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• Small signal parameter extraction method
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• Large signal I-V and Q-V model construction
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Introduction

• CMOS as RF technology
• Review of III-V MESFET/HFET works
• Root’s proposal
• Required accuracy for RF transistor models
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CMOS as RF technology
• Continuous down scaling of CMOS active devices

- fT and fmax above 20 GHz
- Excellent potential for 2 ~ 5 GHz wireless communication

• Continuous up scaling of CMOS interconnection technology
- Few nH inductors with Q>10 and MIM capacitors with small parasitics

• Possibility of integrating RF, analog, and digital circuits in a
single chip : Single chip radio.

• But accurate and reliable CMOS RF modeling and 
characterization methods are not available yet, which has 
utmost importance to be competitive in RF chip design.
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Review of III-V MESFET/HFET works - I
• Mostly based on Small Signal Models

GATE

SOURCE = BODY

DRAINCgs

Cgd

Gme -jωτωτωτωτ
gds CdsRi

- 7 parameters, leaving one degree of freedom for fitting frequency dependent 
2-port s-parameter measured at particular bias point.

- Metal gate (No Rg!) on semi-insulating substrate (No loss in Cds!)
- Reciprocal Cgs and Cgd which are not correct for active devices!
- Ri is needed to consider input loss!
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Review of III-V MESFET/HFET works - II

• Large signal models
- Analytical models: do not have enough accuracy mainly because 

of bad repeatability of III-V transistor characteristics.

- Table models constructed by numerical integration of small signal 
measured data: technology independent, but not physical, nor 
scalable.
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Why large signal model?

• Large signal I(V) and Q(V) are still the best choice as the 
state variables describing multi-terminal MOSFET in quasi-
static approximation for RF ECAD.

• Here I and Q are uniquely determined as functions of node 
voltages. Thus we do not have to worry about such problems 
as charge and current conservations.
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Why small-signal equivalent circuit 
compatible with large signal model?

• Small signal s-parameter measurement is the only practical 
characterization method at high frequencies.

• Thus we should be able to construct small signal equivalent 
circuits compatible with their large signal model. This not 
only is mathematically and physically correct, but is very 
important for circuit simulation accuracy and speed. 

• For example, Cgs/Cgd and Gm/Gds at each bias point cannot 
be chosen independently to conserve charge and current, 
respectively. Moreover, each capacitor is not bilateral, i.e.,  
Cgd and Cdg are different.
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Root’s proposal for charge non-conservation problem
- Circuit simulation based on nonlinear large signal transient 
analysis (TA) does not agree with that on small signal linear 
AC model derived from it, because large and small signal 
models are inconsistent! 

- One cannot construct large signal model from integrating 
(wrong) small signal model! 

- Need to consider charge conservation independent of (Vgs,
Vds) bias trajectory.

- Voltage controlled charge source (VCQS) should be used 
instead of capacitance to calculate displacement current!

- D.E. Root, “Charge Based Partially Distributed MESFET Model for SPICE”, (invited paper) Modeling High-Speed GaAs Devices 
and Nonlinear CAD Workshop, Palo Alto, CA, Feb. 1987.

- Note charge non-conserving problem was first addressed by Ward and Dutton in 1978 and then by Ping Yang et al. in 1983 for low 
frequency MOSFET circuits.
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Root’s proposal (continued)

• Same is true for drain current which should be 
voltage path independent !
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Root’s intrinsic large signal FET model
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Root’s approach 
to consider charge conservation
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Root’s approach
to consider charge conservation

• QGD, Cm, CGD depend only on the 
controlling voltages.

• Cm and CGD are not independent 
functions to uniquely define QGD.

• Bias path independence
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Root’s intrinsic small signal FET model
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Required Accuracy for RF transistor models
• Required accuracy for RF circuit simulation

LNA Mixer Oscillator Power Amp.

• Bias ( I )
• Gain ( I’, C )
• Linearity 
( I’’, I’’’, C’ )
• Thermal noise

• Bias ( I )
• Conversion gain 
( I’’, C )
• Linearity
( I’’’’,  C’ )

• Bias ( I )
• Oscillation
frequency (I’,C )
• Oscillation
amplitude 
(I’’, I’’’, C’)
• Phase noise 
(1/f noise)

• Bias ( I )
• Gain ( I’, C )
• Linearity 
( I’’, I’’’, C’)

Much higher order continuity is desired for accuracy/computational 
efficiency for circuit simulation using Harmonic Balance Technique!
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KAIST approach for RF CMOS modeling

• Based on existing popularly used large signal I-V 
and Q-V models, such as BSIM, to take care of 
conservation problem properly,

• Construct correct small signal equivalent circuit 
model consistent with large signal model as Root 
proposed,

• Extract parameters from s-parameter measurement at 
each bias point in an easy and straightforward way 
using no more than linear regression,

• Optimize large signal model parameters to fit for the 
entire bias points.
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• Gate resistance : Rg (gate 
electrode resistance + 
channel resistance, Ri)

• Substrate resistance : Rsub
*

• Large signal I-V and Q-V 
models for intrinsic MOS 

• Parasitic capacitances:
Cgsx and Cgdx.

Large Signal RF CMOS Macro Model

* W. Liu, R. Gharpurey, M. C. Chang, U.Erdogan, R. Aggarwal, and J. P. Mattia, “R.F. MOSFET modeling accounting for distributed substrate 
and channel resistances with emphasis on the BSIM3v3 SPICE model,” Int. Electron Devices Meeting, pp. 309–312, 1997.
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KAIST Large Signal intrinsic common source 
3- terminal MOS RF model
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Calculation of displacement current for 
intrinsic MOSFET

– Small signal charging currents 

– Non-reciprocal capacitance
• Cgd : effect of the drain voltage on the gate charge 
• Cdg : effect of the gate voltage on the drain charge

– In general,
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KAIST small signal RF CMOS model
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Parameter extraction method

• Construct small signal equivalent circuit model 
compatible with large signal one

• Convert measured s-parameters into y-parameters
• Extract small signal equivalent parameters from 

fitting measured and modeled y-parameters
• Avoid complex curve fitting or optimization
• Very simple and straightforward method such as 

either direct extraction or linear regression at most
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Parameter Extraction Method
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Parameter extraction method (continued)
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Parameter Extraction Method (continued)
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Parameter extraction method (continued)

• Rsub is from slope from ω2 / Re(Ysub) vs. ω2  plot 

• Csd: from Im(Y22) after de-embedding others
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Extraction examples

• Multi-fingered 0.18-µm n-MOSFET
– Total width = 100 µm and 25 µm 
– Number of fingers = 40 and 10
– Vth= 0.45 V

• S-parameter measurement
– Common source-substrate configuration
– On-wafer RF probing and HP 8510C

• Two-step (open and short) de-embedding
• ω2 Cgg

2 Rg
2 = 0.065 << 1 @ 10 GHz
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Model Verification, Y11
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Model Verification, Y12
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Model Verification, Y21
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Model Verification, Y22
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Model Verification

• Accurate without any further optimization after extraction.
• Total root-mean-square error = 1.8 %
• Easy checking of confidence level for extraction results
• Straightforward and fast enough for bias dependence 

measurement for large signal construction and for statistical 
yield analysis in manufacturing environment
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Comparison with other model [1]
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- Comparison with conventional small signal model
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Comparison with conventional small signal model
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Comparison with conventional small signal model

• The conventional model is very simple but one 
cannot fit Y12 and Y21 simultaneously. 

• Non-reciprocity in Cgd and Cdg are necessary to 
fit these simultaneously.

• For the macro-model, the reciprocal capacitance 
Cgdx cannot solve this non-reciprocity.
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Bias Dependence of the Extracted 
C-V Parameters: Vgs dependence
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Bias dependence of the extracted
C-V parameters: Vds dependence
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Bias Dependence of the Extracted 
Parameters

• C-V behavior is what we expect from MOSFET 
device physics.

• Cdg is larger than Cgd, demonstrating the necessity of 
non-reciprocity. 

• Charge conservation is important not only for the 
simulation accuracy and efficiency but also for the 
compatibility with large-signal Q-V models.
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Gds between DC and RF measurement
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Id-Vds construction from Gds integration
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Conclusions
• Correct construction of small signal model compatible with 

large signal one is very important not only for the accuracy 
but for the efficiency of circuit simulation.

• Simple and straightforward parameter extraction method 
using no more than linear regression, which is important for 
computerized data acquisition,  has been demonstrated.

• Construction methods of large signal I-V and Q-V models 
from small ones have been demonstrated.

• One large-signal I-V model is found to be enough for DC, 
low-frequency analog, as well as RF circuit simulation.

• Needs more elaborate short channel Q-V model.
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Gds inconsistency problem for large FET
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Id-Vds inconsistency for large FET
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Reason of Discrepancy
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Reason for inconsistency-simulation
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