
Research Article
Reducing Smartwatch Users’ Distraction with Convolutional
Neural Network

Jemin Lee ,1 Jinse Kwon,2 and Hyungshin Kim 2

1Industrial Engineering and Management Research Institute, KAIST, Daejeon, Republic of Korea
2Department of Computer Science and Engineering, Chungnam National University, Daejeon, Republic of Korea

Correspondence should be addressed to Hyungshin Kim; hyungshin@cnu.ac.kr

Received 1 June 2017; Revised 24 December 2017; Accepted 29 January 2018; Published 15 March 2018

Academic Editor: Federica Cena

Copyright © 2018 Jemin Lee et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Smartwatches provide a useful feature whereby users can be directly aware of incoming notifications by vibration. However, such
prompt awareness causes high distractions to users. To remedy the distraction problem, we propose an intelligent notification
management for smartwatch users.+e goal of our management system is not only to reduce the annoying notifications but also to
provide the important notifications that users will swiftly react to. To analyze how to respond to the notifications daily, we have
collected 20,353 in-the-wild notifications. Subsequently, we trained the convolutional neural networkmodels to classify important
notifications according to the users’ contexts. Finally, the proposedmanagement allows important notifications to be forwarded to
a smartwatch. As experiment results show, the proposed method can reduce the number of unwanted notifications on
smartwatches by up to 81%.

1. Introduction

Smartwatches have become one of the first popular wearables,
with the launch of high-quality flagship products by major
global companies. According to recent surveys [1–3], one of
the key features of smartwatches is user notification about
various events, such as new messages or software updates.
Several researchers have already investigated interruptions
caused by notifications [4–6]. Based on the research results,
mobile notifications at an inopportune moment at which
users concentrate on their tasks lead to disruptive effects.

In the current notification delivery system, all notifi-
cations can be shown on all connected mobile devices si-
multaneously.When a user is wearing a smartwatch, they are
severely distracted by notifications delivered from a smart-
phone because the smartwatch is a wrist-worn device [2]. To
block unwanted notifications, users would manually change
the settings from time to time. +e burden of management
causes the abandonment of smartwatches [2]. +erefore, the
notification delivery system should notify only important
notifications that need to be swiftly reacted considering the
sender, topic, or location.

To lessen the distractive effects, many researchers have
proposed several approaches that precisely predict the op-
portune moment to send notifications to users with machine
learning techniques [7–9]. However, attention management
is still lacking in emerging situations where users carry
multiple mobile devices. Most previous research on notifi-
cations and interruptions only focused on a single device
(e.g., a smartphone).

In this paper, we present an intelligent notification de-
livery system for a smartphone and a smartwatch. We extend
our pilot work that filtered unwanted notifications using deep
neural networks (DNNs). Unlike the pilot work, we not only
collect more data from more users but also widely compare
five machine learning algorithms with individual data and
generic data. To train a model, we collect real users’ responses
and context data. Based on the users’ responses and the
previous work’s criteria [8], we unobtrusively label notifica-
tions for a ground-truth value. +e previous work [8] has
found that users handle the notification within a certain time
and launch related applications only if the arrival time is an
opportune moment. We bring this assumption into our work
to programmatically label important notifications without

Hindawi
Mobile Information Systems
Volume 2018, Article ID 7689549, 9 pages
https://doi.org/10.1155/2018/7689549

mailto:hyungshin@cnu.ac.kr
http://orcid.org/0000-0002-9332-3508
http://orcid.org/0000-0001-9615-1644
https://doi.org/10.1155/2018/7689549

any questionnaire. To infer the notification labels, we combine
the user’s response time (time difference between arriving and
removing) and app launch (indicating whether an application
is launched).

To train the convolutional neural network (CNN)models,
we collected 20,352 in-the-wild notifications from 13 users for
approximately 5 weeks. We performed an analysis on the
collected data to extract features. Subsequently, we trans-
formed the collected data to an ℝ2×5 matrix according to the
correlation of features. To obtain better models, we compared
the CNN (sparse connection) to theDNN (dense connection).
As a result, the CNN outperforms other predictions models
with a slightly higher F-score value (mean 88%) due to the
correlation of features and the transfer learning effect. In
addition, we compare the F-score of the prediction models
trained on individual data with a generic prediction model
trained on all users’ data. Overall, the personal models are
slightly better than the generic models. For predicting im-
portant notifications, the transfer learning-based CNNmodel
achieved 91% of the precision on average. Accordingly, our
model filtered unimportant notifications up to 81%.+e effect
of our delivery system depends on the ratio of important
notifications and the model accuracy.

Our contributions are summarized as follows:

(i) With our mobile application, we collected 20,352
notifications and context data from 13 users for
approximately 5 weeks. While gathering data, our
tool programmatically infers users’ interactions to
decide the notification label.

(ii) We extracted 10 features from the collected data and
analyzed their correlations to transform them into
images. With the transformed data, we trained the
convolutional neural network models correspond-
ing to each user on a server equipped with high-
performance GPU.

(iii) Based on the quantitative analysis, the impact of the
proposed method was validated. Our results show
that the trained models filtered unimportant noti-
fications up to 81%. In addition, we reveal the
impact of multidevices, which caused the inaccurate
predictions by users.

2. Related Work

+e human computer interaction research groups have
studied various techniques to precisely infer users’ inter-
ruptibility. In the desktop computer environment, they
proposed the interruptibility management (IM) system for
multiple applications [5, 10, 11]. For more accurate systems,
context-aware interruptibility systems were proposed
[12, 13], which require a user to wear sensors for extracting
context. +ese approaches are based on sensors attached on
the human body that can trigger notifications in an op-
portune moment by precisely recognizing the context.

In recent studies, researchers have exploited smartphones
that are equipped with a variety of sensors to build the IM
system [7, 8, 14–19]. For a more advanced system, non-
obstructive approaches have been presented [7, 16]. To build

the interruptibility models, these approaches unobtrusively
monitored variation of context and system configurations
without the user’s involvement and questionnaires.Moreover,
the notification’s contents were considered as a context to
build a better model [8, 15]. Turner et al. [19] proposed
a decision-on-information-gain model to understand the
users’ microdecisions against notifications. Attelia [18] au-
tomatically mined important usage information to predict
breakpoints for interruptions.

In addition, the OS-level IM systemwas designed in terms
of privacy protection and deep context extraction [17]. For
wearable devices, Kern and Schiele [20] proposed a delivery
mechanism that relays notifications corresponding to six
contexts that they defined.

However, all prior works have focused on predicting an
opportune moment in a single mobile device. +ose works
have not yet considered emerging situation in which many
people carry multiple mobile devices daily. Unlike previous
works, we have focused on reducing notification delivery to
a smartwatch from a smartphone to reduce user distraction.

3. Dataset

We focus on users who use a smartphone and a smartwatch
simultaneously. Typically, not all users wear a smartwatch on
the wrist. To collect data, we hand out the LG-Urbane W150
to 13 participants who are willing to join our experiments
even without any monetary incentive. Table 1 lists the par-
ticipant demographics. +ese participants consist of 10 males
and 3 females with the age span between 24 and 35 years. As
shown in Figure 1, the data were gathered during approxi-
mately 5 weeks on average. Across approximately 5 weeks, we
finally collected 20,352 notifications.

4. Data Collection

In this section, we briefly describe how the notification type
is unobtrusively labeled and what the type of sensor data that
are collected.

4.1. Implementation. To collect notifications, we implemented
an Android application that runs on a smartphone as
a background service to programmatically decide notification
labels as well as monitor the contexts when a notification is
received. For deciding important notifications, our application
was developed a few APIs, for example, Notification Listener
Service (https://developer.android.com/reference/android/
service/notification/NotificationListenerService.html) and
UsageStatsManager (https://developer.android.com/reference/
android/app/usage/UsageStatsManager.html) that are sup-
ported in API level 21 (Android 5.0). With Notification Lis-
tener Service, we can identify the arrival and removal times of
the notifications.With UsageStatsManager, we can observe the
states of the mobile application usage. By combining the two
APIs, our mobile application can automatically decide im-
portant notifications. In addition, our mobile application ex-
ploits a third party library for computational social science [21],
as well as SensorManager and SensorDataManager to obtain
the contexts and store a large amount of data, respectively.

2 Mobile Information Systems

https://developer.android.com/reference/android/service/notification/NotificationListenerService.html
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html
https://developer.android.com/reference/android/app/usage/UsageStatsManager.html
https://developer.android.com/reference/android/app/usage/UsageStatsManager.html

In addition, it uses the Android OS API, Activity Recognition
(https://developers.google.com/android/reference/com/google/
android/gms/location/ActivityRecognitionApi), for monitor-
ing a user’s activity. Table 2 lists the 10 contexts collected by our
monitoring application.

4.2. Automated Labeling in Incoming Notifications. To infer
the interactions and responses without any questionnaires,
we combine a user’s response time (indicating how quick
a user responds) and the application launch (application
relevant to the notification). We begin by cross-referencing
the arrived notifications with a user’s response time and the
application launch that triggers the notifications. We con-
sider a user’s response time as a key factor to infer a user’s
interruption level because the delay to respond to notifi-
cations is highly relevant to important level of notifications
[2, 8, 22, 23].

Figure 2 shows the high-level example of label notifi-
cation when a user is interacting with a smartphone, while
wearing a smartwatch. For a delay time threshold, we apply
10 minutes to each notification. +e threshold was de-
termined based on a previous work [8], which showed that
approximately 60% of the interactions with notifications
occur within 10 minutes. To prevent the missing of im-
portant notifications, our assumption for labeling is con-
servative. According to a previous work [24], while not all
kinds of notifications are important, many were clicked
within 30 seconds. Consequently, the threshold of 10
minutes implies enough margin to avoid missing them.

Figure 3 illustrates the results for labeling. Figure 3(a)
shows the distribution of each label condition. Figure 3(b)
shows the final labeling by cross-referencing. Finally, the

result shows that the users represent various proportions of
important notifications. According to the automated la-
beling based on combining a user’s response time and ap-
plication launch, the important notification rate of each user
ranges from 35% to 90%, with the average being 68%. From
the labeling results, we observed that user K is distracted by
most of the notifications because user K has the lowest
important notification rate.

5. Building Prediction Models

In this section, we briefly describe how we handled the data
for training the machine learning models, model structures,
and how we trained them.

5.1. Preprocessing. To train the models, the categorical data
we collected should be transformed into numerical data.
Simply, we changed the nominal data (category name) to
a unique digit number. As a result, each feature represents
quite a different numerical range. For example, the title
feature ranges from 1 to 152 in a user. However, the
proximity feature has a binary number of either 0 or 1.
Different scales of the features make the training difficult
and slow to be converged. To remedy this issue, we nor-
malized the data ranging from 0 to 1 with the following
equation:

zi �
xi −min(x)

max(x)−min(x)
, (1)

where x � (x1, . . . , xn) and zi is ith normalized data. To
train the DNN, an input data shape of an ℝ10×1 matrix is
used. A correlation of the input data is not important be-
cause the DNN is densely connected. However, in a case
where we trained the CNN, a correlation of input data
should be considered due to sparse connection and weight
sharing. To consider the correlations among features, we
computed the following Pearson correlation:

corr(x, y) �
cov(x, y)

sd(x) · sd(y)
. (2)

Figure 4 represents the feature correlations of user J. It
results in an ℝ2×5 matrix. Based on the correlation result, the
input data of user J is the following matrix:

Table 2: Feature group from the collected sensor data.

Group Features
Notification’s
contents Sender application name, Priority, and Title

Physical activities
Classifying activities into six classes:

InVehicle, OnBicycle, OnFoot, Running,
Still, Tilting, Walking, and Unknown

Time Time of day, Day of the week, and Glance
time

Sensor data Recent phone usage, Phone’s screen status,
and Proximity

Table 1: Participant demographics.

Number of
users 13 (10 males and 3 females)

Age 24, 25 (4), 26, 27 (2), 29, 30 (2), 34, and 35
Occupation Students (9), office workers (3), and others (1)

Smartphone
Galaxy-s6 (3), Galaxy-s4 (2), Galaxy-note 3,

Galaxy-note (2), Galaxy-a8, Galaxy-a7,
Galaxy-Grand Max, Nexus 5, and Nexus 5x

Smartwatch LG-Urbane W150 (13)

26

49

67

52

32 32

21
26

49

33
28

19 18

5

15

25

35

45

55

65

A B C D E F G H I J K L M
Participant

Pe
rio

d
(d

ay
)

Figure 1: Data collection period across 13 participants.

Mobile Information Systems 3

https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi

FApp name FTitle . . . FRecent phone usage

FProximity FPriority . . . FSeen time

 . (3)

Likewise, we applied data transformation to the other
users. As space is limited here, we have omitted all users’
correlation data. For data preprocessing, we used the caret
package (http://caret.r-forge.r-project.org/) in R.

5.2. Machine Learning Models. We used the following ma-
chine learning algorithms to predict important noti�cations:
(1) naive Bayes (NB), (2) support vector machine (SVM), (3)
random forest (RF), (4) deep neural networks (DNNs), and
(5) convolutional neural networks (CNNs). To apply data
into the naive Bayes algorithm, we used the categorical data
type. In the support vector machine, we selected the non-
linear kernel function which is the radial basis function
(RBF). In this case, the RBF kernel-based SVM was much
better than the linear kernel-based SVM. To �nd the op-
portune radial kernel, we adjusted the C and sigma pa-
rameters with autotuning methods in the caret package. �e
ranges of the optimal C and sigma options for each user are
0.25–5 and 0.08–0.11, respectively. Likewise, in the random
forest, we also explored a variety of hyperparameters. �e
best options were mtry� 45 and ntrees� 500 across all users.

A variety of deep learning models have been proposed for
diverse applications and sensor types. Examples include the
CNN, widely used for image classi�cation [25, 26] and recently
for text classi�cation [27], and the DNN, used for speech
recognition [28]. In our pilot work [29], we assumed that an
important noti�cation depends on the noti�cation’s contents
and the user’s context. Subsequently, we trained the fully
connected 11-layer feedforward neural network consisting of 9
hidden layers.We bring this assumption and themode into the
current work by extending the input size to 10. Figure 5 il-
lustrates the slightly extended DNN structure. In addition to
the DNN model, we trained CNN model with same data to
directly compare with the DNN model. Unlike the DNN, the
CNN handles data correlation according to the kernel size.
Speci�cally, the CNN generates useful features via its learnable
�lters. As shown in Figure 6, we implemented the CNN with
two convolutional layers, followed by a pooling layer, a fully
connected layer, and a logistic regression layer (sigmoid).

�e convolution operation sums the contributions from
di¡erent dimensional data in the input layer as follows:

yl � ∑
K

k�1
hk ∗ wkl, (4)

where ym is the mth plane of the output data from each
convolutional layer, hk is the kth plane of the input data that

68
76 73

83
89

92
50

64
73

78
83

88
77

88
84

36
57

49
79

86 89
66

71
84

90
94 96

86
95

90
35

59
46

74
84 80

58
66

82

50

75

100

Pe
rc

en
ta

ge

A B C D E F G H I J K L M

Important

Clicked

Within 10 minutes

(a)

1038 1312 1077

2768

1719 1717 1853

275

6160

824
293 352

964

0

2000

4000

6000

A B C D E F G H I J K L M

N
um

be
r o

f n
ot

ifi
ca

tio
ns

Important

Unimportant

(b)

Figure 3: 20,352 noti�cations among 13 users for approximately 5 weeks; the bar plots of (a) the distribution of label types and (b) the
distribution of important and unimportant noti�cations.

Arrival time ClickedClicked Removal time

Response time
t

Figure 2: Labeling a noti�cation on how quickly it responded and whether an application that triggers it is launched.

4 Mobile Information Systems

http://caret.r-forge.r-project.org/

has K planes in total, and wkm is the kth plane of kernel m.
We used a two-dimensional input layer. �erefore, K rep-
resents a single channel. After the input layer,K is the size of
the activation map. �e detailed convolutional operations
are as follows:

zi,j,k � bk + ∑
fh

u�1
∑
fw

v�1
∑
fn′

k′�1
xi′ ,j′ ,k′ · wu,v,k′ ,k, (5)

with

i′ � u · sh + fh − 1,
j′ � v · sw + fw − 1,

(6)

where zj′,j′ ,k′ is the output of the neuron located in row i′
and column j′ in feature map k′ of the convolutional layer
(layer l). sh and sw are the vertical and horizontal strides,
respectively; fh and fw are the height and width of the
receptive �eld (i.e., �lter size), respectively;fn′ is the number
of feature maps in the previous layer (layer l− 1). For the
vertical and horizontal strides, we used one value. To
maintain the same height and width for all layers, we used
zero padding. xi′,j′ ,k′ is the output of the neuron located in
layer l− 1, row i′, column j′, and feature map k′ (or channel
k′ if the previous layer is the input layer). bk is the bias term
for feature map k (in layer l). wu,v,k′ ,k is the connection
weight between any neuron in feature map k of layer l and its
input located at row u, column v (relative to the neuron’s
receptive �eld), and feature map k′.

As an activation function, we used a recti�ed linear unit
(ReLU) because this unit not only helps models to converge
but also to avoid the vanishing gradient problem in models.
zj′ ,j′,k′ is applied to the ReLU as

hi′,j′ ,k′ � max 0, zi′,j′ ,k′(). (7)

In the last layer, the CNN represents a logistic regression
to convert continuous data into noti�cation labels. �e last
of the layer is computed as

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
Title App nam

e

Days Rece
nt p

hone u
sag

e

Prio
rity

Hours
Proxim

ity

Acti
vit

y

See
n tim

e

Phone s
tat

us

Title

App name

Days

Recent phone usage

Priority

Hours

Proximity

Activity

Seen time

Phone status

1

0.58

0.01

–0.03

–0.05

–0.07

–0.09

–0.06

–0.01

–0.02

0.58

1

–0.02

0.01

0.59

–0.02

–0.05

–0.01

0.03

–0.02

0.01

–0.02

1

–0.02

–0.04

–0.08

0.04

–0.15

0.01

–0.14

–0.03

0.01

–0.02

1

0.03

–0.02

–0.02

–0.03

–0.06

–0.1

–0.05

0.59

–0.04

0.03

1

0.02

–0.01

0.03

0

0.01

–0.07

–0.02

–0.08

–0.02

0.02

1

–0.01

0.16

0.03

0.05

–0.09

–0.05

0.04

–0.02

–0.01

–0.01

1

0.08

0.25

0.29

–0.06

–0.01

–0.15

–0.03

0.03

0.16

0.08

1

0.21

0.34

–0.01

0.03

0.01

–0.06

0

0.03

0.25

0.21

1

0.59

–0.02

–0.02

–0.14

–0.1

0.01

0.05

0.29

0.34

0.59

1

Figure 4: Pearson correlations of features in user J.

Output9 hidden layers10 inputs

Unimportant
Important

Figure 5: Fully connected feedforward neural network structure.

Mobile Information Systems 5

􏽢y �
1

1 + exp −wTx()
. (8)

To compute the training error, we used the following
cross entropy:

Cost � −
1
m
∑
m

i�1
y

(i)log 􏽢y + 1−y
(i)

􏼐 􏼑log(1− 􏽢y)􏽨 􏽩. (9)

Subsequently, we trained the neurons with the back-
propagation algorithm that propagates the cost to whole layers.

5.3. Model Training. To train diverse models, we used two
frameworks: caret (R environment) and TensorFlow (Python
environment). +e caret package (http://topepo.github.
io/caret/index.html) supports many traditional machine
learning algorithms.+erefore, we exploited this package for
the model training of NB, SVM, and RF.

We trained the DNN and CNN on Google’s TensorFlow
(https://www.tensorflow.org/) with the training data, by
dividing the collected data into two parts, 70% for training
and 30% for testing.

To successfully train the DNN with small individual data,
we used the whole dataset from all the users. Subsequently, we
reused the lower layers of the trained networks: this is called
transfer learning. TensorFlow provides the tf.stop_gradient()
function to freeze particular layers for fine tuning. +erefore,
with personal data, it is easily possible to fine tune some higher-
level portions of the network. We explored how many layer
needs to be retrained. As a result, we found no significant
difference among the layers. To reduce overfitting and com-
putational problems, we decided to retrain only the final layer
and completed building the neural network models.

To avoid overfitting concerns, we took two steps: first, we
applied the dropout in conv1 and conv2 layers and the fully
connected layer. Dropout is widely used in CNNs to avoid
overfitting during model training [30].

In our case, we set up 10% rate as the dropout option.
Second, we implemented an early stop mechanism, which
forces training to be terminated when the validation error
starts to increase. We initialized the weight vectors with the
Xaviermethod [31] and the learning rate at 10−5. In addition,
we chose the Adam optimizer to train the weight vectors
[32]. We performed more than 20,000 epochs. However, we
stopped the training process early when the difference be-
tween the validation and training costs was larger than 10−2.
In addition, we performed full-batch learning, which means
that the entire training data were used for a single gradient

descent. We implemented our two models on a local server
equipped with NVIDIA GTX 1080 (8.8 TFLOPS). After the
whole training process, we finally built the deep learning
models to infer whether a notification is relayed to
a smartwatch with the sensed contexts.

6. Evaluation

In this section, we elaborate how accurate our classifier is in
predicting important notifications. In addition, we compare
the accuracy of the prediction models trained on user’s
personal data with a generic prediction model trained on all
users’ data.

6.1. Evaluating Prediction Models. We evaluated five pre-
diction models by comparing the prediction results with the
ground-truth labels that are unobtrusively determined on
the testing data, by using the testing data, which accounts for
30% of the collected data. Figure 7 shows the precision,
recall, and F-score of all models.

Our results demonstrate no significant difference in
performance among the five machine learning algorithms.
However, the F-score of fine tuning the CNN (mean 88%) is
slightly better than others. We expect that performance gap
among other models is increased by more users’ data. As
a recall, the CNN (mean 91%) outperformed the others.

+e low precision results in the unimportant notification
deliveries to a smartwatch.More severely, the low recall leads to
negative effects that reduce information awareness. +erefore,
to reduce the negative effects, we focus on maximizing the
recall by sacrificing the precision.

In spite of the 91% recall on average, a few predictors
show relatively poor results. However, we claim that missing
an important notification on a smartwatch is not a critical
issue because the smartwatch is a secondary device.
+erefore, based on previous works [33], a smartphone is the
key device that checks for notifications when users carry four
devices including a tablet, a PC, a smartwatch, and
a smartphone. Basically, users can check all the notifications
on their smartphones even if they are not relayed to the
smartwatches. To show the effectiveness, we calculated the
number of notifications that were filtered out. To calculate
them, we simply subtracted the notifications that were
classified as important from all notifications. Figure 8 shows
the filtered notification rate for each user. +e filtered no-
tification rate is 36% on average. Obviously, the filtering
effects relied on the number of unimportant notifications
and the recall of models.

Input

2

5

5

32

2

5

64

2

Dense

Conv1 Conv2

Dense

768

192

Unimportant
Important

Max pooling

3

1

64

2 × 2 × 1

2 × 2

2 × 2 × 1

Figure 6: +e convolutional neural network structure with 2 convolutional layers and 1 fully (dense) connected layer.

6 Mobile Information Systems

http://topepo.github.io/caret/index.html
http://topepo.github.io/caret/index.html
https://www.tensorflow.org/

6.2. Generic versus Personal Models. We compare the per-
formance of the predictions models trained on individual
data with a generic model trained on all users’ data. In most
cases, the personal model is better than the generic model.
However, in some cases, when the amount of data is small,
the generic model shows a better F-score than the personal
model. �is is primarily due to the lack of training data.
Unlike other machine learning algorithms, the personal
model of the CNN stably outperformed its generic model
across all users. As mentioned before, we performed �ne
tuning with the generic model to build the personal models:
this is called transfer learning. Its bene�ts are even greater
when we consider users with little or no training data.

7. Discussion and Limitations

We are aware that noti�cation �ltering may a¡ect the user
experience of smartwatches. However, we claim that the user
experience degradation of the smartwatch is not critical for the
following reasons: �rst, users tend to addictively check their

smartphones [34]. In addition, based on ANOVA, recent
works [9] have revealed that the alert type of the smartphone
(silence and vibration) does not show statistically signi�cant
e¡ects on the noti�cation awareness. Speci�cally, users re-
ported that they just missed the noti�cations for 14.63% of the
time, even when their smartphones were in silent mode. �is
means that the noti�cation awareness of users is not dependent
on any other factors such as the alert type of the smartphone or
the presence of the smartwatch due to frequent smartphone
usage. Next, users are not dependent on the smartwatches
because smartwatches are secondary devices. A recent work [3]
investigated the level of discomfort if devices were running out
of battery. According to the questionnaire survey, 33% of the
smartwatch users reported neutral. However, 46% of the users
responded with very uncomfortable. In addition, Weber et al.
found that users prefer a smartphone for receiving noti�ca-
tions among the four devices (a tablet, a smartwatch,
a smartphone, and a PC) regardless of the noti�cation type
[33]. �is is because the smartphone is a key device for online
connectivity and communication with other people.

0.0

0.2

0.4

0.6

0.8

1.0

Generic model Personal model
(transfer learning)

Pr
ec

isi
on

CNN
DNN
NB

RF
SVM (RBF)

(a)

Generic model Personal model
(transfer learning)

CNN
DNN
NB

RF
SVM (RBF)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(b)

Generic model Personal model
(transfer learning)

CNN
DNN
NB

RF
SVM (RBF)

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

(c)

Figure 7: Prediction results of the CNN, DNN, NB, RF, and SVM models: (a) precision, (b) recall, and (c) F-score.

Mobile Information Systems 7

In a few users, our classi�er shows poor prediction re-
sults.�e reasons are as follows: �rst, some users just glanced
at the wrist and their smartphones to decide whether to
interrupt their current activities to deal with the noti�cation.
In this case, the proposed labeling method misclassi�es this
noti�cation as dismissed because there is no interaction.
Next, some users read the noti�cations and dismissed them
on their PCs. In this case, our labeling method does not
capture the interactions. To investigate the e¡ects by using
PCs, we conducted one additional experiment. �e exper-
iment was divided into two conditions: allowing three users
to use PCs and not to use PCs. �e experiments were
conducted for a week, respectively.

Figure 9 shows the three class types under two condi-
tions. If a user uses a PC, many noti�cations are misclassi�ed
as unimportant because the application launch occurs in the
PC. �erefore, we forced them not to use any device except
a smartphone and a smartwatch for checking noti�cation.
Despite our instructions, a few users still used the PCs for
their o§cial tasks such as sending documents. �erefore,
a poorly trained model stems from misclassi�ed noti�cation
labels.

8. Conclusion

Even though smartwatches improve the awareness of incoming
noti�cations, they aggravate the disruptive nature of noti�-
cation delivery because they are worn on the human body.

To reduce a smartwatch user’s distraction, we proposed
a noti�cation delivery system that relays only important
noti�cations predicted by CNNmodels. To build our models,
we collected 20,352 noti�cations and sensor data from three
users using a mobile application, which unobtrusively
monitors all the data. Subsequently, we implemented a binary
classi�er that identi�es important noti�cations. For important
noti�cation prediction, our classi�er attained 76% and 91%,
respectively, for the precision and recall on average, spanned
across all users. �is classi�er can reduce the distraction in
smartwatch users without noticeable degradation in the users’
awareness.

In the future, we plan to deploy our noti�cation delivery
system to real users. In addition, we implemented the OS-
level software without cloud assistance not only to capture
the detailed context (i.e., full text) but also to avoid privacy
intrusion.

Conflicts of Interest

�e authors declare that they have no con¨icts of interest.

Acknowledgments

�is research was supported by the National Research
Foundation (NRF) of Korea funded by the Ministry of
Education (NRF-2017R1D1A1B03034705)

References

[1] A. Visuri, Z. Sarsenbayeva, N. van Berkel et al., “Quantifying
sources and types of smartwatch usage sessions,” in Pro-
ceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17), pp. 3569–3581, ACM, New
York, NY, USA, 2017.

[2] M. E. Cecchinato, A. L. Cox, and J. Bird, “Always on(line)?:
user experience of smartwatches and their role within multi-
device ecologies,” in Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17), pp. 3557–
3568, ACM, Denver, CO, USA, May 2017.

[3] C. Min, S. Kang, C. Yoo et al., “Exploring current practices for
battery use and management of smartwatches,” in Proceedings
of the IEEE International Symposium on Wearable Computers
(ISWC), pp. 11–18, Osaka, Japan, 2015.

[4] S. T. Iqbal and E. Horvitz, “Noti�cations and awareness:
a �eld study of alert usage and preferences,” in Proceedings of
International Conference on Computer Supported Cooperative
Work, pp. 27–30, ACM, Shanghai, China, April 2010.

[5] E. Horvitz, P. Koch, and J. Apacible, “Busybody: creating and
�elding personalized models of the cost of interruption,” in
Proceedings of the ACM International Conference on Com-
puter Supported Cooperative Work (CSCW), pp. 507–510,
Chicago, Illinois, USA, November 2004.

[6] L. Leiva, M. Böhmer, S. Gehring, and A. Krüger, “Back to the
app: the costs of mobile application interruptions,” in Pro-
ceedings of the 14th International Conference on Human-
computer Interaction with Mobile Devices and Services,
MobileHCI, pp. 291–294, San Francsico, CA, USA, September
2012.

[7] V. Pejovic andM.Musolesi, “InterruptMe: designing intelligent
prompting mechanisms for pervasive applications,” in Pro-
ceedings of the ACM International Joint Conference on Pervasive

32

17

71

22 23

76

21

34

10 14

81

26

42

0

25

50

75

100

A B C D E F G H I J K L M

Fi
lte

re
d

no
tifi

ca
tio

n
ra

te
 (%

)

Figure 8: Filtered noti�cation rate.

82

92

28

89

22

83

68

80

62 65

46
55

95 97
93 96

88
93

20

30

40

50

60

70

80

90

100

B C I

Pe
rc

en
ta

ge

PC-within 10 minutes

Non-PC-within 10 minutes

PC-clicked

Non-PC-clicked

PC-important

Non-PC-important

Figure 9: �e labeling e¡ects using PCs.

8 Mobile Information Systems

and Ubiquitous Computing (UbiComp), pp. 897–908, Down-
town Seattle, WA, USA, September 2014.

[8] A. Mehrotra, M. Musolesi, R. Hendley, and V. Pejovic,
“Designing content-driven intelligent notification mecha-
nisms for mobile applications,” in Proceedings of the ACM
International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp), pp. 813–824, Osaka, Japan, September
2015.

[9] A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley, and
M. Musolesi, “My phone and me: understanding people’s re-
ceptivity to mobile notifications,” in Proceedings of the ACM
International Conference on Human Factors in Computing
Systems (CHI), pp. 1021–1032, San Jose, CA, USA, May 2016.

[10] S. S. Intille, J. Rondoni, C. Kukla, I. Ancona, and L. Bao, “A
context-aware experience sampling tool,” in Proceedings of the
ACM International Conference on Human Factors in Com-
puting Systems (CHI), pp. 972-973, Ft. Lauderdale, Florida,
USA, April 2003.

[11] S. T. Iqbal and B. P. Bailey, “Oasis: a framework for linking
notification delivery to the perceptual structure of goal-
directed tasks,” ACM Transactions on Computer-Human
Interaction, vol. 17, no. 4, pp. 1–28, 2010.

[12] J. Ho and S. S. Intille, “Using context-aware computing to
reduce the perceived burden of interruptions from mobile
devices,” in Proceedings of the ACM International Conference
on Human Factors in Computing Systems (CHI), pp. 909–918,
Portland, OR, USA, April 2005.

[13] D. Siewiorek, A. Smailagic, J. Furukawa et al., “SenSay:
a context-aware mobile phone,” in Proceedings of the IEEE
International Symposium on Wearable Computers (ISWC),
pp. 248-249, Washington, DC, USA, October 2003.

[14] S. Rosenthal, A. Dey, and M. Veloso, “Using decision-
theoretic experience sampling to build personalized mobile
phone interruption models,” IEEE Pervasive Computing,
vol. 6696, pp. 170–187, 2011.

[15] J. E. Fischer, N. Yee, V. Bellotti, N. Good, S. Benford, and
C. Greenhalgh, “Effects of content and time of delivery on
receptivity to mobile interruptions,” in Proceedings of the
ACM International Conference on Human Computer In-
teraction with Mobile Devices and Services (MobileHCI),
pp. 103–112, Lisbon, Portugal, 2010.

[16] M. Pielot, R. D. Oliveira, H. Kwak, and N. Oliver, “Didn’t you
see my message?: predicting attentiveness to mobile instant
messages,” in Proceedings of the ACM International Confer-
ence on Human Factors in Computing Systems (CHI),
pp. 3319–3328, Toronto, ON, Canada, 2014.

[17] K. Lee, J. Flinn, and B. Noble, “+e case for operating system
management of user attention,” in Proceedings of the ACM
International Workshop on Mobile Computing Systems and
Applications (HotMobile), pp. 111–116, Santa Fe, NM, USA,
February 2015.

[18] T. Okoshi, H. Nozaki, J. Nakazawa, H. Tokuda, J. Ramos, and
A. K. Dey, “Towards attention-aware adaptive notification on
smart phones,” Pervasive and Mobile Computing, vol. 26,
pp. 17–34, 2016.

[19] L. D. Turner, S. M. Allen, and R. M. Whitaker, “Reachable but
not receptive: enhancing smartphone interruptibility pre-
diction by modelling the extent of user engagement with
notifications,” Pervasive and Mobile Computing, vol. 40,
pp. 480–494, 2017.

[20] N. Kern and B. Schiele, “Context-aware notification for
wearable computing,” in Proceedings of the IEEE International
Symposium on Wearable Computers (ISWC), pp. 223–231,
Osaka, Japan, September 2015.

[21] N. Lathia, K. Rachuri, C. Mascolo, and G. Roussos, “Open
source smartphone libraries for computational social science,”
in Proceedings of the ACM International Conference on Per-
vasive and Ubiquitous Computing adjunct publication (Ubi-
Comp), pp. 911–920, Zurich, Switzerland, September 2013.

[22] M. E. Cecchinato, A. L. Cox, and J. Bird, “Working 9-5?:
professional differences in email and boundary management
practices,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI’15),
pp. 3989–3998, Seoul, Republic of Korea, April 2015.

[23] A. S. Shirazi and N. Henze, “Assessment of notifications on
smartwatches,” in Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile
Devices and Services Adjunct (MobileHCI ’15), pp. 1111–1116,
ACM, Copenhagen, Denmark, August 2015.

[24] A. S. Shirazi, N. Henze, T. Dingler, M. Pielot, D. Weber, and
A. Schmidt, “Large-scale assessment of mobile notifications,”
in Proceedings of International Conference on Human Factors
in Computing Systems (CHI), pp. 3055–3064, ACM, Toronto,
ON, Canada, 2014.

[25] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep
convolutional networks for classification and detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 10, pp. 1943–1955, 2016.

[26] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 4,
pp. 640–651, 2017.

[27] N. Majumder, S. Poria, A. Gelbukh, and E. Cambria, “Deep
learning-based document modeling for personality detection
from text,” IEEE Intelligent Systems, vol. 32, no. 2, pp. 74–79,
2017.

[28] K. Chen and A. Salman, “Learning speaker-specific charac-
teristics with a deep neural architecture,” IEEE Transactions
on Neural Networks, vol. 22, no. 11, pp. 1744–1756, 2011.

[29] J. Lee, J. Kwon, and H. Kim, “Reducing distraction of
smartwatch users with deep learning,” in Proceedings of the
18th International Conference on Human-Computer In-
teraction with Mobile Devices and Services Adjunct, Mobi-
leHCI ’16, pp. 948–953, ACM, New York, NY, USA, 2016.

[30] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the International Conference on Artificial Intelligence and
Statistics (AISTATS’10), Society for Artificial Intelligence and
Statistics, pp. 249–256, Sardinia, Italy, May 2010.

[32] D. Kingma and J. Ba, “Adam: a method for stochastic opti-
mization, arXiv preprint arXiv:1412.6980,” in Proceedings of
3rd International Conference for Learning Representations,
San Diego, CA, USA, 2015.

[33] D. Weber, A. Voit, P. Kratzer, and N. Henze, “In-situ in-
vestigation of notifications in multi-device environments,” in
Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp’16), ACM,
pp. 1259–1264, Heidelberg, Germany, 2016.

[34] O. Turel and A. Serenko, “Is mobile email addiction over-
looked?,” Communications of the ACM, vol. 53, no. 5,
pp. 41–43, 2010.

Mobile Information Systems 9

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

