
DEVSIF : RELATIONAL ALGEBRAIC

DEVS INTERMEDIATE FORMAT

Ki Jung Hong*, Tag Gon Kim*, and In Sup Kwon**

*Department of Electrical Engineering & Computer Science
KAIST

Taejon, KOREA

**Pyungchang Computer & Communication Inc., Seoul, KOREA

KEYWORDS

DEVSIF (DEVS Intermediate Format), DEVS formalism,
DEVS Model Reuse, Relational Algebraic DEVS

ABSTRACT

The DEVS formalism has been widely used in modeling
and simulation of various discrete event systems such as
computer/communication systems. However, DEVS models
developed in one simulation environment may not be di-
rectly reused in the other environment. To be useful, a
means to represent DEVS models in an environment-
independent format needs to be devised. This paper pro-
poses a language-independent DEVS modeling format,
called DEVSIF (DEVS Intermediate Format) whose seman-
tics is based on relational algebra. DEVSIF can be auto-
matically converted into DEVS models executable in vari-
ous DEVS simulation environments such as DEVSim++
and DEVSim-Java. An example of modeling/simulation
based on DEVSIF demonstrates effectiveness of the pro-
posed simulation method.

1 INTRODUCTION

The DEVS formalism has been widely used in modeling
and simulation of various discrete event systems such as
computer, communication, manufacturing systems. Ho w-
ever, DEVS models developed in one simulation environ-
ment may not be directly reused in the other environment.
To be useful, a means to represent DEVS models in an envi-
ronment-independent format needs to be devised.

This paper proposes the fra mework for the design and
simulation of the language-independent DEVS model,
called DEVSIF whose semantics is based on relational alge-

bra. DEVSIF is an extension of DEVS spec language (Hong
and Kim 1996), which is devised for the behavioral analysis
of the model with no timing information. A similar specifi-
cation language, called openDEVS, was defined in (Tho mas
et.al. 1996) which has three characteristics: preservation of
the DEVS models information, object-oriented modeling,
and model type-check. The proposed DEVSIF specification
includes all these features. More importantly, a translator is
developed which converts a DEVSIF model to a relational
algebraic model for easy reuse and maintenance. The rela-
tional algebraic DEVSIF model, called the RADESIF model,
can be stored in a database or a file -system, then loaded,
searched, and modified in a simulation environment for re-
use. To automatically generate simulation code for a spe-
cific simulation environment, we developed code generators
for C++ DEVS models or Java DEVS models. Such simula-
tion models can be directly executable in the DEVSim++ or
DEVSimJava simulation environment.

This paper is organized as follows. The DEVSIF
framework is introduced in more detail at section 2, a com-
plete example of the framework is presented at section 3,
and we conclude the paper in section 4.

2 DEVSIF BASED SIMULATION FRAMEWORK

Figure 1 shows a simulation framework based on the pro-
posed DEVSIF methodology. Within the framework, a
modeler uses DEVSIF specification for modeling of dis-
crete event systems. The specification is translated into a
relational algebraic DEVS model by a DEVSIF translator,
which then is stored in a relational database or a equiva-
lent file system. Now, the stored model can be reused in
the code generation phase to generate various simulation
models depending on the target simulation environment.
Moreover, the stored model can be directly simulated by
an appropriate interpreter designed by a general purpose

sbchi
Proceedings of AIS'2000, 2000, Tucson, Arizona, U.S.A.

language or a database language. Of course, such interpre-
tation sacrifices execution speed. The following sub-
sections discuss the theoretical basis for DEVSIF in con-
junction with the DEVS formalism and Relational Algebra.

.

C++
Java RA Model

DEVSim++ DEVSim-Java RADESIF
Interpreter

Simulation
Analysis

DEVSim++
Model

DEVSim-Java
Model

RA DEVS
Model

DEVSIF Translator

DEVSIF

C++ Code
generator

Java Code
generator

Simulation
Engine

Figure 1: Simulation Methodology Using DEVSIF

2.1 DEVS Formalism: A Brief Introduction

The DEVS Formalism specifies a model in a hierarchical,
modular form. A discrete event system consists of entities
whose dynamics are described as a set of procedure rules.
Such rules control the interactions among the communicat-
ing entities. The communicating entities and the procedure
rules can be decomposed into the smaller ones with the
modeling semantics. These decomposed components are
directly mapped to the atomic models, from which larger
ones are built. A basic model, called an atomic model, is not
further decomposed specification of the dynamic behavior
of a component. Formally, an atomic model AM is specified
as (Zeigler 1984) :

, , , , , ,

: input events set;
:sequential state set;
:output events set;
: :internal transition function;
: :external transition function;
: :output function;
: : t i m

int ex t

i n t

ex t

AM X S Y ta

X
S
Y

S S
Q X S
S Y

ta S Real

δ δ λ

δ
δ

λ

=< >

→
× →
→
→ e advance function;

{ (,) | , 0 ()}
:total state of (:elapsed time).

Q s e s S e ta s
AM e

= ∈ ≤ ≤

The second form of the DEVS model, called a coupled
model (or coupled DEVS), is a specification of the hierar-
chical model structure. It describes how to couple comp o-
nent models together to form a new model. This new model

can be employed as another component in a larger coupled
model, thereby giving rise to the construction of complex
models in a hierarchical fashion. Formally, a coupled model
CM is defined as (Zeigler 1984):

, ,{ }, , , ,

:input events set;

:output events set;
{ }:DEVS components set;

:external input coupling relation;

:external output coupling relation;

:inte

i

i

i i

i i

i i i

CM X Y M EIC EOC IC SELECT

X

Y
M

EIC X X

EOC Y Y

IC Y X

=< >

⊆ ×

⊆ ×

⊆ ×

U

U

U U

{ }

rnal coupling relation;

: 2 - { } : tie breaking selector.iM
iSELECT M∅ →

A detailed discussion about the DEVS formalism and mo d-
eling is found in (Zeigler 1984):

2.2 Relational Algebra

Relational algebra (RA) is based on set theory. Set is de-
scribed as { … }, and structure is described by using < … >.
After now on, we will describe a set of structured informa-
tion by using {< … >i}.

2.2.1 Basic Operator

There are six fundamental operations that serve to define
relational algebra (Silberschatz 1997). Let R and S be two
relations over sets of attributes R’ and S’, respectively.
Let X ⊆R’. Then, the following are basic operators in RA.

(1) Rename ρ : Given a relational-algebra expression E,
the expression ρx(E) returns the result of expression
E under the name x.

(2) Selection σ : σF(R) = {t |F(t)∧t∈R}
(3) Projection Π : ΠX(R) = {t[X]| t∈R}
(4) Union ∪ : R ∪ S = {t | t ∈ R ∨ t∈ S}
(5) Difference − : R−S = { t | t ∈ R ∧ t∉ S}
(6) Cartesian product × : R×S = {<r,s> | r ∈ R ∧ s∈ S}

(7) Natural join >< :

2.2.2 DEVS Models in RA : RA DEVS

By using relation algebra, we can specify discrete event
models with preservation of the DEVS semantics. More
specifically, the algebra has an expressive power equivalent
to the DEVS formalism in specification of both an atomic
DEVS model and a coupled DEVS model. We now define
atomic and coupled DEVS models in relational algebra.

' ' (. .)()
i i

i
R S R A S AR S R Sσ∪ ∧ == ∏ ×><

First, a relational algebraic atomic model AM’ is specified
as:

AM’ = <Model’,X’,S’,Y’,I’,δ’int, δ’ext ,λ’,ta’>
Model’ = <id, parent_id, model_name >
X’ = {<id, event_name , type_id >i}
S’ = {<id, state_name , type_id >i}
Y’ = {<id, event_name , type_id >i}
I’ = {<id, func>i}
δ’int= {<id, func, act_func>i}
δ’ext= {<id, func, x, act_func>i}
λ’ = {<id, func, y, act_func>i}
ta’ = {<id, func, type, ta_val, ta_id>i}
ta’.type ∈ {INFINITY, SIGMA, RANDOM }
func’ = {<id,func_id,op,e1,e2>i}
func’.op∈ {PLUS,ASSIGN,… }

Next, a relational algebraic coupled model CM’ is specified
as:

CM’ = < Model’,X’,Y’,M’,EIC ’,EOC’,IC’,SELECT’ >
Model’ = <id, parent_id, model_name >
X’ = {<id, event_name , type_id >i}
Y’ = {<id, event_name , type_id >i}
M’ = {<id, child_id , model_id, child_name>i}
EIC’ = {<id, model_id, x, child_id, child_x>i}
EOC’ = {<id, child_id, child_y, model_id , y>i}
IC’ = {<id, src_child_id, src_child_y, dst_child_id,
dst_child_x>i}
SELECT’ = {<id, child_id, priority>i}

To prove the equivalence between RA and DEVS for-

malisms in expressive power, isomorphism between two
formalisms needs to be established. A mapping from a RA
model into a DEVS model H satisfies with the following
equations:

AM = HAM(AM’)
CM = HCM(CM’)

Conversely, a DEVS to RA mapping function, G, should be
satisfied with the following equations:

 AM’ = GAM(AM)
 CM’ = GCM(CM)

Since AM and AM’ have a similar structure , G and H is eas-
ily introduced as shown in a following example in terms of
the input event set X and the internal transition function δint:

HAM.X = Π(event_name,type_id)(AM’.Model’>< AM’.X’)
HAM.δint = δint_I(Π(func)(AM’.Model’><AM’.δ’int))

∧δint_I(Π(act_func)(AM’.Model’>< AM’.δ’int))
 δint_I : S’ àS ’
GAM.X = Translator(AM)/X

GAM.δint = Translator(AM)/δint

The translation procedure is a series of composition of the
function G.

2.3 DEVSIF : DEVS Intermediate Format

The DEVS intermediate format is developed for the formal
expression of a model of a discrete event system. The for-
mal expression makes it easy at once to analyze, simulate
and execute the model.

2.3.1 Syntax and semantics of DEVSIF

DEVSIF has three parts to describe the overall model,
which are interface, atomic model, and coupled model . In-
terface part specifies a set of input/output events which is
common to a atomic model and a coupled model. A
DEVSIF model preserves model information in the DEVS
formalism and supports object-oriented feature. In DEVSIF,
an atomic model is d escribed in an extended BNF format as:

interface model_name [:parent_model_name]
 input : {…}
 output : {…}
end model_name;
atomic model model_name [:parent_model_name]
 state variables :[var_name in type_def;]*

 initial condition : [expr]*;
 internal transition : [(expr)=>{expr};]*
 external transition :

[(expr)*input_event => {[expr;]+};]*
output function : [(expr)=>expr;]*

 time advance : [(expr)=>expr]*
end model_name;

In DEVSIF, a coupled model is described as:

interface model_name [:parent_model_name]
 input : {…}
 output : {…}
end model_name;
coupled model model_name [:parent_model_name]
 component : {[child_name in model_name;]+}

 external input coupling :
{[model_name.input_event->
child_name.child_input_event;]*}

 external output coupling :
{[child_name.child_output_event->
model_name.output_event;]*}

 internal coupling :
{[src_child_name.src_output_event->
dst_child_name.dst_input_event;]*}

[select : [{[child_name;]*}]]
end model_name;

Since the DEVSIF model should preserve the same seman-
tics as the DEVS model, DEVSIF is considered to satisfy
this preservation. input, output, state variables , internal
transition, external transition, output function , time advance
implicate X , S, Y , δint, δext, λ, ta respectively. Actually, Ini-
tial condition is defined to simulate the model, and is the

extended attribute of the DEVS formalism. To reduce errors
in model specification, the DEVSIF translator employs a
strong type-check and ill-structure check, thus supporting
stable DEVS model design.

Through the code-generation from RADESIF to
DEVSim++ and DEVSim-java, the model is freely com-
bined with a desired simulation environment.

3 A EXAMPLE: CSMA/CD

CSMA_CD

STATION1

SEND1
phase

MEDIA
phase

GEN1
phase

OUT IN

OUT2

OUT IN

IN2

OUT1IN1

IN OUT

STATION2

SEND2
phase

GEN2
phase

OUT IN

OUT2

OUT IN

IN2

OUT1IN1

IN OUT

Figure 2: The overall structure of CSMA/CD

This section presents an example to show the complete
modeling and simulation process using the proposed
framework. The CSMA/CD protocol has the two major fa-
cilities for the collision detection and retransmission
mechanism. The overall CSMA/CD model consists of the
coupled model STATION and the atomic model MEDIA.
STATION means the network node, which is connected to
the physical network media and has two atomic models
GEN and SEND. GEN merely generates data when SEND
transmits data successfully or a collision occurs in MEDIA.
SEND checks the status of the transmission line by sending
an inquiry message to MEDIA. If the transmission media is
available, it sends data to MEDIA. SEND goes to the ja m-
ming state when it receives a collision message and tries to
resend the collided date after back-off time. MEDIA broad-
casts its status to STATIONs when it receives an inquiry
message. MEDIA broadcasts the collision message to the
STATIONs when more than one STATIONs try to send
data simultaneously (IEEE std 802.3).

3.1 Modeling of CSMA/CD

The whole CSMA/CD model has too many components
to be presented in this paper. So, simply, take a SEND
model, which is the core atomic model in CSMA/CD,
for the explanation of the complete process. SEND
model shows the collision detection and retransmiss ion
mechanism in CSMA/CD. SENSE state means the colli-
sion detection.

job
send

busy

phase

READY WAIT

?busy

?job
SENSE SEND

SENDINGJAMMING

free

collision

!is_busy

!retry

?collision ?collision ?collision ?collision

!send

!done

?free

is_busy

done

re_try
done

?collision

DONE
?done

Figure 3: DEVS Model of SEND in CSMA/CD

JAMMING state processes the retransmission requirement.
Next, the DEVSIF model is presented for SEND model.

interface SEND
 input : {job,busy,free,collision,done}
 output : {send,is_busy,done,re_try}
end SEND
atomic model SEND
 state variables :
 phase in {READY, SENSE, WAIT, SEND,

SENDING, DONE, JAMMING};
 initial condition : phase := READY;
 internal transition :
 (phase=SENSE)=>{phase := WAIT;}
 (phase=SEND)=>{phase := SENDING;}
 (phase=JAMMING)=>{phase:=READY;}
 (phase=DONE)=>{phase:=READY;}
 external transition :
 (phase=READY)*job=>{phase:=SENSE;}

 …
 output function :

(phase=SENSE)=>is_busy
 …
 time advance :
 (phase=READY)=>infinity
 …
end SEND

From figure 3, we first construct the atomic model

SEND such as the above DEVSIF description. Figure 3
shows the overall structure of the CSMA/CD model for
specifying the collision detection mechanism. The output of
the DEVSIF translator is shown as: Table1
From Table1, we can generate code for the specific simula-
tion engine such as DEVSim-java. DEVSim-java code-
generation is shown as :

import DEVSim.*;
class MSEND extends AtomicModel{
 final int SC_READY = 0;
 final int SC_SENSE = 1;
 …
 int phase;
 MSEND() {

Table 1: RADESIF of SEND in CSMA/CD

Model Name Table Name
event name
job
busy
free

id
1
1
1
1
1
id
1
1
1
1
id
1
id
1

id

phase

func

…

Attribute Name

id
1

id

1
…

…

…

3

1
1
1

func
111

func_id
0
1
2

…

collision
done
event name
send
is_busy
done
retry
state_name

type id
integer
integer
integer
integer
integer
type id
integer
integer
integer
integer
type id

act_func

integer

act_func
6

func
0

1
func
87

y'
is_busy 90

id
1

func
27

x'
job

act_func
30

id

type
infinity

e2
2

o p

ta_id
<NULL><NULL>

ta_val

e1
1
phase
0

STATE
ASSIGN

INTVAL
<NULL>
<NULL>

X’

Y’

S’
I’
δint’
δext’
l’
ta’

func

SEND

/* Define input events set */
 addInports(1,”job”);
 addInports(1,”busy”);
 …
 /* Define output events set */
 addOutports(1,”send”);
 addOutports(1,”is_busy”);
 …
 /* operation of initial conditiln */
 phase = SC_READY;
 }
 public void extTransfn(StateVars s,

double e,Message message) {
 String ev = message.getPort();
 if((phase==SC_READY)

&&(ev.equals(“job”)) {
phase = SC_SENSE;

} else if
…

 }
 public void intTransfn(StateVar s) {
 if (phase == SC_SENSE) {
 phase = SC_WAIT;
 } else if
 …
 }
 public void outputfn(StateVars s,

Messages message) {
 if (phase == SC_SENSE) {
 message.setPortVal(“is_busy”,

new Integer(1));
 } else if
 …
 }
 public double timeAdvancefn(StateVars s) {
 if (phase == SC_READY) {
 return Infinity;
 } else if
 …
 }
};

The next example shows the coupled model description.
The DEVSIF example of STATION coupled model in
CSMA/CD is described as:

interface STATION
 input : {busy,free,collision,done}
 output : {send,is_busy}
end STATION
coupled model STATION
 component : { CGEN in GEN; CSEND in SEND;}
 external input coupling : {
 STATION.busy->CSEND.busy;
 STATION.free->CSEND.free;
 STATION.collision->CSEND.collision;
 STATION.done->CSEND.done;
 }
 external output coupling : {
 CSEND.send->STATION.send;
 CSEND.is_busy->STATION.is_busy;

}
internal coupling : {
 CGEN.job->CSEND.job;
 CSEND.re_try->CGEN.re_try;
 CSEND.done->CGEN.done;
}

end STATION

The RADESIF example and it’s generated code, DEVSim-
java model, of the above description is the following next:

Table 2: RADESIF of STATION in CSMA/CD

Model Name Table Name

SELECT'

model_id
0

3

child_id
0
1

3
3
id
3

Attributes

3
3
3

type_idid event_name

id
3
3
3
3

3
3

3
3
3

id

id

child_name

model_id
3
3
3
3
child_id
1
1
src_child_id

1

busy
free
collision
done
event_name
send
is_busy

3
id

free
collision

0
1

done
child_y
send
is_busy
src_child_y
job
retry
done

1
child_id
1
1

CSEND
child_x
busy
free

x
busy

1
1
model_id
3
3
dst_child_id
1
0
0

integer
integer
integer
integer
type_id
integer
integer
child_name
CGEN

collision
done
y
send

done

is_busy
dst_child_x
job
retry

X’

Y’

M’

EIC’

EOC’

IC’

STATION

class MSTATION extends CoupledModel{
 MSTATION() {
 AtomicModel CGEN = new MGEN();
 AtomicModel CSEND = new MSEND();
 /* Define input events set */
 addInports(1,”busy”);
 addInports(1,”free”);
 …
 /* Define output events set */
 addOutports(1,”send”);
 addOutports(1,”is_busy”);
 addChildren(CGEN);
 addChildren(CSEND);
 /* EIC , EOC , IC */
 addCoupling(this,”busy”,CSEND,”busy”);
 …
 addCoupling(CSEND,”send”,this,”send”);
 …
 addCoupling(CGEN,”job”,CSEND,”job”);
 …
 }
};

3.2 Simulation Result

Figure 4: CSMA/CD : Simulation Result for delay

The performance index of CSMA/CD model is delay, which
is defined as average time delay per average sending data
size (byte). Generally, the delay is an important perform-
ance index. The above figure shows such an example of
CSMA/CD modeled by the DEVSIF framework.

4 CONCLUSION

This paper proposes the DEVSIF framework of modeling
and simulation of discrete event systems. Within the frame-
work, DEVS models are converted into relational algebraic
models, each with modeling semantics preserved. The main
purpose of the DEVSIF methodology is to directly reuse of
DEVS models in various simulation environments. This
methodology exploits the DEVSIF language and its associ-
ated translator. A set of tools are developed for translation
of DEVS models in a database and automatic generation of
simulation models from the database. An example of per-
formance evaluation of a CSMA/CD model within the pro-
posed framework shows effectiveness of the framework

REFERENCES

Hong, G.P and T.G. Kim, 1996, “A Framework for Verify-
ing Discrete Event Models Within a DEVS-Based Sys-
tem Development Methodology”, TRANSACTION of The
Society of Computer Simulation, vol. 13, no.1, pp.19-34.

Tag Gon Kim, 1997, DEVSim++ User’s Manual: C++
Based Simulation with Hierarchical, Modular DEVS
Models, ftp://sim.kaist.ac.kr/pub/DEVSim++-1.0/, Sys-
tems Modeling Simulation Lab., KAIST, Taejon, Korea.

Silberschatz, A., Henry F. Korth, and S. Sudarshan, 1997,
Database System Concepts , McGraw-Hill Co mpanies,
Inc.

Zeigler, B. P. 1984, Multifacetted Modeling and Dicrete
Event Simulation , Orlando, FL, Academic Press.

Muchinick, Steven S. 1997, Advanced Compiler Design and
Implementation, Morgan Kaufmann Publis hers, Inc.

Thomas, C., H. Luckhoff and T.G. Kim, 1996,
“OpenDEVS: A Proposal for a Standarized DEVS Model
Exchange Format”, Proc. Of AIS’96 , pp.371-7.

IEEE standard 802.3, 1988, Supplements to Carrier Sense
Multiple Access with Collision Detection, Institute of
Electrical and Electronics Engineers Inc.

AUTHOR BIOGRAPHIES

Ki Jung Hong received the BS and MS degrees in Korea
Advanced Institute of Science and Technology, Taejon,
Korea in 1995 and 1997 respectively. His research interests
are the real-time system design, the rapid prototyping with
co-design framework, and the internet route arbiter.

Tag Gon Kim received the BSEE and MSEE degrees from
Pusan National University, Korea,

