 2D model represents
the global weather dynamics of the mid-latitude region
of the northern hemisphere as follows'

. 2
Vi = Wiy —yicag)yicny t+ g(}’i,ijl — Vij-2)
Yij-1—Yi t ¥ (i=1,....Lop,j=1,....Ly)

where y;; denotes a scalar meteorological quantity, such
as vorticity or temperature, at the ith longitudinal and
Jjth latitudinal grid point, each of which corresponds to
the state variable at the point. The size of the whole
region is L,, = 36 longitudinal and L, = 9 latitudinal
grid points, which are equivalent to 694 km X 694 km.

The sensor targeting problem for the weather fore-
cast can be rephrased as selecting the optimal sensing
locations in the search region at #, = 0.05 (equivalent
to 6 h in wall clock) to reduce the uncertainty in the
verification variables. The verification variables corre-
spond to y in the verification region at the verification
time ¢, = 0.55 (equivalent to 66 h). While unattended
ground sensors of size 93 are already installed and take
measurements every 6 h, the decision should be made
to choose additional sensing locations for mobile sen-
sing agents, such as UAVs at #,. Using the ensemble
square root filter’> with the above weather dynamics,
the joint probability distribution of the measurement
variables zs at f, and the verification variables at , can
be approximated by a multivariate Gaussian distribu-
tion obtained from the samples of the filter (see Choi
and How?® for additional details of the problem). With
the covariance matrix of the measurement variables
and the verification variables P(zs,, U X,), the problem
can be treated as a static sensor selection problem. To
reduce the computational burden for this sensor selec-
tion problem (equation (7)), a backward scheme® is uti-
lized to calculate the mutual information for the global
objective function

Z(xs52s) = Z(2s;Xs)
= H(zs) — H(zs|x/)

1 1
= Slog(|P@)]) — 3 log(IP(zsIx))) (29)
1 1
= 5log(|P(xs) + Ry]) — 5 log(|P(xs[x:) + Rs)
where the measurement equation is given by

zg = x, + vy with vi~N(0, Ry) for all s € S;.y. For the
given covariance matrix P(Xgs,, U X;) obtained from the
ensemble square root filter, the two covariance matrices
P(xs,,|x;) and P(xg,,) are computed prior to the selec-
tion process. The unconditioned covariance matrix for
the measurement variables P(xs,, ) is formed by simply
removing the rows and columns corresponding to the
verification variables from P(xs,, Ux;). The condi-
tional covariance matrix P(xg,, |x;) is computed by con-
ditioning P(Xs,,) on the verification variables x;. Once
these two covariance matrices are obtained, then the
selection process for each sensing agent is equivalent to
the selection of the corresponding principal submatrix
and calculation of determinants.

In a potential game, each agent computes the local
utility function defined by the conditional mutual infor-
mation between the measurement selection and the ver-
ification variables conditioned on the other agents’
action. We obtain the local utility using the backward
scheme as the mutual information of the global objec-
tive as in equation (15). We should calculate the two
matrices P(zs|zs_) and P(zs|X;,zs_,) over the search
space of agent i before comparing the preference of the
agent. For the obtained covariance matrices P(Xs,., |x/)
and P(xg,,) from the backward scheme, the two condi-
tional covariance matrices P(zs,|zs ;) and P(zs,|x;, Zs_,)
are computed by conditioning on the other agents’ sen-
sing selections, respectively. If the number of sensing
points each agent selects is one, then the covariance
matrix for one sensing point becomes a scalar, which is
a corresponding diagonal elements in the matrix.

The approximate local utility is computed in the
same way as computing the local utility (equation
(15)) with the exception of the conditioning variables.
The conditioning variables are replaced with the
neighboring agents instead of all the other agents’
selections

U,‘(S[, SNi) =1 <Zsi ) xt|ZSNi>

- (Zsi |ZSNi> - (Zsi b ZsNi)

- ol ) sl

The proposed game-theoretic method using an
approximation of the local utility has been tested for
three different sensing topologies; 9 sensorsina 3 X 2
format in two different search spaces and 15 sensors in

(30)
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Table 3. Topology of example cases (a X b: a grids in

longitude, b grids in latitude).

a2 X 3formatin a larger region than the first and sec-
ond cases, as described in Table 3. An oceanic region of
size 12 X 9 (in longitude X latitude) is considered as

Case N i SN S a potential search region, among which the whole
I 9 I 9 X 6 3 x 2 search space Sy is chosen and each agent is assigned
2 9 I 9X6 3 X2 its own sensing region S; separated from the other
3 15 I 10 X9 2 X3 agents as shown in equation (28) of the multi-target
tracking example. The number of sensing locations for
each agent is set to be one for all the cases, as in Choi
Table 4. Obiecti lues f different stratesi and Lee,' because the global optimal solution cannot
able 4. bjective values Tor seven diierent strategles. be obtained in tractable time. Several approaches, both
Strategy Case | Case? Case3 centralized and distributed, are compared with the pro-
posed method. The centralized approach is an exact
Global optimal 16222 1.7563  N/A method that searches the entire candidate space S, by
Local greedy 1.3941  1.6668  2.8238  \ pich we can obtain the global optimal solution. As in
Sequential greedy 1.4301 1.6959 3.0218 . . .
JSFP—full without inertia 16222 17427 3239 the multi-target tracking example, the distributed
JSFP—full with inertia 16162 17479 32236 approaches are greedy strategies and JSFP algorithm
JSFP—approximate two 14393 1.7026 29476  with full information.
hops with inertia ) The resulting objective values for the seven different
g;‘:‘;zz;ox'mate correlation  1.5928  1.7519  3.1662 i oeoies are given in Table 4, and the histories of
objective values in the iterative procedure are shown in
JSFP: joint strategy fictitious play. Figure 4. The results for iterative algorithms with
1.65 Gand Case 2
1.76
]
Q ! I
3 ¥ g Ll
% 1.55 : § 1]2:
= ' R
& 1.5: E i7
o 3
$ 145 g /
5 8 1.68 /
7 2 y
1.4
1.66 -\‘fv,«f{
1.35 1.64
¢ 10 2 o0 40 %0 % i & ) 10 20 30 40 50 60 70 80
Stage Count Stage Count
Case 3
3.25 . . -
JoTTTTTos========== v global optimal
i wuen |ocal greedy
315) g wmn gequential greedy
[} 1 . . .
2 ails - = =jsfp w/o inertia
| —— jsfp w/ inertia
g 1 - jsfpappr w/ inertia w/ 2-hop
8 sy — jsfpappr w/ inertia w/ corr
g 1
8 295
o
29
2.85
28 . L
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Figure 4. Histories of objective values with stage count for three cases.



16

International Journal of Distributed Sensor Networks

inertia are obtained from Monte Carlo simulation and
represent average objective values. Case 3 is different
from the other two cases in that a larger sensor net-
work is considered, and the global optimal solution
cannot be obtained in tractable time. However, from
the examples of small sensor networks, we consider
that the optimal solution of the third case may be close
to the JSFP with full information. Thus, we can con-
sider the objective value for the JSFP with full informa-
tion as an upper bound for the sensor networks with a
large number of sensors.

First, note that the JSFP with full information of
other agents’ actions gives a better solution than the
sequential greedy algorithm, and the solution is the
same as or close to the optimal solution in Choi and
Lee.! The sequential greedy strategy can be considered
as a baseline for comparing the performance of different
strategies, since it guarantees the worst-case perfor-
mance in polynomial time, even though the guarantee is
applied to problems in which the objective functions
satisfy some conditions. The JSFP with approximate
local utility functions also presents a better performance
than the sequential greedy strategy except for approxi-
mate JSFP with two-hop neighborhood of the third
example. The approximate local utility function based
on the correlation always gives a better solution than
ones depending on the actions of the neighbors selected
by geometry-based method. In cases 1 and 2, the objec-
tive value for the approximate JSFP with a correlation-
based neighborhood is close to the JSFP with full infor-
mation. The important thing to note here is that the
number of conditioning variables used for computing
the utility functions is half of the JSFP with full infor-
mation. As mentioned in the “Computational complex-
ity analysis” section, the computation time for the
conditional mutual information increases proportional
to the cubic of the conditioning variables. Therefore,
the computation time for the approximate local utility
function is reduced by a factor of approximately 8.

Conclusion

An approximation method for computing the local utility
function has been presented when a sensor network plan-
ning problem is formulated as a potential game. A local
utility function of each agent that depends on the neigh-
boring agents’ decisions is presented, and a neighbor
selection algorithm is proposed to keep the error induced
by the approximation small. Two sensor targeting exam-
ples for weather forecasting and multi-target tracking
demonstrated that potential game formulation with the
approximation local utility function gives good perfor-
mance close to a potential game with full information.
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