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Abstract: In this paper, we provide findings from an energy saving experiment in a university
building, where an IoT platform with 1 Hz sampling sensors was deployed to collect electric
power consumption data. The experiment was a reward setup with daily feedback delivered by
an energy delegate for one week, and energy saving of 25.4% was achieved during the experiment.
Post-experiment sustainability, defined as 10% or more of energy saving, was also accomplished
for 44 days without any further intervention efforts. The saving was possible mainly because of
the data-driven intervention designs with high-resolution data in terms of sampling frequency
and number of sensors, and the high-resolution data turned out to be pivotal for an effective
waste behavior investigation. While the quantitative result was encouraging, we also noticed
many uncontrollable factors, such as exams, papers due, office allocation shuffling, graduation,
and new-comers, that affected the result in the campus environment. To confirm that the quantitative
result was due to behavior changes, rather than uncontrollable factors, we developed several
data-driven behavior detection measures. With these measures, it was possible to analyze behavioral
changes, as opposed to simply analyzing quantitative fluctuations. Overall, we conclude that the
space-time resolution of data can be crucial for energy saving, and potentially for many other
data-driven energy applications.

Keywords: energy saving; data-driven; intervention design; behavior detection; data resolution

1. Introduction

With the advent of the IoT (Internet Of Things) era, sensor data is becoming rapidly affordable
and increasingly influential in the energy field [1]. In particular, energy consumption data has become
an integral part of solving a variety of energy problems. For instance, energy consumption data is
being used for load prediction [2], population segmentation [3], real-time dashboard [4,5], individual
feedback [6], occupancy detection [7], and NILM (Non-Intrusive Load Monitoring) [8]. For the data
to be effective in such applications, high data quality is required, where quality can be defined as
the resolution in the time and space dimensions [1]. Data resolution directly affects the amount of
information that is captured in the data, and therefore determines the level of analysis that can be
performed [9]. Collecting high-resolution data, however, implies a higher cost in terms of sensors
and data management systems. This results in a tradeoff between data quality and cost, and the
optimal resolution is known to be dependent on the task and the final goal [10]. To study the impact of
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high-quality data on well-known energy problems, we consider the task of energy saving, which has
been heavily investigated in recent decades. Most existing studies have focused only on the amount of
power consumption, but we are more concerned with the data quality and its impact. Additionally,
some studies have incorporated occupancy data collected from other types of sensors [11,12], but we
consider only electrical power consumption data in order to keep the study focused on data quality
(in fact, we tried installing a few different types of occupancy detection sensors, but encountered
accuracy and/or privacy issues in the campus environment. In order to focus on the main topic of this
work, occupancy data was excluded in the study).

Energy saving strategies for encouraging pro-environmental behavior can be divided into two
broad categories: structural strategies and informational strategies [13]. According to [13], structural
strategies are aimed at making changes in the circumstances under which behavioral choices are
made (e.g., improvement of home insulation, rewards, etc.). Typically, a structural change requires
a financial investment. Informational strategies are aimed at changing perceptions, motivations,
knowledge, and norms, without changing the external context in which choices are made (e.g., periodic
emails with recommended behavior changes, consulting, etc.). In general, combining both strategies
will be most effective, because there is often more than one barrier inhibiting users from acting
pro-environmentally [13,14]. In this study, we utilize data-driven approaches and combine structural
strategies and informational strategies. As structural strategies, we provide a reward and use a
low-cost system that encourages users to turn off their computers (Wake On Lan; details in Section 4).
For informational strategies, data-driven analysis is employed to provide highly tailored feedback,
which is known to be effective [15–18]. The overall interventions for this study are summarized in
Figure 1.
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Our experiment was performed in a university building. The importance of energy saving in the
residential sector has been well recognized, and there have been numerous experiments and studies
using interventions such as feedback, reward, and consulting [19,20]. The commercial sector, including
university buildings, is also important, and the sector is continuing to grow. For instance, the world’s
commercial sector, including education, government, private and public organizations, is expected to
be the fastest-growing demand sector with an average energy consumption growth of 1.6% per year
between 2012 and 2040 [21], and the service sector accounts for 30% of the total electricity usage in
EU [22]. Within the commercial sector, energy consumption in educational buildings was the third
highest in the US, according to [23]. A variety of studies have been performed on energy saving in
the commercial sector, for instance, see [24–26], and a review on data science techniques applied to
building energy management can be found in [27].

There are several challenges for energy behavior research on campus. Students, faculties, and staff
on campus are typically not interested in reducing energy usage. Almost no one is aware of the energy
bill, and the majority usually behave as if the energy used on campus is free. In particular, students do
not realize that the charge is included in their tuition fees [28,29]. Due to the lack of information and
interest, it is difficult to motivate people to change their behavior. Even if they can be motivated, it is
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usually difficult to expect a large saving, because the group does not know what particular energy
saving behavior is required and allowed within their local context. Even though it is important to
reduce standby power when there is no activity, many devices are shared and used, and energy is
wasted because conservation maintenance is often not performed properly [30,31]. Another challenge
lies in uncontrollable factors such as exams, papers due, office allocation shuffling, and graduation
in a campus environment. User behavior that influences power consumption is affected not only
by the interventions but also by the uncontrollable factors (Figure 2). A large-scale experiment is
typically needed to cope with such uncontrollable factors. Establishing a large-sized experimental
group, however, is usually not feasible in the campus context. Consequently, it becomes difficult
to confirm whether a reduction in energy consumption was achieved due to the interventions in
the experiment. To resolve this problem, we investigate how high-resolution data can be utilized to
mitigate this issue. In particular, we establish methods for utilizing high-quality data to detect energy
saving behaviors with high confidence.
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The rest of this paper is organized as follows. Section 2 presents the experiment setup. Section 3
explains the space-time resolution of data and how they can be used for detection of energy saving
behavior. Section 4 describes the experiment, and Section 5 explains the energy saving results, including
power consumption analysis and energy saving behavior analysis. Section 6 supplies discussions on
several matters, and Section 7 contains the conclusions.

2. Experiment Setup

An IoT data collection system was deployed on the 4th floor of a graduate school building,
where three open-space offices (15 m × 6 m) were occupied by graduate students. Each office
accommodated between 15 and 20 graduate students, and most of the students took 3~9 h of classes per
week with their research topics in the interdisciplinary areas related to computer science or information
science. The number of occupants at a given time fluctuated, not only because of unpredictable factors
such as exams, papers due, office allocation shuffling, graduation, and newcomers, but also because of
the nature of graduate students’ lifestyles. In this work, we chose one of the offices for the experiment.
The students in the office were heavy computer users, and some students used 2 or more computers,
while most students used two monitors. A summary of pre-experiment consumption measurements is
shown in Table 1.

Table 1. Monthly consumptions averaged over two months before experiments (2014.9.1~2014.10.31).

Light Computer Others Total

444 kWh 1055 kWh 271 kWh 1770 kWh
25% 60% 15% 100%
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2.1. Data Collection

In the building, an electricity distribution board existed in each office, and CT (Current
Transformer) sensors were deployed on the board. The collected data were sent to a cloud server every
second through a LAN connection. Both spatial and temporal resolutions of the collected data were
high. Spatial resolution is explained first. The ceiling-side and floor-side sensor configurations are
shown in Figure 3. On the ceiling side, the lights were connected to 6 switches, and their mappings
can be seen in the figure (L1~L6). The total electricity used by all six light groups was measured by a
single CT sensor. On the floor side, power outlets for computers and other appliances were available,
and the wirings were grouped into three during the building construction. Therefore, the three groups
(C1~C3) were measured using three sensors. The outlets were mainly used for computers and monitors,
and one of the outlets had a smaller number of computers and monitors connected compared to the
others. In this study, however, we aggregated the electricity usage over the three outlets and used
the aggregate as a single computer group for all of the analyses. Energy consumption of HVAC was
measured separately, but an independent in-building air-conditioning was also available, and thus
HVAC is not considered in this paper. Other outlets were measured, as well (‘Others’ in Table 1),
but they are not analyzed in this study because their contribution to the total was relatively small.
In summary, one sensor for lights and three sensors for computers were used for each office in order
to increase the spatial resolution. As for the time resolution of the data, electricity was measured
once per second (1 Hz-sampling) by the sensors. In fact, an even faster sampling based on a 15 Hz
collection was made available later, but this study is limited to 1-s and 15-min resolution data. As will
be explained in the next section, 15 min was a sufficient resolution for some of the analyses, while 1 s
was required for the others.

For the collected data, a few basic methods of data preprocessing were applied before analysis.
Missing, incomplete, or abnormal measurement samples were rare, but they had to be properly
addressed before applying data analysis functions. This definition is necessary, because graduate
students often stayed in the office until 2~3 a.m., but almost never showed up before 7 a.m.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 15 

 

can be seen in the figure (L1~L6). The total electricity used by all six light groups was measured by a 

single CT sensor. On the floor side, power outlets for computers and other appliances were available, 

and the wirings were grouped into three during the building construction. Therefore, the three 

groups (C1~C3) were measured using three sensors. The outlets were mainly used for computers and 

monitors, and one of the outlets had a smaller number of computers and monitors connected 

compared to the others. In this study, however, we aggregated the electricity usage over the three 

outlets and used the aggregate as a single computer group for all of the analyses. Energy consumption 

of HVAC was measured separately, but an independent in-building air-conditioning was also 

available, and thus HVAC is not considered in this paper. Other outlets were measured, as well 

(‘Others’ in Table 1), but they are not analyzed in this study because their contribution to the total 

was relatively small. In summary, one sensor for lights and three sensors for computers were used 

for each office in order to increase the spatial resolution. As for the time resolution of the data, 

electricity was measured once per second (1 Hz-sampling) by the sensors. In fact, an even faster 

sampling based on a 15 Hz collection was made available later, but this study is limited to 1-s and 15-

min resolution data. As will be explained in the next section, 15 min was a sufficient resolution for 

some of the analyses, while 1 s was required for the others. 

For the collected data, a few basic methods of data preprocessing were applied before analysis. 

Missing, incomplete, or abnormal measurement samples were rare, but they had to be properly 

addressed before applying data analysis functions. This definition is necessary, because graduate 

students often stayed in the office until 2~3 a.m., but almost never showed up before 7 a.m. 

 

Figure 3. Left side shows the ceiling lights and their switching groups. All six groups were collectively 

monitored using a single CT sensor. Right side shows the three computer groups. Three CTs were 

used to monitor each computer group. 

2.2. Timeline 

The IoT platform for collecting high-quality energy data was deployed on 4 August of 2014, and 

the experiment was completed in 25 weeks. The timeline of the experiments is summarized  

in Table 2. The intervention was applied for a total of 2 weeks, where one week of intervention was 

applied for both the first experiment, E1, and the second experiment, E2. The rest of the experiment 

periods were used for the pre-experiment baseline calculation and for the post-experiment 

sustainability analysis. 

  

Figure 3. Left side shows the ceiling lights and their switching groups. All six groups were collectively
monitored using a single CT sensor. Right side shows the three computer groups. Three CTs were used
to monitor each computer group.

2.2. Timeline

The IoT platform for collecting high-quality energy data was deployed on 4 August of 2014,
and the experiment was completed in 25 weeks. The timeline of the experiments is summarized
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in Table 2. The intervention was applied for a total of 2 weeks, where one week of intervention
was applied for both the first experiment, E1, and the second experiment, E2. The rest of the
experiment periods were used for the pre-experiment baseline calculation and for the post-experiment
sustainability analysis.

Table 2. Timeline of the experiments.

Name Period (Duration) Feedback Other Supports

E1-Pre 2014.10.01~2014.11.09
(6 weeks) - -

E1 2014.11.10~16
(1 week)

Daily report,
Energy delegate

Light switch sticker
Incentive,

E2-Pre 2014.11.17~2015.1.14
(9 weeks) - -

E2 2015.1.15~21
(1 week)

Daily report,
Energy delegate

Light switch sticker
Incentive,

Wake-on-Lan

Post 2015.1.22~2015.4.30
(8 weeks) - Light switch sticker

Wake-on-Lan

3. Space-Time Resolution and Behavior Detection

To facilitate data-driven intervention design of energy saving, waste behavior investigation using
E1-Pre data was performed prior to the intervention experiment E1. Because the deployed IoT system
collected 1 Hz data over multiple sensors, we were able to identify frequently occurring wasting
behaviors without any human interactions such as surveys or interviews. In this section, the findings
are explained with careful attention to the required space-time resolution for each specific finding.

In Figure 4, the power consumption plots are shown for six different combinations of time and
space resolutions. If the power usage is measured only once per day for the aggregate usage of all
lights, computers, and others in Table 1, the power consumption plot looks like (I). From this plot,
we can tell the overall power usage level for each day, but probably that is all the information that
can be extracted. In comparison, if the power usage is measured every 15 min (96 samples/day) and,
furthermore, the lights and computers are measured separately, the resulting plots are much richer in
information, as shown in (IV-1) and (IV-2). As an example, consider (IV-1), which is the aggregate for
the usage of the lights only. The first red section, marked as [B] in (IV-1), indicates that all the lights
were turned on together in the same 15 min interval in the morning. Considering that the graduate
students do not have a fixed time schedule, and that it typically takes a while for the second student
to show up in the office, this is undesired behavior. There is no need to turn on all the lights in an
office that is used by 15~20 students when full. The second red section, [C] in (IV-1), indicates that
the lights were never turned off during the night, another undesired behavior. The thin green section
[D] in (IV-1) indicates that the lights were properly turned off the following night. The green section
[E] in (IV-1) indicates that the light switches were sequentially turned on over several hours as more
students arrived at the office.

Clearly, a certain type of information cannot be obtained without increased time and space
resolution. In Table 3, waste and conservation behaviors that can be detected with different levels
of space and time resolution are summarized. For the time resolution, the same three levels as in
Table 3 are used. For the computers, only three sensors were used to measure the power usage of
15~20 computers and many more monitors depending on their physical locations in the office. While
this is a very high space resolution compared to most previous energy saving studies, it is worth noting
that a sensor measurement per computer or a sensor measurement per person would have enabled
a personalized waste investigation. When a person-level data collection was discussed, however,
the participants expressed a very strong objection due to a possible compromise of privacy. In the
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study, we actually had four sensors (one for lights and three for computers), and therefore space
resolution of four groups could have been utilized, but we focus on two groups (light and computer
groups) because the additional information was marginally helpful in this study.

During the pre-trial investigation, it became clear that the data quality in terms of time and space
resolution was critical for identifying wasting and conservational behaviors. A high resolution of
space-time data was essential for identifying the key behaviors and their relative importance for the
site’s energy saving. In the following section, the actual energy saving experiments and what we
learned from them are explained.
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Figure 4. Power consumption plot and behavior detection based on data patterns (sample intervals
from the trial data). Combinations of three time resolution levels (1, 96, 86,400 samples per day) and
two space resolution levels (all aggregated, light and computer separated). Red and green sections
show recognizable wasting and conservation behaviors, respectively. The dark gray areas indicate
interpretable information. For instance, the red box [F] in (IV-2) shows the base power level of
the computers.
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Table 3. Waste and conservation behaviors that can be detected depending on the data resolution.

Space Resolution

1 Group
(Aggregate)

2 Groups
(Light & Computer)

Ti
m

e
R

es
ol

ut
io

n

Lo
w

(1
-s

am
pl

e/
da

y)

For each day,

• What is the aggregate
power usage?

For each day,

• What is the % of power spent on lights?
• What is the % of power spent on computers?

M
ed

iu
m

(9
6-

sa
m

pl
es

/d
ay

)

• What is the base power usage?
([A] in Figure 4)

Light

• Does the first person to the office turn on all
lights or only the necessary lights? ([B], [E] in
Figure 4)

• Does an unnecessary overnight light-on occur?
([C] in Figure 4)

• Does the last person leaving the office turn off
the lights? ([D] in Figure 4)

• Are lights turned off during lunch time?

Computer

• What is the base power level? ([F] in Figure 4)
• What is the ratio between base power level and

peak power level?
• Is computer usage reduced during lunch time?

H
ig

h
(8

64
00

-s
am

pl
es

/d
ay

)

• Exactly when do power-on
and power-off events occur?

Light

• How many light switches are simultaneously
turned on during a ‘power-on’ event? ([G] in
Figure 4)

Computer

• Exactly when do computer-on and
computer-off events occur? ([H]: two on events,
[I]: one off event)

• How many computer-on/off events occur in
a day?

4. Experiments

To understand the effectiveness of data-driven analysis and to understand the maximum potential
of energy saving without affecting normal activities in a campus environment, the experiment was
designed to utilize the pre-trial data as much as possible and to aim for a maximum energy saving
in one week. To make sure that the students were motivated and diligently made waste reduction
efforts, a reward of a nice group dinner was promised, as long as the students saved a reasonably large
amount of energy. The ‘large amount’ was not very clearly specified, because we wanted the students
to make no less or no more than the best effort without sacrificing their normal activities; however,
when pressured to specify the exact number, we indicated that a 20% saving would be considered to
be more than successful.

The experiment was designed to last for one week, with a dedicated energy delegate for close
communication. The energy delegate visited the office every morning to talk with the students,
and the delegate also delivered a daily report that contained the detailed information and instructions
for energy saving (Figure 5). The report was generated by analyzing the previous day’s energy
data. It contained a list of tips generated by inspecting the list of wasting behaviors explained in
Section 4. For instance, if all the lights are simultaneously turned on by the first student at the office,
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the information was included in the report, and the energy delegate pin-pointed the behavior and asked
for additional attention on the matter. The report also contained energy consumption information.
Each day, students were informed whether they had successfully reduced power consumption on the
previous day, and what % of reduction was achieved if they were successful. All the information was
summarized in the daily report, which contained plots and texts. Overall, this experiment was an
intensive energy saving exercise that was designed to last for only one week.Sensors 2018, 18, x FOR PEER REVIEW  8 of 15 
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4.1. Data-Driven Intervention Design

Findings from the pre-trial investigations utilizing high-quality data were fully reflected in the
intervention design. Regarding the light usage behaviors, the list of interventions was ‘encourage
partial light-on when possible’, ‘ask for full attention on preventing overnight light-on’, and ‘encourage
lights and computers to be turned off during lunch time’. To assist the students, color stickers were
deployed, and they visually showed the mappings between the switches and the corresponding
light sections. This action was the direct result of pre-trial interviews, where students said it was
cumbersome to try the switches until the desired light section only is turned on.

Regarding the computer usage behavior, the most obvious problem was the students keeping
computers on all the time. Proper settings of screensaver and sleep modes were strongly recommended,
and the energy delegate provided support for configuration of computers whenever requested. As will
be discussed later, it turned out that many of the students did not follow the recommendation,
despite evident energy savings. Subsequent short interviews just after E1 revealed that students
kept the computers on mainly to keep remote login enabled. In fact, they hardly used remote login,
but they were simply concerned about rare but possible needs to connect to university network
environment for free access to academic literature or concerned about occasional needs to open or
transfer files to the office computers. Basically, keeping computers in sleep meant disabling remote
login. This issue was identified only after experiment E1 and was addressed using WOL (Wake-On-Lan)
in experiment E2. WOL is an Ethernet standard that allows a computer to be turned on or awakened
by a network message called magic packet [32]. With WOL, students can keep the computers asleep
without sacrificing the capability to awaken the computers and remotely connect. To make use of it,
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a low-cost WOL system had to be deployed in the office network (around 50 US dollars). Other than
keeping computers and screens off when they are not being used, we did not pursue any computer
related interventions.

To be sufficiently convinced that these interventions were likely to be effective to the experiment
group, the quality of data had to be at least a medium level of time resolution (96 samples per
day) and two groups of space resolution (light and computer) in Table 3. In reality, however,
we freely investigated the high level of time resolution and four groups of space resolution. Some of
the intervention designs and feedback generation, especially for computers, were possible only
by inspecting the highest levels of time and space resolutions and additionally by interviewing
the students.

4.2. Experiment E1

The first official experiment was launched on 10 November of 2014 and lasted for one week
(see Table 2). The experiment proceeded smoothly in the beginning, but in a few days, it was noticed
that the energy usage of light feeders was too low to be true. Upon further inspection, strip LEDs
connected to an independent power source were discovered. It turned out that one of the students
was too motivated and installed the strip LED lights. The experiment was immediately announced to
be invalid, and the energy delegate stopped energy saving activities.

Even though the experiment had to be abandoned, a post-analysis was performed to investigate
energy saving behaviors related to computer usage. While there was a meaningful reduction according
to the data analysis, some of the high-power computers were kept on during the night. The follow-up
interviews revealed that many students still kept the computers on because of the remote-access
concerns. Hence, the need for WOL was identified, and a WOL was installed before starting experiment
E2. The use of WOL turned out to be very important, as will be explained in the next subsection.

4.3. Experiment E2

To make sure that we had a fresh and independent experiment, we waited for two months before
starting the experiment E2. This time, the students were asked not to do anything abnormal or anything
affecting their normal activities. Instead, they were asked to focus on the energy saving behaviors that
we were suggesting. Additionally, we made sure that WOL was ready and easily usable. The energy
delegate personally showed how easy it was to use the system, and provided personal support when
requested. After the education, the experiment was executed for one week. As in experiment E1,
daily reports were provided and the energy delegate diligently communicated with the students to
encourage them. This time, the experiment was completed without any incident, and the resulting
energy saving turned out to be more than 20%, as will be explained in Section 5.1.

5. Energy Saving Results

In this section, the energy saving results are provided based on power consumption analysis and
data-driven energy saving behavior analysis. We also explain how the two methods are complementary
to each other.

5.1. Power Consumption Analysis

The daily average of power consumption is shown in Figure 6. The gray area indicates one
standard deviation range. In each plot, the baseline consumption is shown together (red dashed
line), where the baseline is defined as the minimum observed during E1-Pre. We deliberately chose
the baseline to be very conservative, because the experiment size was not large enough to have a
statistically stable control group, and because we wanted our analysis to be minimally susceptible to
random factors. In terms of color coding, light green is used to indicate a 5~10% saving with respect to
the baseline, and dark green is used to indicate more than a 10% saving. In Figure 6a, the result of the
aggregate power usage is shown. Over 10% of reduction was achieved during the first few days of



Sensors 2018, 18, 1606 10 of 15

E1, but the saving became smaller after declaring the experiment to be invalid and dropped to less
than 5% immediately after the 1-week experiment ended. As explained earlier, E1 was an interrupted
experiment, and the students were asked to return to their normal behaviors. During E2, which was
valid, over 10% of reduction (dark green) was achieved. In fact, the average energy saving with respect
to the baseline was 25.4% during the experiment week (the 25.4% can be considered a reliable estimate
of the true energy saving, because an abrupt drop in energy consumption can be observed in Figure 6a
when E2 starts. None of the random factors showed such a strong influence throughout the entire data
collection period, in which the data collection period included another 16 months after this work had
been completed), and savings of over 10% lasted for another 44 days despite completely discontinued
energy delegate activities and feedback. Considering that a new semester started in March and office
and desk assignments were shuffled, the energy saving behaviors of E2 might have lasted longer than
44 days in the absence of the shuffling. Supporting evidence is that the dark green period suddenly
ends with only two days of light green days in the end. This indicates that the energy saving behavior
quickly and suddenly disappeared in early March.

In Figure 6b, the result for the light group only is shown. During E1, the average was reduced
because of the LED incident, but the effect disappeared within a few weeks of the experiment.
During E2, the average was reduced, and the effect persisted mildly until the new semester shuffling.
The amount of energy saving in terms of average power consumption, however, was relatively small
compared to the computer group, and the color coding after E2 alternates among dark green, light
green, and no color. In Figure 6c, the result for the computer group only is shown. The energy saving
during E1 was negligible despite the energy delegate’s activities. The energy saving during E2 is
significant, and the color coding is solid dark green until the new semester shuffling. Even though not
shown in the plot, it was also found that the base power level was reduced significantly by utilizing
WOL. Note that the large saving would have been impossible by just providing WOL only—it was
essential to have a dedicated human delegate and a short-term incentive to motivate the students.
Unlike the light group, the base power level was very large during E1-Pre, and the behavior change
had a clear impact on base power. The peak power was also decreased considerably, indicating that
not all the computers were simultaneously used even at the peak usage time. This result is consistent
with the observation that the office occupancy by graduate students never reached close to 100%.
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Figure 6. Power consumption analysis. The daily average power consumptions are shown. For color
coding, the baseline (red dashed line) was set conservatively as the minimum observed value during
the pre-trial period, and the energy saving of 5~10% is highlighted in light green, and 10% or above is
highlighted in dark green. Aggregate includes lights, computers, and others in Table 1.

5.2. Pattern-Based Behavior Analysis

In the campus context, a variety of unpredictable factors can have a large influence on the power
consumption. Some examples include exams, papers due, office allocation shuffling, graduation,
and newcomers. Therefore, it is difficult to judge the intervention effectiveness unless there is a
noticeably abrupt reduction in power consumption for a new intervention or a removed intervention.
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Even when such a reduction is clearly observable, as in the first day of E2 (see Figure 6a), it is not
possible to be completely sure of the intervention effectiveness based only on power consumption
analysis. The situation might not improve much even with a control group. The relative difference
between a treatment group and a control group might not be trustable because of unpredictable factors
that can cause each office’s power consumption to fluctuate independently. For instance, students in
different offices typically prepare for different conferences with different deadlines. In fact, we had
measurements from two extra offices but eventually decided not to use them as a control because there
were too frequent fluctuations that were clearly specific to each office’s characteristics and activities.

To overcome the limitation of analyzing power consumption curves only, we propose using
data patterns that can be clearly mapped to known energy saving behaviors, are very unlikely to be
observed by chance, and are very unlikely to be confused with activities that are irrelevant to energy
saving behaviors. To show the effectiveness of this approach, we analyzed three of the items listed in
Table 3, and the results are shown in Figure 7. In Figure 7a, the partial light-on ratio is shown where
it is defined for each day as the percentage of light-on time with only 80% or fewer lights turned on.
When this ratio is high, it indicates that the students frequently keep some of the unnecessary lights
off. The resulting plot shows that partial light-on ratio was improved right after E1 and also after
E2, confirming the behavior change. Interestingly, the behavior change was sustained for about two
months after E1. Because the students were first educated on the matter during E1, it can be concluded
that the energy saving behavior persisted for two months, whereas the power consumption plot in
Figure 6b shows only 20 days of saving due to E1. It is also interesting to note that the partial light-on
behavior was strengthened starting from 2015-03. It looks like the new students after office shuffling
organically improved their behavior without any external intervention.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 15 

 

Table 3, and the results are shown in Figure 7. In Figure 7a, the partial light-on ratio is shown where 

it is defined for each day as the percentage of light-on time with only 80% or fewer lights turned on. 

When this ratio is high, it indicates that the students frequently keep some of the unnecessary lights 

off. The resulting plot shows that partial light-on ratio was improved right after E1 and also after E2, 

confirming the behavior change. Interestingly, the behavior change was sustained for about two 

months after E1. Because the students were first educated on the matter during E1, it can be 

concluded that the energy saving behavior persisted for two months, whereas the power 

consumption plot in Figure 6b shows only 20 days of saving due to E1. It is also interesting to note 

that the partial light-on behavior was strengthened starting from 2015-03. It looks like the new 

students after office shuffling organically improved their behavior without any external intervention.  

 

(a) Partial light on (daily) (b) Lunch time saving—lights (weekly) 
(c) Lunch time saving—computers 

(weekly) 

Figure 7. Pattern analysis of energy saving behaviors. Compared to the power consumption analysis, 

the absolute level of energy saving cannot be extracted, but the green areas guarantee that indeed 

energy saving behaviors have occurred more frequently. Therefore, pattern-based behavior analysis 

is an ideal complement to the power consumption analysis. 

In Figure 7b,c, lunch time saving results are shown for lights and computers. For each day, 

lunch-time saving behavior was examined by testing if the following equation was satisfied. 

(Min power usage between 11:30 a.m. and 1:00 p.m.) < 0.85 × Min[(Max power usage between 10:30 

a.m. and 11:30 a.m.), (Max power usage between 1:00 p.m. and 2:00 p.m.)] 
(1) 

If the condition is satisfied, it indicates that lunch time power usage was at least 15% less than 

before and after lunch time. Note that we chose 11:30 a.m. to 1:00 p.m. as lunch time in order to 

accommodate the broad spectrum of student behaviors in terms of when to have lunch. Using this 

definition, the percentage of days with lunch time saving behavior is shown for each week  

in Figure 7b,c. In Figure 7b, the result for lights is shown, indicating that lunch time saving hardly 

occurred before or after the interventions. This can be explained by the disparate lunch times of the 

students and indicates that interventions did not affect the lunch time saving of energy consumption 

for lights. In Figure 7c, the result for computers is shown. Unlike lights, lunch time saving was 

observed when E2 interventions were applied. The behavior was sustained for about two months, as 

shown in Figure 7c. It can be noted that the lunch time saving was increased even before E2 started, 

and the two green bars just before E2 are because of the early deployment of WOL solution and its 

use by the energy delegate for the training purpose. While students were not encouraged to start 

using WOL before E2, it looks like some of the students changed their computer setting or behavior 

before the intervention period started. For the E2 experiment week, the color code is actually grey 

and not dark green. Even though the color code is grey, the saving was above 25%, which can be 

considered to be high compared to the pre-trial period. As in Figure 6, the baselines (red dashed lines) 

of Figure 7 were set conservatively as the largest saving that was observed during the pre-trial period. 

For Figure 7c, perhaps the baseline is too conservative because the lunch time saving is either 0% or 

around 15% for most of the pre-experiment weeks. 

  

Figure 7. Pattern analysis of energy saving behaviors. Compared to the power consumption analysis,
the absolute level of energy saving cannot be extracted, but the green areas guarantee that indeed
energy saving behaviors have occurred more frequently. Therefore, pattern-based behavior analysis is
an ideal complement to the power consumption analysis.

In Figure 7b,c, lunch time saving results are shown for lights and computers. For each day,
lunch-time saving behavior was examined by testing if the following equation was satisfied.

(Min power usage between 11:30 a.m. and 1:00 p.m.) < 0.85 × Min[(Max power usage between 10:30
a.m. and 11:30 a.m.), (Max power usage between 1:00 p.m. and 2:00 p.m.)]

(1)

If the condition is satisfied, it indicates that lunch time power usage was at least 15% less than
before and after lunch time. Note that we chose 11:30 a.m. to 1:00 p.m. as lunch time in order to
accommodate the broad spectrum of student behaviors in terms of when to have lunch. Using this
definition, the percentage of days with lunch time saving behavior is shown for each week in Figure 7b,c.
In Figure 7b, the result for lights is shown, indicating that lunch time saving hardly occurred before
or after the interventions. This can be explained by the disparate lunch times of the students and
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indicates that interventions did not affect the lunch time saving of energy consumption for lights.
In Figure 7c, the result for computers is shown. Unlike lights, lunch time saving was observed when
E2 interventions were applied. The behavior was sustained for about two months, as shown in
Figure 7c. It can be noted that the lunch time saving was increased even before E2 started, and the
two green bars just before E2 are because of the early deployment of WOL solution and its use by the
energy delegate for the training purpose. While students were not encouraged to start using WOL
before E2, it looks like some of the students changed their computer setting or behavior before the
intervention period started. For the E2 experiment week, the color code is actually grey and not dark
green. Even though the color code is grey, the saving was above 25%, which can be considered to be
high compared to the pre-trial period. As in Figure 6, the baselines (red dashed lines) of Figure 7 were
set conservatively as the largest saving that was observed during the pre-trial period. For Figure 7c,
perhaps the baseline is too conservative because the lunch time saving is either 0% or around 15% for
most of the pre-experiment weeks.

6. Discussion

The energy saving potential in the university building was larger than expected. Overall reduction
of 25.4% was achieved in E2 without sacrificing normal activities, and a significant portion of the
saving was sustained for 44 days until the office and desk shuffling occurred. Overall, the large
saving was possible mainly because of tailored interventions that were the direct outcomes of waste
investigation using high-quality data.

The LED incident during E1 was completely unexpected. Despite the incident, a few key
insights were identified from the experiment. As for the lights, pre-experiment investigation using
high-resolution data was very useful. The tailored interventions derived from the findings were
observable only with high-resolution data, and findings such as partial light-on and 24 h light-on were
accurate and comprehensive enough to result in successful counseling to the students. When advised,
the students quickly agreed and followed the instructions. As for the computers, pre-experiment
investigation of high-resolution data was very helpful for identifying and analyzing the problems,
including the severity of the always-power-on problem. Merely delivering the feedback and guidelines,
however, was not sufficient to achieve the desired behavior change during E1. A further investigation
beyond data analysis was necessary, and the main issue of ‘power-on for remote-access readiness’ was
identifiable only after in-depth discussions between the energy delegate and the office students.

While the data-driven pre-trial analysis was very helpful, the resulting interventions and advice
were nothing really new. We neither discovered any new wasting behavior nor did we find a new way
to reduce energy consumption. In this sense, it might be most accurate to say that the data-driven
analysis was able to identify which known wasting behavior was occurring and how frequently. Such
information was very helpful when the energy delegate tried to guide the students. When some of
the students were in doubt, typically showing them the high-resolution data plots was sufficient to
reach a quick agreement. Pin-pointing the list of saving items was important, as already known in the
field [17], and the data-driven analysis was a pivotal element in our experiment.

Besides the benefit of tailored intervention design, the data-driven analysis was shown to be
effective for confidently detecting energy saving behaviors. Power consumptions of public spaces can
be affected by many different factors [33], and even setting up a control group might not be sufficient
to tell if energy saving truly happened. Therefore, utilizing data patterns and data-driven measures
that are very unlikely to occur without serious effort in terms of energy saving can be a reliable way
of confirming behavior changes. When there is no behavior change that can be detected, it might be
reasonable to suspect whether or not the measured power consumption saving is indeed because of
energy saving efforts. When both power consumption analysis and behavior detection results are
positive, one can more reliably conclude a successful energy saving.

Furthermore, the detected energy saving behaviors can be used for generating highly effective
feedback. Energy consumers usually do not understand what behavioral changes are needed in the
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local context [34]. The problem is aggravated when the consumers are not interested in energy saving,
either. If high-resolution data can be collected and used for detecting energy saving behaviors and for
pin-pointing the desired feedback [17], it can help improve the effectiveness of feedbacks and accuracy
of influence assessments. Furthermore, such energy saving behavior detections can be used to evaluate
whether a group of users is making more effort than another group, even when a direct comparison of
quantitative consumption amounts is deemed inappropriate. Therefore, the behavior detection using
high-resolution data may be a viable solution for performing a large-scale experiment that includes
many offices with heterogeneous characteristics.

Whereas the scope of this paper is limited to lights and computers, data of HVAC was also
available. The amount of energy saving on HVAC was comparable to the savings of lights and
computers together, but the result is excluded in this paper because there was a central heating system
during daytime and students kept the local HVAC completely off during the E2 period. There was no
way to tell if the non-use of local HVAC was caused by the intervention or not, and the weather became
warm after E2, thus making it difficult to conclude whether or not there was a behavior change.

A 25.4% energy saving potential was identified in the experiment, but the saving was achieved
at the cost of a dedicated human delegate and a short-term incentive. To overcome this limitation,
we actually conducted an expanded experiment after the study was completed, and the expanded
experiment aimed at sustainability with minimal use of resources. Hence, the energy delegate was
removed, and only wall-mounted dashboard screens in the office were allowed. The dashboards were
the main channel for intervention, and a cost-effective incentive was introduced only at the last stage
of the experiment. We have experimented in many different ways for 34 weeks concurrently over
three offices and acquired a rich set of interesting data. In the end, however, we decided to abandon
the entire second experiment result, because there were too many factors that were specific to each
office’s characteristics and activities, and because the longevity of the experiment allowed even more
random factors to be part of the data. Despite the high-resolution data and its tremendous benefits,
we were not able to derive sufficiently rigorous quantitative conclusions in the campus environment.
In fact, we believe our experiment environment was one of the most challenging, and that the results
in this work were possible only because of the advantage of high-resolution data and the relevant
data-driven approaches. For less challenging building environments with fewer random factors, it
would be much less difficult to perform a similar experiment and quantitatively evaluate the energy
saving amount. In general, we believe the findings in this work will be useful for any environment,
but some investigations and customizations might be necessary to identify how and what parts of
insights to utilize for the given environment.

7. Conclusions

With the advancement of sensor technology and the spread of cost-efficient energy data platforms,
it is time to consider how data-driven approaches can be better integrated into energy saving
activities and beyond. In this work, we have focused on the benefit of collecting high-resolution
data and utilizing them for intervention design and behavior detection. With a data-driven pre-trial
analysis, we were able to achieve 25.4% of energy reduction in a campus environment within a week.
The reduction was sustained for 44 days without any further intervention. The quantitative analysis,
however, could be vulnerable to uncontrollable factors that are abundant in a campus environment.
To address this issue, we showed that pattern detections using high-resolution data can better confirm
the actual change in behaviors because energy saving behaviors show distinct patterns and are robust
against the random factors. The detected energy saving behaviors are expected to be useful for
pin-pointing the desired energy saving actions and for comparing the effectiveness of interventions
among groups with heterogeneous characteristics. As seen in this work, the value of high-quality
data and data-driven approaches needs to be carefully considered in modern energy saving and other
energy activities.
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