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Performance evaluation of precision nanopositioning devices
caused by uncertainties due to tolerances using function
approximation moment method
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Precision nanopositioning is an important technology in industry and requires tight design
specifications. Tolerances, although very small, are allocated in all dimensions of structures at
devices and are understood as sources of performance variations. In this research, we aim to study
detail influence of tolerances on various system response functions of a precision stage, especially
parasitic motion and resonant frequencies. A function approximation moment method �FAMM� is
developed and applied to study it. The variations are mathematically expressed as their statistical
moments and the probabilities of satisfaction are obtained as a result of the FAMM. A finite element
model of the target stage, which is nonmonolithic, is generated and verified with basic
measurements. The possible initial deformation after assembly is found by the formulation of
minimizing strain energy. With this model, the FAMM is used to estimate the statistical moments
and probability density functions of the performance functions. The calculated results facilitate
understanding of the characteristics of the stage in terms of probability. The inevitable mismatch,
even under a small tolerance, is found to cause a large parasitic motion and should be considered in
the design and manufacturing process. © 2006 American Institute of Physics.
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I. INTRODUCTION

Nanopositioning technology is getting more important in
recent engineering fields such as scanning probe microscopy,
lithography, precision measurement, and micromachining.
They require high displacement resolution, wide motion
range, and high speed response without parasitic motion.
Most of the stages developed are composed of guiding and
magnifying mechanisms such as flexure hinge and leaf
spring, and actuators such as a piezoelectric transducer ac-
tuator, voice-coil motors, and linear motors. Since tolerances
are inevitable in all dimensions of the flexure mechanisms
like other engineering structures, the performances may not
be up to the requirements, as in an ideal situation. Smith et
al.1 demonstrated that a drive system could cause significant
parasitic motion due to manufacturing tolerances even in
very stiff systems. Ryu and Gweon2 have studied their influ-
ences on the motion of a monolithic flexure hinge mecha-
nism. They have used a parametric study and a worst case
study where the maximum motion error among the full fac-
torial, 2N computed errors, is found. However, these types of
methods could not present mathematically strict effects of
system uncertainties when compared to probabilistic ap-
proaches. Various probabilistic methodologies3–5 have been
developed and applied to a diversity of engineering fields.
Those methods have advantages and disadvantages in terms
of application scope, accuracy, and computational cost.

a�
Electronic mail: jshuh@khp.kaist.ac.kr

0034-6748/2006/77�1�/015103/9/$23.00 77, 01510

aded 14 Apr 2011 to 143.248.118.104. Redistribution subject to AIP li
The goal is to analyze the variations of performance
functions of the XY stage developed by Kang et al.,6 espe-
cially parasitic motion and resonant frequencies related to
response speed. The stage is composed of a flexure �leaf-
spring� guide of a double compound linear spring2 and voice-
coil motor �VCM� actuator. An assembly structure is adopted
in this system instead of a monolithic stage because of diffi-
culties of making a thin monolithic leaf spring. Therefore,
tolerances of the parts may accumulate and degrade the per-
formance of the XY stage. To analyze the initial deformation
of the assembled stage, a finite element �FE� model validated
with measurements is generated. With this model, a function
approximation moment method �FAMM� proposed in this
paper is utilized to calculate the statistical moments of the
system response functions and to estimate their probability
density functions. Given design requirements, probabilities
of satisfaction are easily calculated. The information allows
designers to understand quantitatively all the characteristics
of the XY stage.

II. METHODOLOGY

A. Moment method

The variations of a performance function, g�x�, may
mathematically be expressed by the statistical moments of

g�x� and the kth moment is defined as follows:
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where �g is the mean of g�x�, and �i is the probability den-
sity function of random variable xi for i=1 to N, which is
assumed uncorrelated. Tolerances of design variables are a
typical class of independent random variables. Once infor-
mation of several moments from low orders is given, a prob-
ability density function can be empirically obtained. Various
moment methods4 have been developed and may be catego-
rized depending on the order of moments included. The mo-
ment method adopted here is the fourth-moment method. It
calculates the first four moments of g�x�, that is, mean, stan-
dard deviation �S.D.�, skewness, and kurtosis, and utilizes
the Pearson system7 to estimate the probability density func-
tion. In moment methods, the biggest issue is how to effi-
ciently and accurately calculate the first four moments.

B. Function approximation moment method „FAMM…

Generally, a system response function, g�x�, is not given
as an explicit function such as polynomial expression and it
is almost impossible to integrate the kth order moment ana-
lytically. Therefore, FAMM is to estimate the first four mo-
ments of g�x� using a suitable quadratic interpolating poly-
nomial, ḡ�x�, which approximates g�x� over a canonical
experimental region and then to identify the probability den-
sity function of g�x�. The overall procedure of FAMM is
summarized as follows:

Step 1. Considering the one-dimensional problem about
each random variable xi, for i=1 to N, the positions of three
distinct points to determine the coefficients of a quadratic
polynomial are optimized by three error-minimizing condi-
tions, as suggested below.

Step 2. An N-orthotope is defined by these points as a
canonical experimental region for defining a suitable polyno-
mial, ḡ�x�.

Step 3. On this constructed region, a design of experi-
ments with �N+1��N+2� /2 function evaluations is per-
formed, and the coefficients of ḡ�x� are uniquely determined.

Step 4. The first four moments of ḡ�x� are easily ob-
tained as the estimates for g�x�.

Step 5. Identify the proper type of the Pearson system
and obtain the probability of failure or satisfaction.

1. Three error-minimizing conditions and the
canonical experimental region

In order to construct the canonical experimental region
for function approximation, one must consider a one-
dimensional integration problem. Positions of three distinct
points �l ,m ,n� determine the coefficients of an interpolating
polynomial of order 2, ḡ�x�, as an approximate function. It is
necessary to optimize them for better accuracy. It might well
be reasonable that the cubic polynomial is expected to ap-
proximate more closely a system response function than the
quadratic polynomial. In this paper, three error-minimizing

conditions are proposed, as explained below, and require that
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the function ḡ�x� best approximates an arbitrary polynomial
function of order 3 from the viewpoint of the moments.
Therefore, the response function g�x�, assumed as a cubic
polynomial, as

g�x� = ax3 + bx2 + cx + d �2�

and the interpolating function, ḡ�x�, is quadratic as

ḡ�x� = āx2 + b̄x + c̄ . �3�

Then, as a general condition, g�x� evaluated at �l ,m ,n�
obtaining g�l�, g�m�, and g�n�, is to be matched with ḡ�x� at
these data points as follows:

g�l� = al3 + bl2 + cl + d = āl2 + b̄l + c̄ , �4�

g�m� = am3 + bm2 + cm + d = ām2 + b̄m + c̄ , �5�

g�n� = an3 + bn2 + cn + d = ān2 + b̄n + c̄ . �6�

By solving for the coefficients of ḡ�x�, one obtains

ḡ�x� = �b + a�l + m + n��x2 + �c − a�lm + mn + nl��x

+ �d + almn� . �7�

In order to obtain �l ,m ,n� to define Eq. �7�, the following
three error-minimizing conditions are introduced:

Condition 1. One of three points is located at the value
of x corresponding to the maximum of the probability den-
sity function ��x� of random variable x:

Condition 2 . �
−�

�

g�x���x�dx = �
−�

�

ḡ�x���x�dx , �8�

Condition 3 . Minimize E =
1

2
	 ��

�min
+

s�

smin

 , �9�

where ��=�−�
� ��x���x�dx and s�

2=�−�
� ��x�2��x�dx are the

first two moments of error function, ��x�= �g�x�− ḡ�x��, and
�min and smin denote the minimum values of these moments,
respectively.

Condition 1 indicates that one experimental point, which
is usually m, should be located at the maximum likelihood
point of ��x�. Condition 2 equates the first moment of g�x� to
that of ḡ�x� as the mean of g�x� is very important and pro-
vides a relationship between l and n. Condition 3 requires
that the mean and variance of the error function are mini-
mized simultaneously and thus l or n is determined.

In this work all random variables are taken to follow
normal distributions. Therefore, �l ,m ,n� are determined as
follows when a random variable follows the standard normal
distribution with the mean �=0 and the standard deviation
�=1. By Condition 1, the position, m, of the standard normal
distribution is located at m=�=0. A term-by-term expansion
of the integral in condition 2 followed by consideration of
odd and even symmetries then gives

l + n = 0. �10�

For convenience, let l=m−k2� and n=m+k1�. Then Eq.

�10� with m=0 becomes
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k1 = k2. �11�

The first two moments of the error function defined in
Eq. �9� can be expressed as a function of only k2 when using
Eq. �11�:

��

�a�
= 2 � 	−

1

2�

�− 2e−k2
2/2 + 2 − k2

2� +
 2

�
e−k2

2/2
 ,

�12�

s�

�a�
= 
15 − 6k2

2 + k2
4. �13�

The minimum values of the first two moments are �min

=1.1061�a� and smin=
6�a� at k2=1.177 41 and 
3, respec-
tively. Condition 3 minimizing the sum of Eqs. �12� and �13�
gives k2=1.381 84, thus from Eq. �11� k1=1.381 84. There-
fore, the optimized distinct points are located at �l ,m ,n�
= �m−1.381 84� ,m ,m+1.381 84��.

In case of N random variables, the optimized points
of each random variable are applied constructing an
N-orthotope as illustrated in Fig. 1 for the case of two ran-
dom variables. The center position of the N-orthotope
matches point �m1 ,m2 , . . . ,mN�, and the locations of the sides
along the axes are denoted by li and ni. Figure 1 shows the
canonical experimental region when x1 and x2 follow the
normal distributions with different standard deviations, re-
spectively.

2. Statistical moments of ḡ„x… and probability
After determining the canonical experimental region, it

is uncomplicated to execute a design of experiments consid-

FIG. 1. Optimized positions of each variable and canonical experimental
region in case of two random variables.
FIG. 2. Elastic beam with a uniform load P �Ref. 9�.
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ering it; particularly a D-optimal design8 is used in this pa-
per. It is also a straightforward process to evaluate a system
response function at experimental points and to obtain the
coefficients of an interpolating polynomial. The number of
these is �N+1��N+2� /2 and the simplest procedure for their
estimation is to use the same number of experimental points.

Once ḡ�x� is constructed, the kth moment of ḡ�x� is eas-
ily and exactly obtained by the summation and multiplication
of the moments of uncorrelated random variables, xi for
i=1 to N, which are given from the probability density func-
tions. Subsequently, probability distribution is obtained and
the probability to satisfy g�x��0, Pr�g�x��0�, is read from
the distribution using the Pearson system. The Pearson sys-
tem is an empirical system of frequency curves in which the
probability density function of a random variable satisfies the
following differential equation:

1

��x�
d��x�

dx
= −

a + x

c0 + c1x + c2x2 , �14�

where the parameters are determined by the first four mo-
ments of x, and ��x� is the probability density function of x.
Various types of the probability density function of x can be
obtained from different relative values of the parameters. De-
tailed information about the Pearson system may be found in
Ref. 7.

3. Test example
The test problem, which is referenced to Thoft-

Christensen and Baker,9 is about the failure condition of the
maximum bending moment of an elastic beam with a uni-
form load shown in Fig. 2:

g�P,l,mF� =
9

128
Pl2 − mF 	 0, �15�

where P�x1� is the uniform load, mF�x3� is the critical limit
moment, and l�x2� is the length. P ,mF and l are assumed
uncorrelated random variables having the normal distribu-
tions with the mean and S.D. listed in Table I.

As explained in the previous section, the canonical ex-
perimental region, in step 2, is a cuboid whose center point is
��P ,�l ,�mF

� and the lengths of sides �2�1.381 84�P ,2
�1.381 84�l ,2�1.381 84�mF

�. In the next step, ten experi-

TABLE I. Parameters for random variables: Beam example.

Random variable Mean S.D.

x1�P� 2 kN/m 0.4 kN/m
x2�l� 4 m 0.4 m

x3�mF� 5 kN m 0.4 kN m

TABLE II. Resultant system response at ten experimental points.

�x1 ,x2 ,x3� g�x� �x1 ,x2 ,x3� g�x�

�1.4473, 4.0, 5.5527� −3.9246 �2.5527, 4.5527, 4.4473� −0.726 92
�2.5527, 3.4473, 5.5527� −3.4198 �2.5527, 4.5527, 5.5527� −1.8324
�1.4473, 3.4473, 4.4473� −3.2380 �2.0, 4.5527, 5.5527� −2.6379
�1.4473, 3.4473, 5.5527� −4.3435 �1.4473, 4.5527, 5.0� −2.8908
�2.5527, 3.4473, 4.4473� −2.3143 �2.0, 4.0, 5.0� −2.75
cense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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mental points from the D-optimal design are arranged as
exhibited in Table II, including resultant system responses.
The interpolating polynomial obtained from Table II is ex-
pressed as follows and coefficients of the sixth and seventh
term are zero:

ḡ�x� = − 2.75 + 1.1434X1 + 1.1281X2 − X3 + 0.5569X1X2

+ 0.0X1X3 + 0.0X2X3 + 0.0111X1
2 + 0.1129X2

2

+ 0.0222X3
2, �16�

where X1=x1−2.0, X2=x2−4.0, and X3=x3−5.0.
The first four moments and the probability of failure

from Eq. �16� are compared with the results from the Monte
Carlo method using 1 000 000 observations. It is seen in
Table III that they all agree very well with each other. In
addition, the resultant distribution of FAMM becomes Pear-
son’s type VI corresponding to a 
 distribution. As shown in
Fig. 3, the probability density function also agrees well with
the histogram of the system response function estimated by
the Monte Carlo method.

III. DESCRIPTION OF THE XY STAGE AND FE
ANALYSIS

A. Description of the XY stage

The design requirements of the XY stage developed by
Kang et al. have been 2 mm �±1 mm� working range, lim-
ited total size of 100 mm�100 mm�50 mm, resolution less
than 10 nm, and minimum parasitic motion.6 Its structure is a
stacked type such that the Y stage is orthogonally piled up on

TABLE III. Estimated moments of the resultant distribution and probability
of failure.

Parameter
Monte Carlo method

�1 000 000� FAMM �10�

Mean −2.7280 −2.7266
S.D. 0.7602 0.7625

Skewness 0.3187 0.3136
Kurtosis 3.2236 3.1795

Pr�g�x�	0� 0.982�10−3 0.977�10−3

FIG. 3. Probability density function of the system response function �Pear-
son’s types from FAMM �type VI� and histogram from the Monte Carlo

method�.

aded 14 Apr 2011 to 143.248.118.104. Redistribution subject to AIP li
the X stage as shown in Fig. 4�a�. They have the same struc-
ture with a flexure �leaf-spring� guiding mechanism and a
VCM actuator. The adopted flexure mechanism is composed
of a double-compound linear spring. A supporting rectangu-
lar frame is fixed at two opposite sides with the stationary
plate as shown in Fig. 4�b�. Each stage is designed to have
symmetry to remove parasitic movement. In addition, it pro-
vides high accuracy due to the characteristics of negligible
backlash and stick-slip friction, and smooth and continuous
motion. VCM also has inherently infinite resolution. Though
a monolithic structure may be better suited, an assembly
structure is used for this stage since it is difficult to make a
small thickness monolithic leaf-spring guide, which is nec-
essary for large travel range. Figure 4�c� shows the manufac-
tured X stage.

The main dimensions of each stage and material proper-
ties are summarized in Fig. 5 and Table IV, respectively.
Resonant frequency that is in proportion to the response
speed of the XY stage and working range are functions of the
dimensions of leaf springs. The guide is composed of three
different parts on each side and the three parts are clamped to
each other and leaf springs as shown in Fig. 5. If all lengths
of the six parts are exactly equal to the designed dimensions
as shown in Fig. 5, no parasitic motion can occur. In reality,
however, the XY stage is deformed after assemblage and the
deformation may cause large parasitic motion during opera-
tion. Therefore, any variations from the designed dimensions
cause deterioration of the performance functions of the XY

FIG. 4. �Color online� Description of the XY stage �Ref. 6�: �a� CAD model;
�b� concept design; �c� manufactured X stage.
FIG. 5. �Color online� Main dimensions of the X and Y stage.
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stage. It is also noted that parasitic motions could still occur
from inconsistencies in materials properties or clamping con-
ditions, even if the lengths are exact, but these influences are
not considered in this research.

B. FE modeling and verification

In order to investigate the variations of performance
functions of the XY stage, a sound FE model is necessary and
generated based on the dimensions in Fig. 5 and material
properties in Table IV. The guiding mechanism is modeled
by 1220 shell elements and the moving platforms and coils
by 362 solid ones. In the process of generating the FE model,
some simplifications are included: �1� the stationary plate in
Fig. 4�a� is substituted by a displacement boundary condition
as shown in Fig. 6; �2� the moving plate on the Y stage in
Fig. 4�a� is omitted and the corresponding mass is added to
the clamping part as shown in Fig. 6, which is used to con-
nect the leaf springs to it; �3� the coil whose shape is a
hexahedron with a hole is simplified to be a plate with the
same mass.

To verify the FE model of the XY stage, basic items such
as mass and resonant frequencies are compared with mea-
surements. A laser Doppler vibrometer �LDV� �Polytec. OFV
501, OFV 3001� with a minimum resolution of 2 nm is used
to measure the position. Measurements of the frequency re-
sponse characteristics using a sine swept mode of a dynamic
signal analyzer �Hewlett Packard 35 670A� are executed and
the results are shown in Fig. 7. At the same time, the FE

TABLE IV. Material properties used for modeling the flexure stage.

Name
Young’s

modulus �GPa�
Density
�kg/m3�

Poisson’s
ratio

Leaf spring Steel 200 7850 0.29
Moving platform

and guide
Aluminum 70 2710 0.33

Coil Copper alloy 117 8910 0.35

FIG. 6. �Color online� Finite element model of the XY stage and displace-

ment boundary condition.
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analysis is executed using the commercial code, ANSYS, and
the mode shapes of each resonant frequency are shown in
Fig. 8.

The results of mass and resonant frequencies are sum-
marized in Table V. The masses of the model have errors of
about 2.8% and −3.0% for the XY stage and the Y stage, and
subsequently the errors of the first and second natural fre-
quencies are about 4.0% and 11%, respectively. The latter
errors result from the difference of FE model and manufac-
tured one. Especially, the thickness of leaf springs manufac-
tured is not 0.25 mm but 0.24 mm. If the thickness in FE
model is assumed to be 0.24 mm, the resonant frequencies
are 23.98 Hz �+0.2% � and 27.51 Hz �+4.77% �, respectively.
Therefore, the FE model is taken acceptable for further
analysis.

The degrees of freedom of the FE model are 10,212 and
therefore, it requires large computational effort. In addition,
the XY stage is a stacked type that the Y stage is designed to
be orthogonally piled up on the X stage. Therefore, instead of
the full model, we have taken the model of only the X stage,
which has a resonant frequency of 37.14 Hz.

IV. DEFORMATION OF ASSEMBLY

If all parts composed of the X stage were manufactured

FIG. 7. Experimental results of the XY stage �FRF�: �a� XY �23.93 Hz�; �b�
only Y �26.38 Hz�.
without any fabrication error and assembled, the X stage

cense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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would not have any initial deformation, especially in the leaf
springs, and there would not be any parasitic motions as
might be expected. However, the dimensions of each manu-
factured part deviate from the designed values. These differ-
ences create the interference, as exemplified in Fig. 9, such
that two parts are interfered or a gap between them exists
when all parts are just stacked, not assembled. When they are
assembled, deformation possibly occurs and causes the per-
formances to deviate from what was intended. However,
both loading and displacement conditions at the interfaces
are not known, but it is expected that the equilibrium state of
the assembled X stage has the minimum of strain energy.
The deformed shape is thus found by minimizing the strain
energy.

The minimum is taken among all possible matching con-
ditions among components, that is, the locations of the nodes
to be bonded in the contacting areas �CA�. There are a total
of ten contacting areas as shown in Fig. 10�a� where the
boundary conditions are unknown. However, if displacement
conditions at the three boxes with a solid line in Fig. 10�a�

TABLE V. Comparison between measurements and FE calculations.

Measurements FE calculations

Mass XY 316.3 g 324.82 g�+2.8% �
OnlyY 138.13 g 135.38 g�−3.0% �

Resonant
frequency

f1 23.93 Hz 25.46 Hz�+4.0% �
f2 26.38 Hz 29.21 Hz�+11% �

FIG. 8. �Color online� Mode shapes of two resonant frequencies: �a� First
mode shape �25.46 Hz�; �b� second mode shape �29.21 Hz�.
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are specified, the others are automatically determined by FE
analysis. Here the three conditions are part of design vari-
ables. There are 180 design variables because there are six
nodes at CA1 and CA3, respectively, and 48 nodes at CA2
and thus x, y, and z locations of 60 nodes are the design
variables. To reduce the number of design variables, an
imaginary contacting area is considered as shown in Fig.
10�b� and the number of design variables becomes 48 be-
cause there are only four nodes at CA2.

Consider a test problem of finding the initial deformation
of the X stage, which is assumed to have fabrication errors as
shown in Table VI and to have no errors in other dimensions.

FIG. 9. �Color online� Effect of tolerances for six length dimensions.

FIG. 10. �Color online� Definition of design variables at: �a� Real contacting

areas indicated by the boxes; �b� imaginary contacting areas.

cense or copyright; see http://rsi.aip.org/about/rights_and_permissions
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The notations are shown in Fig. 9. In the minimization, the
gradient of strain energy are required and calculated by a
central difference method with 0.1% perturbation. A Broy-
den, Fletcher, Goldfarb, and Shanno �BFGS� algorithm10 is
utilized. The objective function or the strain energy is dra-
matically reduced from 761.0�10−5 J to 3.03�10−5 J in ten
iterations and 501 FE calculations. The contours of von
Mises strain show that it is distributed very evenly on all leaf
springs as shown in Fig. 11. The small fabrication errors
listed in Table VI have caused much smaller deformation in
the assembly when compared with the total size of the X
stage. However, this apparently small deformation can dete-
riorate the system performance, especially causing a large
parasitic motion due to breakage of the symmetry.

V. STATISTICS OF SYSTEM PERFORMANCE UNDER
TOLERANCES

Important design requirements of the stage are high dis-
placement resolution, wide working range, high-speed re-
sponse, and minimum parasitic motion. The flexure guiding
mechanism and VCM are suitable for high displacement
resolution and no parasitic motion as mentioned in Sec. III.
As explained before, however, the accumulative tolerances,
especially in the guide body, cause residual deformation after
assembling. This leads to parasitic motion during operation,
to be defined as the ratio of x- to y- axis displacement at the
central position of the coil part, dy /dx. Response speed and
working range are largely dependent on the thickness of leaf
springs. Since the range is much dependent on VCM, it is not
included in our study here. The response speed is treated in
terms of natural frequency. Therefore, in this paper, we aim
to evaluate the statistical moments, the probability density
functions, and the probability of satisfaction about parasitic
motion and resonant frequency.

As mentioned above, the two system responses are pri-
marily functions of the thickness of leaf springs and the six

TABLE VI. Definition of a test problem of finding r

Dimensions �mm� d1 d1�

Designed 10.3 10.3
Manufactured 10.35 10.25
FIG. 11. �Color online� Contour of von Mises strain at equilibrium state.
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length dimensions in the guide. The random variables asso-
ciated with these dimensions are reasonably assumed to fol-
low the normal distributions whose standard deviations are
equal to tolerances divided by 3.0, as shown in Table VII.
The influences of tolerances are studied using the function
approximation moment method. FAMM, as explained in Sec.
II, approximates the two implicit system performance func-
tions, that is, parasitic motion and resonant frequency with
two quadratic interpolating polynomials. The statistical mo-
ments are then obtained from the approximate functions as
summarized in Table VIII. The resulting polynomials are not
given here because they have many terms.

In order to generate them, FAMM constructs the canoni-
cal experimental region as defined in Sec. II and then 45
experimental points are determined by the D-optimality cri-
terion considering it. The system responses—natural fre-
quency and dy and dx in modal and static analysis,
respectively—are calculated at each experimental point. In
the latter case, an electromagnetic force, 10 N, is assumed to
be applied to the coil. To obtain these responses, residual
deformation corresponding to each experimental point after
assemblage is calculated using the minimization process ex-
plained earlier. Therefore, the total number of FE calcula-
tions for each response function is around 500 for each ex-
perimental point and the total computational cost is rather
large. Finally, the Pearson system is utilized to obtain the
probability density functions based on the first four moments
listed in Table VIII and the probabilities of satisfaction about
system requirements are calculated. The resulting distribu-
tions of parasitic motion and natural frequency are found to
be of types I and IV of the Pearson system, respectively, as
shown in Fig. 12.

The mean of the first natural frequency is 37.15 Hz and
the standard deviation is 1.45 Hz, which is rather small. We
thus conclude that the effect of tolerances on response speed
is insignificant. However, the mean of parasitic motion is
2.04 nm below 10 nm displacement resolution when the
stage reaches the peak working range of 1 mm, but its stan-
dard deviation is 104.7 nm, which is rather huge. Figure

TABLE VII. Definition of random variables: X stage �refer to the Fig. 9�.

Dimension Mean �mm� S.D. �mm�

d1�x1� 10.3 0.050/3.0
d1��x2� 10.3 0.050/3.0
d2�x3� 60.8 0.050/3.0
d2��x4� 60.8 0.050/3.0
d2��x5� 60.8 0.050/3.0
d3�x6� 10.3 0.050/3.0
d3��x7� 10.3 0.050/3.0

thickness �=x8� 0.25 0.020/3.0

al deformation.

d2� d2� d3 d3�

60.8 60.8 10.3 10.3
60.75 60.8 10.35 10.3
esidu

d2

60.8
60.8
cense or copyright; see http://rsi.aip.org/about/rights_and_permissions



015103-8 Huh et al. Rev. Sci. Instrum. 77, 015103 �2006�

Downlo
12�a� shows the probability of satisfaction about dy /dx, that
is, the probability to satisfy the system requirement,
−10 nm/1 mm�dy /dx�10 nm/1 mm, is 8.66%. This indi-
cates that this guiding mechanism has trouble in controlling
parasitic motions due to uncertainties from tolerances.

In order to resolve this problem, three methods may be
possible: �1� Reduce the tolerances allocated at six parts in
the guide; �2� install a tracking system and a compensator in
the stage; �3� introduce a process to measure six parts in the
guide and to do additional work for correction. The first
method has some limitation on reducing the standard devia-
tion of parasitic motion below the displacement resolution
because the allocated tolerances are already small. This,
however, requires further study of tolerance allocation. The
second makes the system complex and expensive. Further-
more, a double-compound linear spring itself becomes mean-
ingless because it is used to remove parasitic motion. In or-
der to obtain a hint of the third method, the amounts of
parasitic motion, dy /dx, at each experimental point are care-
fully analyzed, and the results are classified into three groups
according to dy /dx. Table IX shows three typical examples.
They indicate that the differences between d1 and d1�, and
d3 and d3�, respectively, have a larger effect on dy /dx than
the absolute dimensions of them. Therefore, the observations
recommend that they should be minimized although an ad-
ditional process is introduced. The process may be to mea-
sure all parts in the guide to pair up or to do additional
finishing work.

VI. CONCLUSION

The function approximation moment method �FAMM� is
developed and the influence of tolerance on various response
functions of a precision stage, especially parasitic motion
and resonant frequency, is studied. The function approxima-
tion in FAMM is performed by an interpolating polynomial
of order 2 constructed on a canonical experimental region,
which is determined by three error-minimizing conditions for
better accuracy. The unknown coefficients of the polynomial
are estimated by a D-optimal design. The four moments from

TABLE VIII. Statistical moments of two performance functions of the X
stage.

dy /dx �Parasitic motion� f1 �Natural frequency� �Hz�

Mean 2.004�10−6 37.1519
S.D. 1.047�10−4 1.4526

Skewness −0.055 18 0.035 66
Kurtosis 4.940 23 3.0017

TABLE IX. Parasitic motion corresponding to differ

Perturbations of ea

d1 d1� d2 d

Group I −0.023 −0.023 −0.023 +0.
Group II −0.023 +0.023 +0.023 +0.
Group III −0.023 +0.023 −0.023 +0.
aded 14 Apr 2011 to 143.248.118.104. Redistribution subject to AIP li
the interpolating polynomial and subsequently the probabil-
ity of a given condition are obtained without additional ef-
forts and time.

A finite element model of the XY stage is generated and
verified with basic measurements. The stage, which is non-
monolithic, may be deformed after assemblage because of
accumulative tolerances. The possible deformation is found
by the formulation of minimizing strain energy. The response
functions such as resonant frequency and parasitic motion
are evaluated based on the FE model with the residual defor-
mation. Their results at 45 experimental points are utilized
for FAMM to estimate the first four moments, the probability
density functions, and the probability of satisfaction. It is
shown that parasitic motion is quite sensitive to uncertainties

FIG. 12. Probability density functions estimated by the Pearson system: �a�
Parasitic motion �type I�; �b� natural frequency �type IV�.

perimental points.

mension �mm�

dy /dx��10−6�d2� d3 d3�

−0.023 +0.023 +0.023 0.12
−0.023 −0.023 −0.023 −27.3
−0.023 0.0 −0.023 −146.7
ent ex

ch di

2�

023
023
023
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due to tolerances. It is recommended that without reducing
tolerances this motion can be made small if the differences
between dimensions d1 and d1�, and d3 and d3�, respec-
tively, are minimized through additional processes such as
component pairing and finishing before assemblage. The
methods and finite element modeling for residual deforma-
tion developed here are shown very efficient to characterize
the performance variations due to tolerances in terms of
probability density functions.
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