Proceedings of AIS'2000, 2000, Tucson, Arizona, U.S.A. [J

DEVSF : RELATIONAL ALGEBRAIC
DEVSINTERMEDIATE FORMAT

Ki Jung Hong*, Tag Gon Kim*, and In Sup Kwon**

*Department of Electrical Engineering & Computer Science
KAIST
Tagjon, KOREA

** Pyungchang Computer & Communication Inc., Seoul, KOREA

KEYWORDS

DEVSIF (DEVS Intermediate Format), DEVS formalism,
DEVS Model Reuse, Relational Algebraic DEVS

ABSTRACT

The DEVS formalism has been widely used in modeling
and simulation of various discrete event systems such as
computer/communication systems. However, DEVS models
developed in one simulation environment may not be d-
rectly reused in the other environment. To be useful, a
means to represent DEVS models in an environment-
independent format needs to be devised. This paper pro-
poses a languageindependent DEVS modeling format,
called DEVSIF (DEVS Intermediate Format) whose seman-
tics is based on relational algebra. DEVSIF can be auto-
matically converted into DEVS models executable in vari-
ous DEVS simulation environments such as DEVSim++
and DEVSim-Java. An example of modeling/simulation
based on DEVSIF demonstrates effectiveness of the pro-
posed simulation method.

1 INTRODUCTION

The DEVS formalism has been widely used in modeling
and simulation of various discrete event systems such as
computer, communication, manufacturing systems. How-
ever, DEVS models developed in one simulation environ-
ment may not be directly reused in the other environment.
To be useful, ameans to represent DEV S modelsin an envi-
ronment-independent format needs to be devised.

This paper proposes the framework for the design and
simulation of the languageindependent DEVS model,
called DEV SIF whose semanticsis based on relational alge-

bra. DEVSIF is an extension of DEV S spec language (Hong
and Kim 1996), which is devised for the behavioral analysis
of the model with no timing information. A similar specifi-
cation language, called openDEV S, was defined in (Thomas
et.al. 1996) which has three characteristics: preservation of
the DEVS models information, object-oriented modeling,
and model type-check. The proposed DEV SIF specification
includes all these features. More importantly, a translator is
developed which converts a DEVSIF model to a relational
algebraic model for easy reuse and maintenance. The rela-
tional algebraic DEVSIF model, called the RADESIF model,
can be stored in a database or a file-system, then loaded,
searched, and modified in a simulation environment for re-
use. To automatically generate simulation code for a spe-
cific simulation environment, we devel oped code generators
for C++ DEVS models or Java DEV S models. Such simula-
tion models can be directly executable in the DEV Sim++ or
DEV SimJava simulationenvironment.

This paper is organized as follows. The DEVSIF
framework is introduced in more detail at section 2, a com-
plete example of the framework is presented at section 3,
and we conclude the paper in section 4.

2 DEVSIFBASED SIMULATION FRAMEWORK

Figure 1 shows a simulation framework based on the pro-
posed DEVSIF methodology. Within the framework, a
modeler uses DEV SIF specification for modeling o dis-
crete event systems. The specification is translated into a
relational algebraic DEVS model by a DEV SIF translator,

which then is stored in a relational database or a equiva-
lent file system. Now, the stored model can be reused in
the code generation phase to generate various simulation
models depending on the target simulation environment.
Moreover, the stored model can be directly simulated by

an appropriate interpreter designed by a general purpose

sbchi
Proceedings of AIS'2000, 2000, Tucson, Arizona, U.S.A.

language or a database language. Of course, suchinterpre-
tation sacrifices execution speed. The following sub-
sections discuss the theoretical basis for DEVSIF in con-
junction with the DEV S formalism and Relational Algebra.

DEVSIF Translator

RA DEVS
Model

C++

Java RA Model

C++ Code Java Code

i Simulation
iEngine

Simulation
Analysis

Figure 1: Simulation Methodology Using DEV SIF

2.1 DEVSFormalism: A Brief Introduction

The DEV'S Formalism specifies a model in a hierarchical,
modular form. A discrete event system consists of entities

whose dynamics are described as a set of procedure rules.
Such rules control the interactions among the communicat-
ing entities. The communicating entities and the procedure
rules can be decomposed into the smaller ones with the
nmodeling semantics. These decomposed components are
directly mapped to the atomic models, from which larger
ones are built. A basic model, called an atomic model, is not
further decomposed specification of the dynamic behavior
of acomponent. Formally, an atomic model AM is specified
as (Zeigler 1984) :

AM =< X,S,Y.d,,.d
X :input events set;
S:sequential state set;
Y :output events set;
dint : S® S:internal transition function;
d,.:Q " X ® S:external transition function;
| :S® Y :output function;
ta:S® Real :time advance function;
Q={(s 8 |sl S,0£efta(s)}
:total state of AM (e:elapsed time).

| ,ta>

ext?

The second form of the DEVS model, called a coupled
model (or coupled DEVYS), is a specification of the hierar-
chical model structure. It describes how to couple compo-
nent models together to form a new model. This new model

can be employed as another component in a larger coupled
model, thereby giving rise to the construction of complex
models in a hierarchical fashion. Formally, a coupled model
CM isdefined as (Zeigler 1984):

CM =< X, Y{M}, EIC,EOC,IC, SELECT >
X :input events set;
Y :output events set;
{M,}:DEV 'S components set;
EICi X" U X,
:external input coupling relation;
EOCIi UY Y
:external output coupling relation;
ICT UY U, X
:interna coupling relation;
SELECT : 2™} - E® {M,} : tie breaking selector.

A detail ed discussion about the DEV'S formalism and mod-
elingisfoundin (Zeigler 1984):

22 Relational Algebra

Relational algebra (RA) is based on set theory. Set is de-
scribed as{ ...}, and structure isdescribed by using <.... >.
After now on, we will describe a set of structured informa-
tionby using{< ...>}.

2.2.1 BasicOperator

There are six fundamental operations that serve to define
relational algebra (Silberschatz 1997). Let R and S be two
relations over sets of attributesR’ and S, respectively.
Let X | R. Then, thefollowing are basic operatorsin RA.
(1) Renamer : Given arelational-algebraexpression E,
the expressionr «(E) returnsthe result of expression
E under the name x.
(2) Selection s : sp(R) = {t[F()Utl R}
(3) ProjectionP : Px(R) = {t[X]|t] R}
(4)UnionE :RE S={t|t]T RUtI §
(5) Difference- : R-S={t|t1 RUtI S}
(6) Cartesian product” :R S={<rss>|ri RUsl S}

(7) Natural join <: Re<aS=0pesGumasnR 9
2.22 DEVSModelsin RA : RA DEVS

By using relation algebra, we can specify discrete event
models with preservation of the DEVS semantics. More
specifically, the algebra has an expressive power equivalent
to the DEV'S formalism in specification of both an atomic
DEVS model and a coupled DEV'S model. We now define
atomic and coupled DEV S modelsin relational algebra.

First, a relational algebraic atomic model AM’ is specified
as:

AM' = <Model’ X' S,Y',I',d'in, et | *st2°>
Model’ = <id, parent_id, model_name>

X' ={<d, event_name, type_id>;}

S ={<id, state_name, type id >}

Y ={<d, event_name, type_id >}

I" ={<d, func>i}

d'ie={<d, func, act_func>;}

d'e={<d, func, x, act_func>;}

|" ={«d, func,y, act_func>;}

ta = {<d, func, type, ta_val, ta_id>i}
ta'.typel {INFINITY, SIGMA, RANDOM }
func’ = {<id,func_id,op,el,e2>i}

func’.opl {PLUSASSIGN,...}

Next, a relational algebraic coupled model CM’ is specified
as:

CM' =<Model’ XY M’ EIC"EOC’,IC’ ,SELECT’ >
Model’ = <id, parent_id, model_name>

X' ={<d, event_name, type_id>;}

Y ={<d, event_name, type_id >}

M’ = {<d, child_id, model_id, child_name>}

EIC’ ={<id, model_id, x, child_id, child_x>j}

EOC’ = {<id,child_id, child_y,model_id, y>}

IC' ={<d, src_child_id, src_child_y,dst_child_id,
dst_child_x>}

SELECT ={<d, child_id, priority>}

To prove the equivalence between RA and DEVS for-
malisms in expressive power, isomorphism between two
formalisms needs to be established. A mapping from a RA
model into a DEVS model H satisfies with the following
equations:

AM = Ham(AM")
CM = Hew(CM?)

Conversely, aDEV S to RA mapping function, G, should be
satisfied with the following equations:

AM' = Gay(AM)
CM' = Gau(CM)

Since AM and AM' have asimilar structure, G and H is eas-
ily introduced as shown in a following example in terms of
the input event set X and the internal transition function dn::

Ham-X =P (event_nametype ig(AM’.Model’ <1 AM’.X")
Ham-Ant = qm_I(P ung(AM'.Model’ bt AM".d'jny))
Udn_I(P (act_ fung(AM’ .Model’ > AM".d'iyt)
dne | : S 2>S
Gav-X =Translator(AM)/X

Gam.dnt =Translator(AMY d

The translation procedure is a series of composition of the
function G.

2.3 DEVSIF : DEVS Intermediate For mat

The DEVS intermediate format is developed for the formal
expression of a model of a discrete event system. The for-
mal expression makes it easy at once to analyze, simulate
and execute the model.

2.3.1 Syntax and semanticsof DEVSIF

DEVSIF has three parts to describe the overall model,
which are interface atomic model, and coupled model . In-
terface part specifies a set of input/output events which is
common to a atomic model and a coupled model. A
DEVSIF model preserves model information in the DEVS
formalism and supports object-oriented feature. In DEVSIF,
an atomic model is described in an extended BNF format as:

i nterface nodel _nane
input : {.}
output : {.}

end nodel _nane

at onmi ¢ nodel nodel _nane [: parent_nodel _nane]
state variables :[var_nane in type_def;]*
initial condition : [expr]*;
internal transition : [(expr)=>{expr};]*
external transition :

[(expr)*input_event => {[expr;]+};]*
output function : [(expr)=>expr;]*
time advance : [(expr)=>expr]*
end nodel _nang

[: parent _nodel _nane]

In DEVSIF, a coupled model is described as:

i nterface nodel _nane
input : {.}
output : {.}

end nodel _name

coupl ed nodel nodel _nane [: parent _nodel _nane]
conmponent : {[child_name in nodel _nane;]+}
external input coupling :
{[nodel _name. i nput _event->
chil d_name. chil d_i nput _event;]*}
external output coupling :
{[chil d_nare. chil d_out put _event ->
nodel _nane. out put _event;]*}
internal coupling
{[src_chil d_nane. src_out put _event ->
dst _chi |l d_nane. dst _i nput _event;]*}
[select : [{[child_name;]*}]]
end nodel _nang

[: par ent _nodel _nane]

Since the DEVSIF model should preserve the same seman-
tics as the DEVS model, DEVSIF is considered to satisfy
this preservation. input, output, state variables, internal
transition, external transition, output function, time advance
implicate X, S Y, diy, e, |, ta respectively. Actually, Ini-
tial condition is defined to simulate the model, and is the

extended attribute of the DEV S formalism. To reduce errors
in model specification, the DEVSIF translator employs a
strong type-check and ill-structure check, thus supporting
stable DEV S model design.

Through the code-generation from RADESIF to
DEVSim++ and DEVSim-java, the model is freely com-
bined with adesired simulation environment.

3 A EXAMPLE: CSMA/CD

CSMA_CD

STATION2

STATION1

GEN2

In_l MEDIA

Figure 2: The overall structure of CSMA/CD

This section presents a example to show the complete
modeling and simulation process using the proposed
framework. The CSMA/CD protocol has the two major fa-
cilities for the collision detection and retransmission
mechanism. The overall CSMA/CD model consists of the
coupled model STATION and the atomic model MEDIA.
STATION means the network node, which is connected to
the physical network media and has two atomic models
GEN and SEND. GEN merely generates data when SEND
transmits data successfully or a collision occursin MEDIA.
SEND checks the status of the transmission line by sending
an inquiry message to MEDIA. If the transmission mediais
available, it sends data to MEDIA. SEND goes to the jam
ming state when it receives a collision message and tries to
resend the collided date after back-off time. MEDIA broad-
casts its status to STATIONS when it receives an inquiry
message. MEDIA broadcasts the collision message to the
STATIONs when more than one STATIONS try to send
data simultaneously (IEEE std 802.3).

31 Modeling of CSMA/CD

The whole CSMA/CD model has too many components
to be presented in this paper. So, simply, take a SEND
model, which is the core atomic model in CSMA/CD,
for the eplanation of the complete process. SEND
model shows the collision detection and retransmi ssion
mechanism in CSMA/CD. SENSE state means the colli-
sion detection.

busy \ \ lis, busy /

send

A

is_busy
?collision ?collision ?collisior 2collision
free | lsend ’ done
H lretry . M 7coHision
'
collision i
1
i 'done 2done | ’re o
done il
phase

Figure 3: DEVS Model of SEND in CSMA/CD

JAMMING state processes the retransmission regquirement.
Next, the DEVSIF model is presented for SEND model.

interface SEND

i nput {j ob, busy, free, col | i si on, done}
output : {send,is_busy, done,re_try}
end SEND

atom ¢ nodel SEND
state variables :
phase in { READY, SENSE, WAI T, SEND,
SENDI NG, DONE, JAMM NG} ;

initial condition : phase := READY;
internal transition :
(phase=SENSE) =>{phase : = WAI T; }
(phase=SEND) =>{ phase : = SENDI NG }

(phase=JAMM NG =>{ phase: =READY; }

(phase=DONE) =>{ phase: =READY; }
external transition :

(phase=READY) *j ob=>{ phase: =SENSE; }

out put f uncti on :
(phase=SENSE) =>i s_busy

time advance :
(phase=READY) =>i nfinity

end SEND

From figure 3, we first construct the atomic model
SEND such as the above DEVSIF description. Figure 3
shows the overall structure of the CSMA/CD model for
specifying the collision detection mechanism. The output of
the DEV SIF translator is shown as; Tablel
From Tablel, we can generate code for the specific simula-
tion engine such as DEVSimjava. DEVSim-java code-
generationisshown as:

i mport DEVSIim *;
class MBEND extends Atomi chbdel {

final int SC READY = 0;
final int SC SENSE = 1;
int phase;
MSEND() {

}s

Table 1: RADESIF of SEND in CSMA/CD

interface STATI ON

i nput {busy, free, col | i si on, done}
Model Name Table Name Attribute Name OUt pUt {Send' I S_bUSy}
- | id 1 event name | type id end STAT' O\l
, L e moger coupl ed nodel STATI ON
X : e ineger conmponent : { CGENin GEN, CSEND in SEND;}
1 done integer external input coupling : {
, g L_ceemame [tpeid STATI ON. busy- >CSEND. busy;
Y 1 is_busy integer STATI ON. f r ee- >CSEND. f r ee;
i ety oot STATI ON. col | i si on- >CSEND. col | i si on;
s’ g [seename] tpe id STATI ON. done- >CSEND. done;
] id 1 func }
SEND| | — = o external output coupling : {
dint 1 3 6 CSEND. send- >STATI ON. send;
id | func | X' I act_func CSEND. i S_bUSy- >SSTATI ONL i S_busy;
d ’ 1 27 job 30
et d TR ' [_aotfunc internal coupling : {
o - L - . CGEN. j ob- >CSEND. j ob:
ta’ S N S R T W A CSEND. re_try->0CEN re_try;
CSEND. done- >CCEN. done;
id [funcid | op | el 1 e2
1 0 ASSIGN 1 2 }
func | i - = 1 end STATI ON
/* Define input events set */ The RADESIF example and it's generated code, DEV Sim-
addl nports(1,”job"); javamodel, of the above description isthe following next:
addl nports(1, "busy”);
/"; Define output events set */ Table 2. RADESIF of STATION in CSMA/CD
addQut ports(1,”send’) ;
addQut ports(1,”i s_busy”); MockiNeme | TabeName Atribtes
id | evert name | type id
< L
/* operation of initial conditiln */ X’ 3 “ﬁi :ﬁ
phase = SC_READY; 3 colision integer
} - 3 | doe — e
. . id eent name type_id
public void extTransfn(StateVars s, Y’ 3 sed nieger
doubl e e, Message nessage) { =2 I miuuisﬁwmode«u I if%m
String ev = message. getPort(); M’ 3 0 0 CGEN
i f((phase==SC_READ 3 1 1 CSEND
&&(ev. equal s(“job”)) { STATION i: I mogeud| x| d1i|](-jiid | chid x
phase = SC_SENSE EIC’ 3 3 ufrese/ 1 uﬁ:
} elseif 3 3 colision 1 colision
3 3 dore 1 o
id] childid [chidy | modelidl E;ne
EOC’ 3 serd send
public void intTransfn(StateVar s) { Z I chlldldl bbhij/ = hld g d:g;la/
if (phase == SC SENSE) { , T T S
phase = SC WAI T; IC 3 1 rjeotrv o rety
H 3 1 dore 0 d
} else if SELECT* chid_name =
public void outputfn(Statevars s, cl ass MBSTATI ON ext ends Coupl edvbdel {
Messages message) { MBTATION() { _ .
if (phase == SC SENSE) { At omi cModel OGEN = new MEEN() ;
nmessage. set Port Val (“i s_busy”, Aiom c_l\/bde_l CSEND = new NBEL\ID() !
new | nteger(1)): /* Define input events set */
} elseif addl nports(1, "busy”);
addl nports(1, "free”);
publ i ¢ doubl e ti meAdvancefn(StateVars s) { /;dDefi ne out put e\(’ﬁnFs set */
if (phase == SC_READY) addQut ports(1,”send") ;
return Infi n_ity' addQut ports(1,”is_busy”);
} else if ' addChi | dren(CGEN) ;
addChi | dren(CSEND) ;
} /* EIC, ECC, IC*/
addCoupl i ng(this,”busy”, CSEND, ” busy”);

addCoupl i ng(CSEND, "send”, thi s,” send”);

Thenext example shows the coupled model descri ption.
The DEVSIF example of STATION coupled model in

addCoupl i ng(CGEN,” j ob” , CSEND, "j ob”) :
CSMA/CD isdescribed as:

3.2 Simulation Result

[= - To S

[t

0

530] 5000 200aaa FRLO0D] 3000

Figure 4: CSMA/CD : Simulation Result for delay

The performance index of CSMA/CD model is delay, which
is defined as average time delay per average sending data
size (byte). Generally, the delay is an important perform-
ance index. The above figure shows such an example of
CSMA/CD modeled by the DEV SIF framework.

4 CONCLUSION

This paper proposes the DEVSIF framework of modeling
and simulation of discrete event systems. Within the frame-
work, DEV'S models are converted into relational algebraic
models, each with modeling semantics preserved. The main
purpose of the DEV SIF methodology is to directly reuse of
DEVS models in various simulation environments. This
methodology exploits the DEV SIF language and its associ-
ated translator. A set of tools are developed for translation
of DEVS models in a database and automatic generation of
simulation modelsfrom the database. An example of per-
formance evaluation of a CSMA/CD model within the pro-
posed framework shows effectiveness of the framework

REFERENCES

Hong, G.P and T.G. Kim, 1996, “A Framework for Verify-
ing Discrete Event Models Within a DEVS-Based Sys-
tem Development Methodology”, TRANSACTION of The
Society of Computer Smulation, vol. 13, no.1, pp.19-34.

Tag Gon Kim, 1997, DEVSnm++ User’'s Manual: C++
Based Smulation with Hierarchical, Modular DEVS
Models, ftp://sim.kaist.ac.kr/pub/DEVSim++1.0/, Sys-
tems Modeling Simulation Lab., KAIST, Tagjon, Korea.

Silberschatz, A., Henry F. Korth, and S. Sudarshan, 1997,
Database System Concepts, McGrawHill Companies,
Inc.

Zeigler, B. P. 1984, Multifacetted Modeling and Dicrete
Event Smulation, Orlando, FL, Academic Press.

Muchinick, Steven S. 1997, Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers, Inc.

Thomas, C., H. Luckhoff and T.G. Kim, 1996,
“OpenDEVS: A Proposal for a Standarized DEV'S Model
ExchangeFormat”, Proc. Of AIS'96 , pp.371-7.

|IEEE standard 802.3, 1988, Supplements to Carrier Sense
Multiple Access with Collision Detection, Institute of
Electrical and Electronics Engineers Inc.

AUTHOR BIOGRAPHIES

Ki Jung Hong received the BS and MS degrees in Korea
Advanced Ingtitute of Science and Technology, Tagjon,
Koreain 1995 and 1997 respectively. His research interests
are the real-time system design, the rapid prototyping with
co-design framework, and the internet route arbiter.

Tag Gon Kim received the BSEE and M SEE degrees from
Pusan National University, Korea,

