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Abstract 

This paper introduces the new color face recognition (FR) method that makes effective use of boosting 

learning as color-component feature selection framework. The proposed boosting color-component 

feature selection framework is designed for finding the best set of color-component features from various 

color spaces (or models), aiming to achieve the best FR performance for a given FR task. In addition, to 

facilitate the complementary effect of the selected color-component features for the purpose of color FR, 

they are combined using the proposed weighted feature fusion scheme. The effectiveness of our color FR 

method has been successfully evaluated on the following five public face databases (DBs): CMU-PIE, 

Color FERET, XM2VTSDB, SCface, and FRGC 2.0. Experimental results show that the results of the 

proposed method are impressively better than the results of other state-of-the-art color FR methods over 

different FR challenges including highly uncontrolled illumination, moderate pose variation, and small 

resolution face images. 
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1. Introduction 

Recently, considerable research work in face recognition (FR) has shown that facial color 

information can be used to considerably improve FR performance, compared to the FR methods relying 

only on grayscale information [1-7]. In particular, it has been reported in [5-6] that the effectiveness of 

color information can become significant for improving FR performance when face images are taken 

under strong variations in illumination, as well as with low spatial resolutions. 

In general, the three components of a color can be defined in many different ways leading to a wide 

variety of color spaces [8]. In addition, it has been observed in [8-10] that different color spaces (or color 

models) possess distinct characteristics and effectiveness in terms of discriminating power for visual 

classification task. This suggests that different color components can often provide different 

complementary information to the specific classification task [9-10]. Hence, an optimal subset of color 

components may not be unique for different classification or pattern recognition problems. 

Most of the existing color FR methods (including our previous work [5]) are restricted to using a 

fixed color-component configuration comprising of only “two” or “three” color components (like YQCr 

[1] from YCbCr and YIQ color spaces). In particular, currently used color-component choices are mostly 

made through a combination of intuition and empirical comparison [1-3], [5-7] without any systematic 

selection strategy. As such, existing methods may have a limitation to attaining the best FR result for 

given FR task. This is because specific color components effective for a particular FR problem could not 

work well for other FR problems under other FR operating conditions (e.g., illumination variations) that 

differ from those considered during the process of determining specific color components. Hence, the 

important issue in color FR is: how can one select the color components from various color models in 

order to achieve the best FR performance for the specific FR task?  

In this paper, to cope with the aforementioned issue, we propose a new color FR method. Our 

method takes advantage of “boosting” learning [13] as a feature selection mechanism, aiming to find the 

optimal set of color-component features for the purpose of achieving the best FR result. To the best of our 
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Fig. 1. Proposed color FR framework. (a) Note that a learning set tR  is “most informative (or difficult)” subset of training 

samples given the currently selected color-component features. At each boosting round ‘t’ , the best color-component feature for 

classifying a learning set tR  
is determined. (b) The M

tt 1}{ =Φ  denote a set of M different feature extractors associated with M 

selected color-component features. 
 

knowledge, our work is the first attempt to incorporate feature selection scheme underpinning boosting 

learning into FR methods using color information.  

Fig.1 shows overall framework of the proposed color FR method which largely consists of two parts: 

1) color-component feature selection with boosting and 2) color FR solution using selected color 
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component features. To determine the best color component feature at each boosting round for 

recognizing the hard-to-classify sample subset of a training set, termed “learning set”, the effective 

selection criterion is proposed. The proposed selection criterion is in the form of penalty-based objective 

function with its associated weighting parameter for the purpose of selecting color-component features 

which not only produce small classification errors, but also keep their mutual dependence low. As 

demonstrated by the experimental results in Section 4.3, the proposed selection criterion is highly useful 

for achieving a low generalization classification error. In addition, to perform color FR, the color-

component features chosen via our boosting framework are combined at the feature level. Specifically, 

selected color-component features are fused based on weighted feature fusion scheme−depending upon 

the associated confidence of each color-component feature− for achieving better FR performance.  

In order to evaluate the effectiveness of the proposed color FR method, comparative and extensive 

experiments have been carried out. For this, five public face databases (DB) CMU-PIE [19], Color 

FERET [20], XM2VTSDB [21], SCface [22], and FRGC 2.0 [24] are used. Experimental results show 

that the results of the proposed method are impressively better than the results of other state-of-the-art 

color FR methods over different FR challenges including highly uncontrolled illumination, moderate pose 

variation, and small resolution face images. 

The remaining of the paper is organized as follows: Section 2 describes our color-color component 

feature selection method within boosting learning framework. In particular, this section details the 

proposed selection criterion. In Section 3, we explain the proposed weighted feature fusion approach to 

combining selected color-component features for a FR purpose. In Section 4, we present extensive and 

comparative experimental results that demonstrate the effectiveness of the proposed color FR method. 

Conclusions and directions for future research are presented in Section 5.   

2. Boosting color-component feature selection 

In this paper, a multiclass boosting “Adaboost.M2” [12] framework is adapted to implement color-

component feature selection. Differing from other boosting learning frameworks, the key advantage of 
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Adaboost.M2 framework is to force the weak learners to concentrate not only on the hard instances (or 

patterns), but also on the incorrect class labels that are hardest to classify [12]. As such, this boosting 

framework would fit well into our color-component feature selection that is devised for FR belonging to 

multi-classification problems. Further, this boosting framework is more flexible because the 

determination of error bound of the final hypothesis is free of the requirement that every weak hypothesis 

should have classification error less than 1/2 [12].  

We now present the proposed color-component feature selection procedure. Let },,1{ CK=L  be 

the class label set, where C  denotes maximum class label (or the number of classes). Also let T  be a 

training set composed of N red-green-blue (RGB) color face images each denoted by ),1()(
t Nii

K=x of 

size WH ×  pixels with a corresponding class label ,il  where .L∈il  For each of the RGB color 

images in ,T color conversion can be done from the RGB color space to a number of different 

prespecified color spaces. Assuming that a total of ‘K’ different color components are yielded from the 

color conversions under consideration, we then denote the m-th color component by mf  (e.g., Cb or Cr 

from YCbCr color space) comprising a color-component pool denoted by F  for which .F∈mf  

In our method, the best color-component feature (at each boosting round) for classifying a weighted 

version of T (i.e., weighted training samples) is determined based on selection criterion. To maintain a 

set of weights over the ,T  the distribution denoted by )(iDt [12] for each training sample )(
t
ix  can be 

determined at every boosting round. Initially, values of )(iDt  are set equally, but on each round, they are 

newly updated in such a way that weak learners is forced to focus on the hard training samples.  

Before presenting the entire color-component feature selection algorithm proposed, the way of 

constructing weak learners (so-called FR learners) and the proposed selection criterion will be described 

in detail in the following subsections. 

2.1. Construction of FR learners 

To construct weak learners at each round, the learning set )( TRR ⊂tt  is formed by choosing the 
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r hardest-to-classify training samples per class from the T  according to distribution ).(iDt  

Subsequently, a corresponding feature extractor mΦ  is constructed using tR  along with the m-th 

color-component ).,,1( Kmfm K=  Specifically, to form ,mΦ  the mΦ  is trained with a set composed 

of the m-th color-component images that are generated from tR  via an associated color conversion. 

Here, JWH
m ℜ→ℜΦ ×:  takes as input the m-th color component image of size WH ×  pixels and 

produces as output a corresponding J-dimensional feature. It is important to note that mΦ  can be 

obtained using any face feature extraction algorithm (e.g., using global- or local-based feature methods 

[14]). As opposed to conventional learners in the original boosting methods [12-13], the learning focus in 

our method lies on the feature extractor rather than the classifier. As such, it differs from the original 

boosting design in that only pure classifiers are generally used as the weak learners (termed “FR learner” 

hereafter) without considering feature extraction. This is mainly because the training process of typical 

FR algorithms is with emphasis on constructing a feature extractor instead of an associated classifier [14], 

[18].   

Using ,mΦ  a corresponding FR learner mth ,  (at the t-th boosting round) is defined as follows: 

,
)(

)(
),(

minmax

)(
max

, dd

dd
nh

n
m

mt −
−=x  (1) 

where ,))(),(( )(
g

)( n
mm

n
m Sd xx ΦΦ=

 
)(⋅S  is a metric function that measure distance between two input 

vectors in J-dimensional feature subspace, x
 
and )()(

g Lx ∈nn  denotes the RGB color image to be 

recognized and the n-th enrolled RGB color gallery image, respectively, ,)}max({ 1
)(

max
C
n

n
mdd ==  and 

.)}min({ 1
)(

min
C
n

n
mdd ==  Note that in (1), outputs of FR learner )(, ⋅mth  are in the range [0,1] for which it 

has the form .]1,0[:, →×ℜ × LWH
mth  Hence, it can satisfy the functional requirement of the general 

boosting algorithm [13] (including AdaBoost.M2 [12]), representing the degree (or confidence) for 

labeling x  as the class ,n  namely, class label estimation. 
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2.2. Proposed selection criterion 

At each boosting round, the best FR learner (i.e., the best color-component feature) should be 

determined from among K constructed FR learners ),,,1(, Kmh mt K=  each of which depends upon a 

single color-component feature. To this end, a selection criterion plays a crucial role in determining the 

‘goodness’ of feature selection. Referring to [11], in ensemble classification (including boosting), it has 

been shown that, to achieve the lowest generalization error, we need to create ensembles (or classifiers) 

with low training classification error, while at the same time their mutual dependence should be kept 

minimal. In particular, in our feature selection problem, mutual dependence between color-component 

features have to be carefully considered as different color channels may have similar properties from the 

view-point of classification. For instance, the V and G channels (from HSV and RGB color spaces, 

respectively) both encode the intensity information for green colors. Therefore, before a FR learner is 

selected, mutual dependence between the new FR learner and each of the selected FR learners should be 

examined to ensure that the complementary information (that improves classification) carried by the new 

FR learner is not captured by the preceding FR learners before. 

To address the aforementioned issue, we develop an effective selection criterion which aims at 

making optimal balance between classification error and the degree of mutual dependence among selected 

FR learners. Here, using (1), classification error for mth ,  is calculated based on ‘pseudo-loss’ [12]:  

( ),),(),(),(1)(
2

1
1

)(
t,

)(
t,, ∑ ∑= ≠

+−= N

i

i
mtti

i
mtth

imt
hirhiD

ll
lll xxε  (2) 

where ),( lirt  is the mislabel weight vector (for details on the computation and implication of ),,( lirt  

please refer to [12]). Note that for computing ,
,mthε  both hard-to-classify samples and hard-to-separate 

pairs of class labels are taken into account at the same time [12].  

To quantify mutual dependence, one natural choice is to compute ‘mutual information’ in the theory 

of probability between pairs of the outputs of FR learners. However, this method requires accurate 

estimation of joint distributions over the outputs of FR learners; joint probabilities need to be computed 
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over 2|| L  bins, where || L  denote the number of class labels. Hence, measuring mutual information 

may be ineffective in terms of simplicity for implementation, especially for general FR problems which 

often have to handle a large number of classes (usually hundreds or thousands of subjects). To cope with 

this, a simple but effective alternative way to measure mutual dependence between a pair of two FR 

learners has been devised as follows: 

),,,(
1

),( )(
t

1

i
ba

N

i
ba hh

N
hhI x∑

=

= δ  (3) 

where )(⋅δ  denotes an indicator function that returns ‘one’ only when, for i-th training sample, the class 

label predicted by ah  is equal to that predicted by ,bh  otherwise returns zero and .1),(0 ≤≤ ba hhI  

Note that in (3), mutual dependence can be measured by investigating agreement of the outputs of two FR 

learners considered. Based on (3), we then examine the mutual dependence between the candidate FR 

learner mth ,  (i.e., candidate color-component feature) and the already selected FR learners to avoid 

redundant FR learners in the following way: 

,,),(max ˆˆ,
ˆ

, Mttmt
h

h hhhI
t

mt
H∈=π  (4) 

where MH  denotes the set of the best M selected FR learners before current boosting round. 

Using (2) and (4), the best FR learner (at the t-th boosting round) is determined as follows: 

,minarg
,

,
mt

mt
hht Jh =  (5) 

where 

,
,,, mtmtmt hhhJ πλε +=  (6) 

and .10 <≤ λ  Note that in (6), objective function value 
mthJ

,
 of each mth ,  has a penalty term 

mth ,
π  

and a weighting parameter λ  that controls a trade-off between 
mth ,

ε  and 
mth ,

π  in order to enforce low 

mutual dependence between selected FR learners. Considering FR performance in our experiments, a 

good compromise has been found by setting λ  in the range of [0.3, 0.5]. 
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Fig. 2. Proposed algorithm for color-component feature selection.  

 

2.3. Summary for color-component feature selection algorithm 

At the t-th boosting round, the corresponding best FR learner th  (determined through using (5) and 

(6)) is then added to MH  at a time, subject to condition that objective function value 
thJ  for th  (such 

that 
mt

mt
t hhh JJ

,
,

min= ) should be lower than predefined acceptance threshold .*ζ  It should be noted that 

the purpose of setting *ζ  is to provide better generalization classification error (see Section 4.3 for 
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further details). 

The proposed color-component feature selection algorithm is summarized in Fig. 2. After 

terminating our boosting feature selection, M pairs of M
tttf 1)},{( =Φ  associated with the chosen M FR 

learners contained in final MH  are used for performing color FR discussed in the next section.  

3. Color FR using selected color-component features 

Following from the original design of boosting framework [12], given M  FR learners Mth H∈  as 

its output, the traditional form of the final classifier for recognizing an unknown probe px  is: 

.),()/1log(maxarg)( ppcom ∑ ∈∈
=

Mth tt
n

nhh
HL

xx β  (7) 

Note, by using (1), ),( p nht x  can be readily computed and the confidence parameter tβ  is a function of 

tε  as described in Step 2.(6) in Fig. 2. In (7), )( pcom xh  takes a weighted majority vote of the class 

predictions of M  selected FR learners.  

However, it should be emphasized that the ultimate goal of our boosting framework discussed in 

Section 2 is to select a subset of color-component features for achieving the best FR performance. Further, 

the learning focus of FR learners in this paper is stressed on feature extractors each constructed with a 

learning set of corresponding color-component images. Moreover, in the areas of multimodal fusion, 

fusing multiple features of the same biometric (or pattern) at the feature level can generally show better 

classification result than fusion methods working on other levels [15]. Based on the facts mentioned 

above, we decide to combine M  selected color-component features at the feature level to achieve better 

FR performance. The following subsection provides a detailed description of proposed fusion method. 

3.1. Weighted color-component feature fusion 

Given M  pairs of color component and associated feature extractor M
tttf 1)},{( =Φ  of the chosen M 

FR learners ,Mth H∈  the low-dimensional features of px  and )(
g
nx  along with tf  are obtained as 

follows (using the corresponding :)tΦ  
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)( p
)(

p xf t
t Φ=  and ,)( )(

g
),(

g
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t
tn xf Φ=  (8) 

where Jtnt ℜ∈),(
g

)(
p ,ff  and .,,1 Mt K=  In order to generate the combined features for px

 
and ,)(n

gx  

M  weighted low-dimensional features, given by (8), are combined at the level of the features (by 

stacking low-dimensional features in column order): 

[ ]TT)(
p

T)1(
p1p )()/1log()()/1log( M

M fff ββ L=
  

and ( ) ( )[ ] ,)(/1log)(/1log
TT),(

g
T)1,(

g1
)(

g
Mn

M
nn fff ββ L=  

(9) 

where T
 
denotes the transpose operator of a matrix and ., )(

gp
MJn ℜ∈ff  Note that, for the same 

representation format, )(
p

tf  and ),(
g

tnf  should be individually normalized to have zero mean and unit 

variance before concatenation [15]. In (9), depending on the confidence (in terms of classification 

accuracy) of M color-component features chosen through boosting, we give some color-component 

features more weight than others when computing distance between pf  and .)(
g

nf  As such, weighted 

feature fusion shown in (9) allows for effectively facilitating a complementary effect between its different 

components, leading to positively affect the classification performance.   

To perform FR tasks (identification or verification) on ,px  a NN classifier is then applied to 

determine the identity of px  as follows: 

)()( )(
gp

*nll xx =  and ),,(minarg )(
gp

* n

n
Sn ff

L∈
=  (10) 

where )(⋅l  returns the identity label of a face image. 

4. Experiments 

Five public CMU-PIE [19], Color FERET [20], XM2VTSDB [21], SCface [22], and FRGC 2.0 [24] 

face DBs were used to evaluate the proposed method. All facial images used in our experiments were 
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Fig. 3. (a) Examples of the facial images with flash illumination from the CMU-PIE DB. (b) Examples of facial images with 
uncontrolled illumination condition from the XM2VTSDB. (c) Examples of facial images with pose variations from the Color 
FERET DB. (d) Examples of facial images with variation in face resolutions from the SCface DB. (e) Example of facial images 
from the FRGC 2.0 DB. 
 

manually cropped from original images based on the locations of the two eyes. Each cropped facial image 

was rescaled to the size of 64 x 64 pixels (see Fig. 3).  

To construct a face feature extractor )(⋅Φm  (described in Section 2), four popular low-dimensional 

feature extraction techniques were used: Principal Component Analysis (PCA) [16], Fisher’s Linear 

Discriminant Analysis (FLDA) [17], Regularized Linear Discriminant Analysis (RLDA) [18], and 

Enhanced Fisher linear discriminant Model (EFM) [3]. As for the )(⋅S
 
in (1) and (10), the Euclidean 

distance was used for FLDA and RLDA, while the Mahalanobis and cosine distance measures for PCA 
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and EFM, respectively. In addition, in all experiments, the frontal-view images with neutral illumination 

and expression were used to build the gallery set.  

To form the color-component pool F  used for color-component feature selection process described 

in Fig. 2, the 36 different color components from the following 12 different color spaces were used1: 

‘YCbCr’, ‘ YIQ’, ‘ HSV’, ‘JPEG-XR’ (Co, Cg, and Y), ‘RGB’, ‘ YUV’, ‘ XYZ’, ‘CIE L*a*b* ’, ‘ YPbPr’, ‘ YDbDr’, 

‘CIE L*u*v* ’, and ‘CIE L*ch’. Note that the color spaces used can be derived from the RGB color space by 

means of either linear or nonlinear transformations. A detailed description for the color spaces used can 

be found in [8].  

4.1. Evaluation of our method under different challenges 

In this section, we present comparative experimental results to demonstrate the effectiveness of our 

method under different FR challenges. For comparison purpose, the following state-of-the art color FR 

methods are implemented: “Hybrid Color and Frequency Feature” (CFF) method [4], “Color Space 

Normalization” (CSN) method [7], “Color Image Discriminant Model” (CID) method [2], “Independent 

Color Space” (ICS) method [3], “Hybrid Color Configuration RQCr” method [5].  

For the CFF method, the hybrid ‘RIQ’ color space was used as proposed in [4]. In addition, as 

recommended by [4], the same size of masks used to select frequency sets in frequency domain was used. 

For the CSN method, the normalized hybrid ‘ZRG’ color space using across-color-component 

normalization technique [7] was used as this method achieves the best FR performance of all normalized 

color spaces evaluated in [7]. For the CID method, we implemented its extended version based on the 

RGB color space [2]. In addition, following the same parameter values as used in [2], the initial value of 

the CID algorithm and convergence threshold were set to ‘[1/3,1/3,1/3]’ and ‘0.1’, respectively. The ICS 

defines statistically independent component images that are created using a blind source separation 

technique; in our experiment, Comon’s ICA algorithm [23] was used to compute mutual information 

                                           
1 The color space conversion is performed using the “Color Space Converter” Matlab toolbox available at: 

http://www.mathworks.com/matlabcentral/fileexchange/7744. 
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Table 1. Rank-one identification rates (%) [20] obtained for six different color FR methods on the ‘CMU-PIE’ and the 
‘XM2VTSDB’ face images having illumination variation. Note that, for the proposed method, four hardest training images per 

subject (i.e., r = 4) are selected from a training set at each boosting round to form a learning set. 
Color FR 
method 

Used color information 
fusion method 

Feature extraction method 
PCA FLDA RLDA 

Proposed FL fusion with different weights 82.27 1.01±  93.85 2.45±  98.27 1.17±  

Proposed FL fusion with uniform weights 78.34 110.±  88.05 920.±  93.30 541.±  

CFF  
Weighted similarity  

score fusion [4] 72.41 98.1±  84.97 83.0±  88.57 05.1±  

CSN  IL fusion [7] 74.73 11.1±  88.97 42.2±  92.57 43.1±  

ICS  IL fusion [3] 68.98 99.2±  79.23 03.2±  83.56 77.1±  

CID  IL fusion [2] 73.58 56.2±  86.23 42.3±  89.36 11.2±  

RQCr  IL fusion [5] 70.87 19.2±  81.32 32.0±  85.00 01.1±  

Note that FL correspond to the feature-level, while IL to the input-level. In addition, bold value denotes the best result of FR 
approaches in each low-dimensional feature extraction technique and the similar notations are also used in the following tables.   
      

 

Table 2. Rank-one identification rates (%) obtained for six different color FR methods on the ‘Color FERET’ face images having 
pose variation. Note that, for the proposed method, we set r = 3 to form a learning set. 

Color FR 
method 

Used color information  
fusion method 

Feature extraction method 
PCA FLDA RLDA 

Proposed  FL fusion with different weights 69.90 1.61±  84.09 2.63±  87.53 2.78±  

Proposed  FL fusion with uniform weights 67.31 681.±  80.92 771.±  83.24 86.1±  

CFF  
Weighted similarity  

score fusion [4] 54.30 65.0±  69.90 37.1±  72.80 75.0±  

CSN  IL fusion [7] 64.53 59.0±  77.10 50.1±  80.14 46.0±  

ICS  IL fusion [3] 51.56 68.1±  59.58 75.0±  69.52 79.1±  

CID  IL fusion [2] 52.41 01.3±  71.45 68.2±  70.38 11.3±  

RQCr  IL fusion [5] 49.79 86.1±  61.12 44.2±  66.76 89.0±  

 

 

Table 3. Rank-one identification rates (%) obtained for six different color FR methods on the ‘SCface’ images having spatial 
resolution variation. Note that, for the proposed method, we set r = 3 to form a learning set. 

Color FR 
method 

Used color information  
fusion method 

Feature extraction method 
PCA FLDA RLDA 

Proposed FL fusion with different weights 42.56 56.06 62.78 
Proposed FL fusion with uniform weights 38.81 51.68 59.09 

CFF  
Weighted similarity  

score fusion [4] 
28.88 39.31 43.55 

CSN  IL fusion [7] 34.86 48.70 53.51 
ICS  IL fusion [3] 26.78 37.78 41.89 
CID  IL fusion [2] 37.76 49.54 54.70 

RQCr  IL fusion [5] 34.85 46.34 49.61 

 

between color components and high-order statistics as suggested in [3]. The ICS shows the best FR 

performance of all color image representations evaluated in [3]. In [5], the authors show that the hybrid 

RQCr color configuration is considerably effective for recognizing low-resolution face images. In 
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addition, in the proposed method, the acceptance threshold *ζ  in Fig. 2 and the weighting parameter λ  

in (6) were empirically set to 0.6 and 0.4, respectively, across all experiments in this section. However, it 

should be emphasized that varying *ζ  in the range of [0.55, 0.65] did not much alter the FR 

performance of the proposed method in our experiments. Further, in order to validate the advantage of 

using different weights for all selected color components as proposed in (9), we also present the results 

using uniform weights (i.e., all components have the same weights when computing distance).  

Comparative experimental results under variations of illumination, pose, and spatial resolution are 

presented as follows: 

1) Under illumination variation: We compare the robustness of the proposed color FR with other 

color FR methods against extensive variations in illumination using CMU-PIE and XM2VTSDB 

face DB. In this experiment, 1,428 frontal images of 68 subjects (21 images per subject) were 

collected from the CMU- PIE; the facial images for each subject have 21 different illumination 

variations (using the ‘room lighting off’ condition). From the XM2VTSDB, 900 frontal images of 

100 subjects were obtained; each subject included nine facial images captured with no control on 

severe illumination variations. Fig. 3(a) and Fig. 3(b) show examples of facial images used in this 

experiment. By using random partition, the training set consisted of (6 images x 168 subjects), 

while the remaining 1,320 images were used to create a probe set. Table 1 shows the rank-one 

identification rates of six different color FR methods. To guarantee stable experimental results, 20 

independent runs of aforementioned random partitions were executed. Thus, all results presented in 

Table 1 were averaged over 20 runs. The results show that our method (using different weights) 

outperforms the other five color FR methods for all feature extraction techniques. For instance, for 

the case of using RLDA, our method can attain about 14.71%, 12.71%, 9.70%, 8.91% and 7.70% 

improvement, compared to ‘ICS’, ‘RQCr’, ‘CFF’, ‘CID’ ‘CSN’ methods, respectively. 

2) Under pose variation: We further assess the usefulness of the proposed method under moderate 
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pose variations. A total of 1,378 face images of 107 subjects were collected from the Color FERET 

face DB. It should be noted that the rotated face images that both eyes can be reliably identified for 

normalization were only collected. The facial images used include five different pose angles 

ranging from °− 45  to °+ 45  (see Fig. 3(c)). Also note that all the images have neutral 

expression and illumination. By using random partition, the training set consisted of (5 images x 

107 subjects), while the probe set contained the remaining 843 images of the same 107 subjects. 

The comparison results are described in Table 2. It is shown that the proposed method attains the 

highest recognition accuracies for all feature extraction methods followed by the ‘CSN’, the ‘CFF’, 

and the ‘CID’ color FR methods. In particular, compared to the second best method ‘CSN’, 

identification rates can be improved by 5.37%, 6.99%, and 7.39% for PCA, FLDA, and RLDA, 

respectively. This demonstrates the effectiveness of our method under pose variations. 

3) Under spatial resolution variation: In this experiment, we further evaluate the effectiveness of the 

proposed method against small resolution face images. To this end, 2,080 face images of 130 

subjects were selected from SCface DB. This dataset has been designed to test the FR algorithms in 

real-world surveillance setup [22]. Different quality face images were taken with 5 different 

commercially available surveillance cameras of various quality and resolution. There are three 

images per subject for each camera, captured at three different distances (4.20, 2.60, and 1.00 m) as 

described in [22]. As shown in Fig. 3(d), some of these surveillance images are of extremely low 

quality and resolution. In real-life surveillance-like FR applications, it is reasonable to assume that 

high-resolution face images are chosen as training and gallery images. On the other hand, the probe 

to be tested may have lower and various face resolutions [5]. Hence, in our experiments, gallery set 

consisted of one frontal mug shot (per subject) image, and the training set consisted of 5 face 

images with distance label ‘3’ per subject (i.e., captured with 5 different surveillance cameras at a 

distance of 1.00 m), while the probe set consisted of 10 face images (per subject) with distance 

labels ‘1’ or ‘2’ (i.e., captured at a distance 2.60 and 4.20 m). Note that, to match a low-resolution 
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probe to a high-resolution gallery face, the probe has been upsampled to be matched with template 

size of 64 x 64 pixels by using a cubic interpolation technique before FR. The experimental results 

of six different color FR methods on the varying face resolutions are described in Table 3. From 

Table 3, we can see that recognizing face images (with much lower resolution) collected from 

‘SCface’ DB is significantly challenging. The rank-one identification rate averaged over all of the 

color FR and feature extraction methods is less than around 45%. However, it should be noted that 

the proposed method can achieve the best FR performance of up to around 63% when using RLDA. 

4.2. Comparison with other color FR methods 

In this section, we conduct comparative experiments on the FRGC 2.0 dataset to further evaluate our 

method. Here, the “FRGC Experiment 4” is chosen to assess the proposed method because the FRGC 

Experiment 4 has been reported to be the most challenging FRGC experiment [3], [24]. Note that direct 

comparisons are made with other state-of-the-art results reported recently by other researchers on these 

FRGC 2.0 dataset. As such, all the results for comparison are directly cited from papers published recently. 

Note that, in this experiment, the performance measurement is Face Verification Rate (FVR) at False 

Accept Rate (FAR) equal to 0.1%, which corresponding to ROC III curve [24]. In addition, note that the 

EFM is adopted for a face feature extractor in our method because all other methods (to be compared) 

make use of EFM for extracting low-dimensional features. From the comparison shown in Table 4, we 

can see that our method has made impressive improvements, which further validate the effectiveness of 

our method. 

 

Table 4. Comparisons with other state-of-the-art color FR methods on the “FRGC 2.0 Experiment 4”. Note that z-score 
normalization is used to compute FVR and FAR. Also note that, for our method, we set r = 7 to form a learning set. 

Color FR Method FVR (ROC III) when FAR = 0.1% 
Proposed (using different weights) 86.97% 

CFF in [4]  80.30% 
CSN in [7]  72.86% 
ICS in [3]  73.69% 
CID in [2] 78.26% 
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Fig. 4. Impact of weighting parameter λ  on generalization classification performance. Note that RLDA was used for feature 
extractor and the acceptance threshold values for all of the three different weighting values were set to 0.6 for fair comparisons. 
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Fig. 5. Effectiveness of using acceptance threshold *ζ on selecting an optimal subset of color-component features. Note that 

RLDA was used for feature extractor and, for the case of using ,*ζ  we set .6.0* =ζ   

 

4.3. Effectiveness of weighting parameter and acceptance threshold 

Note that in (6), the weighting parameter λ  has been introduced aiming to consider both mutual 

dependence between selected color-component features and their classification errors in our boosting 
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based color-component feature selection. In addition, as described in Fig. 2, the acceptance threshold *ζ  

is used to prevent the color-component features having either much lower classification errors or much 

higher mutual dependences from being selected. It should be noted that main objective of using both λ  

and *ζ  is to achieve better generalization classification (or recognition) performance. To validate the 

effectiveness of using λ  and *ζ  in the proposed method, experimental analysis has been performed 

using the face image dataset collected from the Color FERET. A detailed description of the experimental 

dataset used is given in Section 4.1.  

Fig. 4 shows the impact of weighting parameter λ  on generalization classification performance of 

the proposed method. Note that in Fig. 4, the selected color-component features determined at each 

boosting round were used to compute the classification errors by using (9) and (10). Also note that 

0=λ  means that the classification error defined in (2) is only taken into account during color-

component feature selection process. As shown in Fig. 4, the training errors for all of the three different 

weighting parameter values can be reduced as the number of boosting rounds is increased and finally 

converged to nearly same constant value. However, for the case of generalization classification error, we 

can see that generalization errors for both 3.0=λ  and 5.0=λ  converge to much lower values (after 

passing the 10-th boosting round) than that obtained for .0=λ  This result ensures that considering both 

mutual dependence and classification errors by using λ  for color-component feature selection allows 

achieving a low generalization error. 

Fig. 5 shows the effectiveness of using acceptance threshold *ζ  on selecting an optimal subset of 

color-component features. In Fig. 5, the number of selected color-component features corresponding to 

each boosting round is also presented. As shown in Fig. 5, when using ,*ζ  our method stops adding 

color-component features at boosting round (i.e., the 11-th boosting round) where the lowest 

generalization classification error has been attained. This is done by protecting addition of color-

component features whose objective function values defined in (6) are lower than predetermined value of 
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.*ζ  On the other hand, when not using ,*ζ  as more color-component features are added, generalized 

classification error decreases, which then arrives at minimum error (at the number of features 10 through 

12), and eventually increases again. These results demonstrate that making use of *ζ  with appropriate 

value is useful for determining the best number of color-component features as well as the types of color-

component features (“best” in the sense that generalization classification error is minimized). 

5. Conclusions and future research 

In this paper, a novel and effective color FR method is proposed. It is based on the selection of the 

best color-component features (from various color models) using the proposed variant of boosting 

learning framework. These selected color-component features are then combined into a single 

concatenated color feature using weighted feature fusion. Our results clearly demonstrate the 

effectiveness of the proposed method in terms of both absolute performance and comparative 

performance against state-of-the-art color FR methods.  

In this paper, the extraction of color-component features is restricted to using global-based feature 

extraction methods (such as PCA and LDA). However, other face features (or descriptors) can be readily 

incorporated into the proposed selection framework, aiming to find the most suitable features for a given 

FR task. In particular, for the future work, we will extend our work by applying popular local-based 

feature extraction techniques, such as Gabor wavelets [14] or Local Binary Pattern (LBP) [25], to 

construct the FR learners defined in (1). For instance, color LBP (CLBP) feature extraction technique 

proposed in [26] can be easily applied to the construction of FR learners. This extension will allow for 

finding better color-component features via the proposed boosting feature selection algorithm in terms of 

achieving the best face recognition results. In addition, even though standard color spaces (such as RGB 

and YCbCr) are only considered during boosting feature selection process in this paper, our method will be 

readily extended by incorporating new color spaces [2-3], [7] (e.g., normalized ‘ZRG’ color space 

proposed in [7]) devised for a color FR purpose. This is expected to yield better performance. In addition, 

for the future work, we will exploit which combinations of color components generalize well across the 
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illumination variations in the context of FR. 
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