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ABSTRACT

Most change detection methods are based on gray-level im-

ages. A gray-level image is regarded as a 1-D projection

of three channels of color images. Therefore, more precise

change detection results are expected by utilizing color infor-

mation. We previously developed a change detection scheme

using color images. In this paper, we determine which color

space should be selected for accurate change detection based

on our previous detection scheme. Our method can be applied

to various color spaces, including gray-level images. Then we

can measure the expected number of error pixels in order to

select an appropriate color space which gives the best result

among various color spaces. The experiments show that se-

lecting a color space based on measurements results in the

fewest error pixels.

Index Terms— Color space, change detection, noise mod-

eling

1. INTRODUCTION

Common applications for change detection include tracking

moving objects [1], video surveillance systems [2], traffic mon-

itoring [3] and silhouette detection [4]. For robust and ac-

curate change detection, Liu et al.[5] proposed an illumina-

tion independent statistical change detection algorithm using

circular shift moments (SCSM). Because this noise estima-

tion scheme is very heuristic, however, its detection is usually

sensitive when a highly uniform region exists in the images.

Li and Leung [6] proposed a method based upon the integra-

tion of intensity and textural differences (IITD). They defined

a textural difference measure using the cross-correlation and

auto-correlation of two frames’ gradient vectors.

Most change detection methods, including the works re-

viewed above, are based on gray-level images. Color images

can provide much richer information than gray ones. When

we determine an appropriate distance measure to classify cor-

responding pixels between two consecutive images, we can

obtain more accurate detection results. In order to utilize

color images, however, the selection of color spaces is a cru-

cial issue. Applying various color spaces can significantly

change the detection results. Some works have compared the

performance of several color spaces. In [3], they compared

different color spaces for foreground and shadow detection.

The detection results show different error ratios according to

which color space is used. Stokman et al. [7] proposed a se-

lection framework for a color model using the principles of di-

versification for image segmentation and edge detection. By

means of statistical formulation and learning schemes, they

found the optimal color channels and their weights. A com-

parison of color image edge detectors in multiple color spaces

was also presented in [8]. Edge detectors such as the Sobel

operator are evaluated against multiple color spaces.

In the previous work [9], we used the Euclidean color dis-

tance of three channels as a difference measure. We showed

that each color band’s noise does not follow the well-known

zero mean Gaussian distribution. To accurately model each

channel’s noise, we proposed a generalized exponential model

(GEM), which estimates the noise distribution on the Euclide-

an distance which corresponds to unchanged regions. Sub-

tracting the estimated noise distribution from the whole dis-

tribution provides the distribution of unchanged regions and

chan-ges. The detection then is done by a simple pattern clas-

sification step.

In this paper, our aim is to determine an appropriate color

space for our previous detection process. At first, we show

that our detection process can be applied to various color

spaces including gray-level images. We present a criterion for

measuring the expected number of error pixels in order to de-

termine which specific color space that has best change detec-

tion result corresponding to current image sets. This paper is

organized as follows. In Section 2, we briefly review previous

change detection schemes [9]. Section 3 presents a criterion

in order to determine the appropriate color space. Section 4

gives some experimental results to validate the proposed ap-

proach. Finally, we present our conclusions in Section 5.

2. DETERMINATION OF THRESHOLD USING GEM

2.1. Generalized Exponential Model(GEM)

We observe that each channel’s noise distribution is between

the Laplace distribution and the Gaussian distribution, and is

similar to an exponential distribution. We propose a gener-
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alized exponential distribution, called the Generalized Expo-

nential Model (GEM), as the noise distribution for each color

channel. It is defined as follows:

fGEM (x) = α exp(−|x − u|t/c) (1)∫ ∞
−∞ fGEM (x) = 1 (2)

α is the scale factor that satisfies the probability density func-

tion’s constraint as shown in Equation 2, t measures the ex-

ponential distribution’s sharpness, c is the distribution’s vari-

ance, and u is the distribution’s mean. If t = 2 and u = 0,

the GEM becomes the zero-mean Gaussian probability func-

tion. This formulation is similar to the Generalized Gaussian

model in [10], but those authors applied the GG model to a

log-ratio image. Their parameter estimation scheme is also

different from ours.

We estimate the histograms of three channels in a cer-

tain color space in order to approximate the noise distribution.

The histograms have the distribution of noise and changes at

the same time. But because the changes are uniformly dis-

tributed, the histogram is dominated by the noise distribution

shown in Figure 3. Therefore, the GEM’s parameters are ob-

tained by applying the Levenberg-Marquardt algorithm to the

histograms. The LM algorithm’s initial values are fixed for

all experiments at t = 1.5, u = 0, c = 2 and α = 10, 000.

2.2. Estimating the noise distribution on the Euclidean
distance

From the modeling of each channel noise we can estimate

the distribution of the Euclidean distance for the unchanged

regions. Assume that random variables X , Y and Z are in-

dependent and follow the GEM distribution. Then, the 3-D

Euclidean distance is

W =
√

X2 + Y 2 + Z2 (3)

, and its probability density of the 3-D Euclidean distance is

fw(w) = α4

∫ 2π

0

∫ π

0

w2 sin θ

· e(
−(|wsinθcosφ−u1|)t1

c1
−(

(|wsinθsinφ−u2|)t2
c2

−(
(|wcosθ−u3|)t3

c3
)dθdφ

(4)

. A detailed derivation of this is referenced in [9]. Using this

probability density, we can estimate the noise distribution on

the Euclidean distance of channels in a color space. Because

the GEM parameters t, u and c for each channel are estimated

in Section 2.1, the only unknown parameter is the scale factor,

α4. We can obtain this parameter by using the Levenberg-

Marquardt algorithm. The initial value is set at 10, 000, the

same as in the GEM estimation.

We can regard the noise distribution obtained above as

the distribution of unchanged regions. Next, we can obtain

the distribution of changes by subtracting the histogram of
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Fig. 1. The histogram of Euclidean distance between two con-

secutive images

Fig. 2. The number of false pixels when detection changes by

thresholding the Euclidean distance in various color spaces

unchanged regions from the original histogram. Then we

can determine the intersection, the optimal threshold where

the histogram of unchanged regions meets the histogram of

changes as shown in Figure 1.

3. DETERMINATION OF APPROPRIATE COLOR
SPACE

The GEM model covers most color spaces such as RGB, CIE-

LAB, CIELCH and so on. But each color space’s ability to

detect changes differs according to the camera used, the cap-

tured scene and the illumination status. Figure 2 shows the

number of false pixels corresponding to changes in the thresh-

old of various color spaces with the target image set shown

in Figure 5(a),(b). In this case, CIELAB and CIELCH show

better results than other color spaces. The difference in the

number of false pixels at the optimal threshold between the

CIELAB and RGB color spaces is almost 20,000 pixels.

The color space determination’s goodness is measured by

the expected number of false pixels (ENFP) as shown below.

ENFP =
∑

dis<thr

Hischange(dis) +
∑

dis>thr

Hisnoise(dis) (5)

In Equation 5, His() means a histogram on the Euclidean dis-

tance between consecutive frames, dis is a Euclidean distance
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Fig. 3. The estimation result of the noise distribution of each

channel in various color spaces

Fig. 4. The estimation result of the noise distribution on 3-D

Euclidean distance in various color space

and thr is a determined threshold. ENFP means the summa-

tion of the regions of misses and false alarms in Figure 1. This

criterion is possible because we have the estimated distribu-

tion of noise and changes. If the estimated distribution ap-

proximates well the actual distribution, ENFP is a good mea-

sure for color space determination.

4. EXPERIMENTAL RESULTS

This section applies the proposed algorithm to detect changes

in consecutive image frames that are captured in indoor and

outdoor environments. The image resolution for our experi-

ments is 640x480 pixels with 24 bit RGB color bands.

Figure 3 shows estimation results in several color spaces,

including a gray-level space, fitted to the channels’ histograms.

All channels are well estimated by GEM because GEM cov-

ers variations in steepness, variance and mean shift. Although

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. The result applied to indoor scene: (a) background

(b) foreground (c) ground truth (d) SCSM (e) IITD (f)-(i) the

proposed method in CIELAB, CIELCH, RGB, Gray, respec-

tively

the histogram of H in the CIELCH color space has some noisy

peaks because of its hue characteristics, GEM still estimates

its distribution well. Figure 4 shows the result of estimat-

ing the noise distribution on the Euclidean distance in several

color spaces. These estimation results are well fitted to the

various histograms, but the result of RGB might be shown

that the estimation is not accurate. The curve of RGB in

Figure 2 is almost flat in some range, which means that the

boundary between changes and noise distribution can be am-

biguous. Therefore, although the modeling of each channel

shown in Figure 3 is accurate, the modeling of Euclidean dis-

tance cannot show an accurate boundary. But, as shown in the

detection results in Figure 5, the threshold for RGB is nearly

optimal because it has the almost the same amount of missing

pixels and extra pixels.

Figures 5 and 6 show the result applied to indoor and out-

door scenes. Indoors, the results of CIELAB and CIELCH

show the best performance even if they are compared to other

change detection methods. Outdoors, the results of CIELAB

and RGB show the best performance. Table 1 shows the value

of ENFP. According to the quantitative evaluation shown in

Tables 2 and 3, the detection results for each color space

have the same order of accuracy as expected by ENFP. this

shows that we can determine appropriate color space based on

ENFP. We notice that the order of ENFP can be changed ac-

cording to the input image set. When we apply our algorithm

based on CIELAB and CIELCH color spaces to an indoor

scene, the results are much better than the existing change de-

tection methods [5, 6], although we classify each pixel using

only the threshold obtained by GEM modeling. The same re-

sults can be obtained in the outdoor scene by using CIELAB

and RGB color spaces. Therefore, by calculating ENFP, we

can determine the appropriate color space automatically ac-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. The result applied to outdoor scene: (a) background

(b) foreground (c) ground truth (d) SCSM (e) IITD (f)-(i) the

proposed method in CIELAB, CIELCH, RGB, Gray, respec-

tively

Table 1. The value of ENFP
Scenes CIELAB CIELCH RGB Gray

Indoor 1164 1309 1802 1746

Outdoor 726 5440 2326 3794

cording to environmental changes such as scene, camera and

illumination changes.

5. CONCLUSIONS

In this paper, we determine appropriate color spaces for ac-

curate change detection. Most change detection methods are

based on gray-level images because of the problem of han-

dling three channels. We show that the GEM can be applied

to various color spaces. By using the GEM, we can determine

the optimal threshold to classify the changes. In order to de-

termine the best color space, we define ENFP. The estimations

of distribution of noise and changes are so accurate that ENFP

gives a good measure of color space selection. Color spaces

Table 2. Quantitative evaluation of an indoor scene
method False negative False positive Error

(missing pixels) (extra pixels) pixels

SCSM[7] 55837 (64.1%) 3691 (1.7%) 62528

IITD[8] 6594 (7.5%) 14723 (6.7%) 21317

CIELAB 2611 (0.8%) 4183 (1.3%) 6794
CIELCH 1340 (0.4%) 11226 (3.7%) 12566

RGB 9460 (3.1%) 24400 (7.9%) 33860

Gray 20915 (6.8%) 2701 (0.9%) 23616

Table 3. Quantitative evaluation of an outdoor scene
method False negative False positive Error

(missing pixels) (extra pixels) pixels

SCSM[7] 4509 (1.5%) 4102 (1.3%) 8611

IITD[8] 6322 (2.1%) 100 (0.0%) 6422

CIELAB 1770 (0.6%) 755 (0.2%) 2525
CIELCH 186 (0.0%) 36832 (12.0%) 37018

RGB 324 (0.1%) 4482(1.5%) 4806
Gray 1214 (0.4%) 10334 (3.4%) 11548

selected by ENFP as the best detectors show much improved

results compared with other existing methods.
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