
Interactive Visibility Culling in Complex Environments using
Occlusion-Switches

Naga K. Govindaraju Avneesh Sud Sung-Eui Yoon Dinesh Manocha
University of North Carolina at Chapel Hill

{naga,sud,sungeui,dm}@cs.unc.edu
http://gamma.cs.unc.edu/switch

Abstract: We present occlusion-switches for interactive
visibility culling in complex 3D environments. An occlusion-
switch consists of two GPUs (graphics processing units) and
each GPU is used to either compute an occlusion representa-
tion or cull away primitives not visible from the current view-
point. Moreover, we switch the roles of each GPU between
successive frames. The visible primitives are rendered in par-
allel on a third GPU. We utilize frame-to-frame coherence to
lower the communication overhead between different GPUs
and improve the overall performance. The overall visibility
culling algorithm is conservative up to image-space preci-
sion. This algorithm has been combined with levels-of-detail
and implemented on three networked PCs, each consisting
of a single GPU. We highlight its performance on complex
environments composed of tens of millions of triangles. In
practice, it is able to render these environments at interac-
tive rates with little loss in image quality.
CR Categories and Subject Descriptors: I.3.5 [Com-
puter Graphics]: Computational Geometry and Object
Modeling
Keywords: Interactive display, multiple GPUs, conserva-
tive occlusion culling, parallel rendering, levels-of-detail

1 Introduction
Interactive display and walkthrough of large geometric en-
vironments currently pushes the limits of graphics technol-
ogy. Environments composed of tens of millions of primitives
are common in applications such as simulation-based design
of large man-made structures, architectural visualization, or
urban simulation. In spite of the rapid progress in the perfor-
mance of graphics processing units (GPUs), it is not possible
to render such complex datasets at interactive rates, i.e., 20
frames a second or more, on current graphics systems.

Many rendering algorithms that attempt to minimize the
number of primitives sent to the graphics processor during
each frame have been developed. These are based on visibil-
ity culling, level-of-detail modeling, sample-based represen-
tations, etc. Their goal is to not render any primitives that
the user will not ultimately see. These techniques have been
extensively studied in computer graphics and related areas.

In this paper, we primarily deal with occlusion culling.
Our goal is to cull away a subset of the primitives that are

not visible from the current viewpoint. Occlusion culling
has been well-studied in the literature and the current al-
gorithms can be classified into different categories. Some
are specific to certain types of models, such as architec-
tural or urban environments. Others require extensive pre-
processing of visibility, or the presence of large, easily identi-
fiable occluders in the scene, and may not work well for com-
plex environments. The most general algorithms use some
combination of object-space hierarchies and image-space oc-
clusion representation. These algorithms can be further clas-
sified into three categories:

1. Specialized Architectures: Some specialized hard-
ware architectures have been proposed for occlusion
culling [Greene et al. 1993; Greene 2001].

2. Readbacks and Software Culling: These algo-
rithms read back the frame-buffer or depth-buffer, build
a hierarchy, and perform occlusion culling in software
[Greene et al. 1993; Zhang et al. 1997; Baxter et al.
2002]. However, readbacks can be expensive (e.g. 50
milliseconds to read back the 1K× 1K depth-buffer on
a Dell 530 Workstation with NVIDIA GeForce 4 card).

3. Utilize Hardware Occlusion Queries: Many
vendors have been supporting image-space occlusion
queries. However, their use can impose an additional
burden on the graphics pipeline and can sometimes re-
sult in reduced throughput and frame rate [Klowoski
and Silva 2001].

Overall, occlusion culling is considered quite expensive and
hard to achieve in real-time for complex environments.

Main Contribution: We present a novel visibility culling
algorithm based on occlusion-switches. An occlusion-switch
consists of two graphics processing units (GPUs). During
each frame, one of the GPUs renders the occluders and com-
putes an occlusion representation, while the second GPU
performs culling in parallel using an image-space occlusion
query. In order to avoid any depth-buffer readbacks and
perform significant occlusion culling, the two GPUs switch
their roles between successive frames. The visible primitives
computed by the occlusion-switch are rendered in parallel
on a third GPU. The algorithm utilizes frame-to-frame co-
herence to compute occluders for each frame as well as lower
the bandwidth or communication overhead between different
GPUs. We have combined the occlusion-culling algorithm
with static levels-of-detail (LODs) and used it for interactive
walkthrough of complex environments. Our current imple-
mentation runs on three networked PCs, each consisting of a
NVIDIA GeForce 4 graphics processor, and connected using
Ethernet. We highlight the performance of our algorithm
on three complex environments: a Powerplant model with
more than 13 million triangles, a Double Eagle tanker with
more than 82 million triangles and a part of a Boeing 777

airplane with more than 20 million triangles. Our system,
SWITCH, is able to render these models at 10 − 20 frames
per second with little loss in image quality. However, our
algorithm based on occlusion-switches introduces one frame
of latency into the system.

As compared to earlier approaches, our overall occlusion
culling and rendering algorithm offers the following advan-
tages:

1. Generality: It makes no assumption about the scene
and is applicable to all complex environments.

2. Conservative Occlusion Culling: The algorithm
performs conservative occlusion up to screen-space im-
age precision.

3. Low Bandwidth: The algorithm involves no depth-
buffer readback from the graphics card. The bandwidth
requirements between different GPUs varies as a func-
tion of the changes in the visible primitives between
successive frames (e.g. a few kilobytes per frame).

4. Significant Occlusion Culling: As compared to ear-
lier approaches, our algorithm culls away a higher per-
centage of primitives not visible from the current view-
point.

5. Practicality: Our algorithm can be implemented on
commodity hardware and only assumes hardware sup-
port for the occlusion query, which is becoming widely
available. Furthermore, we obtain 2− 3 times improve-
ment in frame rate as compared to earlier algorithms.

Organization: The rest of the paper is organized in the
following manner. We give a brief overview of previous work
on parallel rendering and occlusion culling in Section 2. Sec-
tion 3 presents occlusion-switches and analyzes the band-
width requirements. In Section 4, we combine our occlusion
culling algorithm with pre-computed levels-of-detail and use
it to render large environments. We describe its implemen-
tation and highlight its performance on three complex envi-
ronments in Section 5. Finally, we highlight areas for future
research in Section 6.

2 Related Work
In this section, we give a brief overview of previous work on
occlusion culling and parallel rendering.

2.1 Occlusion Culling

The problem of computing portions of the scene visible from
a given viewpoint has been well-studied in computer graph-
ics and computational geometry. A recent survey of differ-
ent algorithms is given in [Cohen-Or et al. 2001]. In this
section, we give a brief overview of occlusion culling algo-
rithms. These algorithms aim to cull away a subset of the
primitives that are occluded by other primitives and, there-
fore, are not visible from the current viewpoint.

Many occlusion culling algorithms have been designed
for specialized environments, including architectural models
based on cells and portals [Airey et al. 1990; Teller 1992]
and urban datasets composed of large occluders [Coorg and
Teller 1997; Hudson et al. 1997; Schaufler et al. 2000; Wonka
et al. 2000; Wonka et al. 2001]. However, they may not
be able to obtain significant culling on large environments
composed of a number of small occluders.

Algorithms for general environments can be broadly clas-
sified based on whether they are conservative or approxi-
mate, whether they use object space or image space hierar-
chies, or whether they compute visibility from a point or a
region. The conservative algorithms compute the potentially

visible set (PVS) that includes all the visible primitives, plus
a small number of potentially occluded primitives [Coorg and
Teller 1997; Greene et al. 1993; Hudson et al. 1997; Klowoski
and Silva 2001; Zhang et al. 1997]. On the other hand, the
approximate algorithms include most of the visible objects
but may also cull away some of the visible objects [Bartz
et al. 1999; Klowoski and Silva 2000; Zhang et al. 1997].
Object space algorithms make use of spatial partitioning or
bounding volume hierarchies; however, performing “occluder
fusion” on scenes composed of small occluders with object
space methods is difficult. Image space algorithms including
the hierarchical Z-buffer (HZB) [Greene et al. 1993; Greene
2001] or hierarchical occlusion maps (HOM) [Zhang et al.
1997] are generally more capable of capturing occluder fu-
sion.

It is widely believed that none of the current algorithms
can compute the PVS at interactive rates for complex envi-
ronments on current graphics systems [El-Sana et al. 2001].
Some of the recent approaches are based on region-based
visibility computation, hardware-based visibility queries and
multiple graphics pipelines in parallel.

2.2 Region-based Visibility Algorithms

These algorithms pre-compute visibility for a region of space
to reduce the runtime overhead [Durand et al. 2000; Schau-
fler et al. 2000; Wonka et al. 2000]. Most of them work well
for scenes with large or convex occluders. Nevertheless, a
trade-off occurs between the quality of the PVS estimation
for a region and the memory overhead. These algorithms
may be extremely conservative or unable to obtain signifi-
cant culling on scenes composed of small occluders.

2.3 Hardware Visibility Queries

A number of image-space visibility queries have been added
by manufacturers to their graphics systems to accelerate vis-
ibility computations. These include the HP occlusion culling
extensions, item buffer techniques, ATI’s HyperZ extensions
etc. [Bartz et al. 1999; Klowoski and Silva 2001; Greene
2001; Meissner et al. 2002; Hillesl et al. 2002]. All these al-
gorithms use the GPU to perform occlusion queries as well
as render the visible geometry. As a result, only a fraction of
a frame time is available for rasterizing the visible geometry
and it is non-trivial to divide the time between perform-
ing occlusion queries and rendering the visible primitives. If
a scene has no occluded primitives, this approach will slow
down the overall performance. Moreover, the effectiveness of
these queries varies based on the model and the underlying
hardware.

2.4 Multiple Graphics Pipelines

The use of an additional graphics system as a visibility server
has been used by [Wonka et al. 2001; Baxter et al. 2002].
The approach presented by Wonka et al. [2001] computes
the PVS for a region at runtime in parallel with the main
rendering pipeline and works well for urban environments.
However, it uses the occluder shrinking algorithm [Wonka
et al. 2000] to compute the region-based visibility, which
works well only if the occluders are large and volumetric
in nature. The method also makes assumptions about the
user’s motion.

Baxter et al. [2002] used a two-pipeline based occlusion
culling algorithm for interactive walkthrough of complex 3D
environments. The resulting system, GigaWalk, uses a vari-
ation of two-pass HZB algorithm that reads back the depth
buffer and computes the hierarchy in software. GigaWalk
has been implemented on a SGI Reality Monster and uses
two Infinite Reality pipelines and three CPUs. In Section
5, we compare the performance of our algorithm with Gi-
gaWalk.

2.5 Parallel Rendering

A number of parallel algorithms have been proposed in the
literature to render large datasets on shared-memory sys-
tems or clusters of PCs. These algorithms include tech-
niques to assign different parts of the screen to different
PCs [Samanta et al. 2000]. Other cluster-based approaches
include WireGL, which allows a single serial application to
drive a tiled display over a network [Humphreys et al. 2001]
as well as parallel rendering with k-way replication [Samanta
et al. 2001]. The performance of these algorithms varies with
different environments as well as the underlying hardware.
Most of these approaches are application independent and
complementary to our parallel occlusion algorithm that uses
a cluster of three PCs for interactive display.

Parallel algorithms have also been proposed for interac-
tive ray-tracing of volumetric and geometric models on a
shared-memory multi-processor system [Parker et al. 1999].
A fast algorithm for distributed ray-tracing of highly com-
plex models has been described in [Wald et al. 2001].

3 Interactive Occlusion Culling
In this section, we present occlusion-switches and use them
for visibility culling. The resulting algorithm uses multiple
graphics processing units (GPUs) with image-space occlu-
sion query.

3.1 Occlusion Representation and Culling

An occlusion culling algorithm has three main components.
These include:

1. Compute a set of occluders that correspond to an ap-
proximation of the visible geometry.

2. Compute an occlusion representation.

3. Use the occlusion representation to cull away primitives
that are not visible.

Different culling algorithms perform these steps either ex-
plicitly or implicitly. We use an image-based occlusion rep-
resentation because it is able to perform “occluder fusion”
on possibly disjoint occluders [Zhang et al. 1997]. Some of
the well-known image-based hierarchical representations in-
clude HZB [Greene et al. 1993] and HOM [Zhang et al. 1997].
However, the current GPUs do not support these hierarchies
in the hardware. Many two-pass occlusion culling algorithms
rasterize the occluders, read back the frame-buffer or depth-
buffer, and build the hierarchies in software [Baxter et al.
2002; Greene et al. 1993; Zhang et al. 1997].

However, reading back a high resolution frame-buffer or
depth-buffer can be slow on PC architectures. Moreover,
constructing the hierarchy in software incurs additional over-
head.

We utilize the hardware-based occlusion queries
that are becoming common on current GPUs. These
queries scan-convert the specified primitives (e.g.
bounding boxes) to check whether the depth of any
pixels changes. Different queries vary in their func-
tionality. Some of the well-known occlusion queries
based on the OpenGL culling extension include the
HP Occlusion Query (http://oss.sgi.com/projects/
ogl-sample/registry/HP/occlusion_test.txt) and
the NVIDIA OpenGL extension GL NV occlusion query
(http://oss.sgi.com/projects/ogl-sample/registry/
NV/occlusion_query.txt). These queries can sometime
stall the pipelines while waiting for the results. As a result,
we use a specific GPU during each frame to perform only
these queries.

Our algorithm uses the visible geometry from frame i
as an approximation to the occluders for frame i + 1. The

Figure 1: System Architecture: Each color represents a separate
GPU. Note that GPU1 and GPU2 switch their roles each frame
with one performing hardware culling and other rendering occlud-
ers. GPU3 is used as a display client.

occlusion representation implicitly corresponds to the depth
buffer after rasterizing all these occluders. The occlusion
tests are performed using hardware-based occlusion queries.
The occlusion switches are used to compute the occlusion
representation and perform these queries.

3.2 Occlusion-Switch

An occlusion-switch takes the camera for frame i+1 as input
and transmits the potential visible set and camera for frame
i as the output to the renderer. The occlusion-switch is com-
posed of two GPUs, which perform the following functions,
each running on a separate GPU in parallel:

• Compute Occlusion Representation (OR): Ren-
der the occluders to compute the occlusion representa-
tion. The occluders for frame i + 1 correspond to the
visible primitives from frame i.

• Hardware Culling (HC): Enable the occlusion query
state on the GPU and render the bounding boxes cor-
responding to the scene geometry. Use the image-
space occlusion query to determine the visibility of each
bounding box and compute the PVS. Moreover, we dis-
able modifications to the depth buffer while performing
these queries.

During a frame, each GPU in the occlusion-switch per-
forms either OR or HC and at the end of the frame the
two GPUs inter-change their function. The depth buffer
computed by OR during the previous frame is used by HC
to perform the occlusion queries during the current frame.
Moreover, the visible nodes computed by HC correspond to
the PVS. The PVS is rendered in parallel on a third GPU
and is used by the OR for the next frame to compute the
occlusion representation. The architecture of the overall sys-
tem is shown in Fig. 1. The overall occlusion algorithm
involves no depth buffer readbacks from the GPUs.

3.3 Culling Algorithm

The occlusion culling algorithm uses an occlusion-switch to
compute the PVS and renders them in parallel on a separate
GPU. Let GPU1 and GPU2 constitute the occlusion-switch
and GPU3 is used to render the visible primitives (RVG). In
an occlusion-switch, the GPU performing HC requires OR
for occlusion tests. We circumvent the problem of transmit-
ting occlusion representation from the GPU generating OR
to GPU performing hardware cull tests by “switching” their
roles between successive frames as shown in Fig. 1. For

example, GPU1 is performing HC for frame i and sending
visible nodes to GPU2 (to be used to compute OR for frame
i+1) and GPU3 (to render visible geometry for frame i). For
frame i + 1, GPU2 has previously computed OR for frame
i + 1. As a result, GPU2 performs HC, GPU1 generates the
OR for frame i+2 and GPU3 displays the visible primitives.

3.4 Incremental Transmission

The HC process in the occlusion culling algorithm computes
the PVS for each frame and sends it to the OR and RVG.
To minimize the communication overhead, we exploit frame-
to-frame coherence in the list of visible primitives. All the
GPUs keep track of the visible nodes in the previous frame
and the GPU performing HC uses this list and only transmits
the changes to the other two GPUs. The GPU performing
HC sends the visible nodes to OR and RVG, and therefore, it
has information related to the visible set on HC. Moreover,
the other two processes, OR and RVG, maintain the visible
set as they receive visible nodes from HC. To reduce the
communication bandwidth, we transmit only the difference
in the visible sets for the current and previous frames. Let
Vi represent the potential visible set for frame i and δj,k =
Vj − Vk be the difference of two sets. During frame i, HC
transmits δi,i−1 and δi−1,i to OR and RVG, respectively.
We reconstruct Vi at OR and RVG based on the following
formulation:

Vi = (Vi−1 − δi−1,i) ∪ δi,i−1.

In most interactive applications, we expect that the size of
the set δi−1,i ∪ δi,i−1 is much smaller than that of Vi.

3.5 Bandwidth Requirements

In this section, we discuss the bandwidth requirements of our
algorithm for a distributed implementation on three different
graphics systems (PCs). Each graphics system consists of a
single GPU and they are connected using a network. In
particular, we map each node of the scene by the same node
identifier across the three different graphics systems. We
transmit this integer node identifier across the network from
the GPU performing HC to each of the GPUs performing
OR and RVG. This procedure is more efficient than sending
all the triangles that correspond to the node as it requires
relatively smaller bandwidth per visible node (i.e. 4 bytes
per node). So, if the number of visible nodes is n, then GPU
performing HC must send 4n bytes per frame to each OR and
RVG client. Here n refers to the number of visible objects
and not the visible polygons. We can reduce the header
overhead by sending multiple integers in a packet. However,
this process can introduce some extra latency in the pipeline
due to buffering. Moreover, the size of camera parameters
is 72 bytes; consequently, the bandwidth requirement per
frame is 8n + nh/b + 3(72 + h) bytes, where h is the size of
header in bytes and buffer size b is the number of node-ids
in a packet. If the frame rate is f frames per second, the
total bandwidth required is 8nf + nhf/b + 216f + 3hf . If
we send visible nodes by incremental transmission, then n is
equal to the size of δi,i−1 ∪ δi−1,i.

4 Interactive Display
In this section, we present our overall rendering algorithm for
interactive display of large environments. We use the occlu-
sion culling algorithm described above and combines it with
pre-computed static levels-of-detail (LODs) to render large
environments. We represent our environment using a scene
graph, as described in [Erikson et al. 2001]. We describe
the scene graph representation and the occlusion culling al-
gorithm. We also highlight many optimizations used to im-
prove the overall performance.

4.1 Scene Graph

Our rendering algorithm uses a scene graph representation
along with pre-computed static LODs. Each node in the
scene graph stores references to its children as well as its
parent. In addition, we store the bounding box of each node
in the scene graph, which is used for view frustum culling and
occlusion queries. This bounding box may correspond to an
axis-aligned bounding box (AABB) or an oriented bounding
box (OBB). We pre-compute the LODs for each node in the
scene graph along with hierarchical levels-of-detail (HLODs)
for each intermediate node in the scene graph [Erikson et al.
2001]. Moreover, each LOD and HLOD is represented as a
separate node in the scene graph and we associate an er-
ror deviation metric that approximately corresponds to the
Hausdorff distance between the original model and the sim-
plified object. At runtime, we project this error metric to
the screen space and compute the maximum deviation in the
silhouette of the original object and its corresponding LOD
or HLOD. Our rendering algorithm uses an upper bound on
the maximum silhouette deviation error and selects the low-
est resolution LOD or HLOD that satisfies the error bound.

HardwareCull(Camera *cam)

1 queue = root of scene graph

2 disable color mask and depth mask

3 while(queue is not empty)

4 do

5 node = pop(queue)

6 visible= OcclusionTest(node)

7 if(visible)

8 if(error(node) < pixels of error)

9 Send node to OR and RVG

10 else

11 push children of node to end of queue

12 endif

13 end if

14 end do

ALGORITHM 4.1: Pseudo code for Hardware cull (HC). Oc-
clusionTest renders the bounding box and returns either the number
of visible pixels or a boolean depending upon the implementation of
query. The function error(node) returns the screen space projection
error of the node. Note that if the occlusion test returns the num-
ber of visible pixels, we could use it to compute the level at which
it must be rendered.

4.2 Culling Algorithm

At runtime, we traverse the scene graph and cull away por-
tions of geometry that are not visible. The visibility of a
node is computed by rendering its bounding box against the
occlusion representation and querying if it is visible or not.
Testing the visibility of a bounding box is a fast and con-
servative way to reject portions of the scene that are not
visible. If the bounding box of the node is visible, we test
whether any of the LODs or HLODs associated with that
node meet the pixel-deviation error-bound. If one of the
LODs or HLODs is selected, we include that node in the
PVS and send it to the GPU performing OR for the next
frame as well as to the GPU performing RVG for the cur-
rent frame. If the node is visible and none of the HLODs
associated with it satisfy the simplification error bound, we
traverse down the scene graph and apply the procedure re-
cursively on each node. On the other hand, if the bounding
box of the node is not visible, we do not render that node
or any node in the sub-tree rooted at the current node.

The pseudocode for the algorithm is described in Algo-
rithm 4.1. The image-space occlusion query is used to per-
form view frustum culling as well as occlusion culling on the

bounding volume.

4.3 Occluder Representation Generation

At runtime, if we are generating OR for frame i + 1, we
receive camera i + 1 from RVG and set its parameters. We
also clear its depth and color buffer. While OR receives
nodes from GPU performing HC, we render them at the
appropriate level of detail. An end-of-frame identifier is sent
from HC to notify that no more nodes need to be rendered
for this frame.

4.4 Occlusion-Switch Algorithm

We now describe the algorithm for the “switching” mecha-
nism described in Section 3. The two GPU’s involved in the
occlusion-switch toggle or interchange their roles of perform-
ing HC and generating OR. We use the algorithms described
in sections 4.2 and 4.3 to perform HC and OR, respectively.
The pseudocode for the resulting algorithm is shown in Al-
gorithm 4.2.

1 if GPU is generating OR
2 camera=grabLatestCam()
3 end if
4 Initialize the colormask and depth mask to true.
5 if GPU is performing HC
6 Send Camera to RVG
7 else /*GPU needs to render occluders */
8 Clear depth buffer
9 end if
10 Set the camera parameters
11 if GPU is performing HC
12 HardwareCull(camera)
13 Send end of frame to OR and RVG
14 else /* Render occluders */
15 int id= end of frame +1 ;
16 while(id!=end of frame)
17 do
18 id=receive node from HC
19 render(id, camera);
20 end do
21 end if
22 if GPU is performing HC
23 do OR for next frame
24 else
25 do HC for next frame
26 end if

ALGORITHM 4.2: The main algorithm for the implementa-
tion of occlusion-switch. Note that we send the camera parameters
to the RVG client at the beginning of HC (on line 6) in order to
reduce latency.

4.5 Render Visible Geometry

The display client, RVG, receives the camera for the current
frame from HC. In addition, it receives the visible nodes in
the scene graph and renders them at the appropriate level-
of-detail. Moreover, the display client transmits the camera
information to the GPU’s involved in occlusion-switch based
on user interaction. The colormask and depthmask are set
to true during initialization.

4.6 Incremental Traversal and Front Tracking

The traversal of scene graph defines a cut that can be par-
titioned into a visible front and an occluded front.

• Visible Front: Visible front is composed of all the
visible nodes in the cut. In addition, each node belong-
ing to the visible front satisfies the screen space error
metric while its parent does not.

• Occluded Front: Occluded front is composed of all
the occluded nodes in the cut. Also, note that an oc-

Figure 2: System Overview: Each color represents a separate GPU
with GPU1 and GPU2 forming a switch and GPU3 as the display
client. Each of GPU1 and GPU2 has a camera-receiver thread and
receives camera parameters when the client transmits them due to
user’s motion and stores them in a camera buffer of size one. The
GPU performing OR grabs the latest camera from this thread as the
camera position for the next frame. Notice that in this design, the
GPU performing HC doesn’t have any latency in terms of receiving
the camera parameters.

cluded node may not satisfy the screen space error met-
ric.

We reduce the communication overhead by keeping track of
the visible and occluded fronts from the previous frame at
each GPU. Each node in the front is assigned one of the
following states:

• Over-refined: Both the node and its parent satisfy
the silhouette deviation metric in screen space.

• Refined: The node satisfies the silhouette deviation
metric while the parent does not.

• Under-refined: The node does not satisfy the silhou-
ette deviation metric.

Each node in the front is updated depending upon its state.
If the node is Over-refined, we traverse up the scene graph to
reach a parent node which is Refined. If the node is Under-
refined, we traverse down the scene graph generating a set of
Refined children nodes. At the beginning of each frame, both
OR and RVG update the state of each node in the visible
front before rendering it.

We also render each node in δi,i−1 at OR and RVG. At
the end of the frame, the visible nodes for the current frame
are reconstructed as described in Section 3.4. The update
of the state of each node is important for maintaining the
conservative nature of the algorithm.

At the GPU performing HC, we also maintain the oc-
cluded front in addition to the visible front of previous frame.
This enables us to compute δi,i−1 efficiently by performing
culling on the occluded front before the visible front. A
node in the occluded front is refined only if it is in the Over-
refined state. Each of the occluded fronts and visible fronts
is refined before performing culling algorithm on the refined
fronts. Moreover, δi,i−1 is a part of the refined occluded
front.

4.7 Optimizations

We use a number of optimizations to improve the perfor-
mance of our algorithms, including:

• Multiple Occlusion Tests: Our culling al-
gorithm performs multiple occlusion tests using
GL NV occlusion query; this avoids immediate read-
back of occlusion identifiers, which can stall the
pipeline. More details on implementation are described
in section 4.7.1.

• Visibility for LOD Selection: We utilize the
number of visible pixels of geometry queried using
GL NV occlusion query in selecting the appropriate
LOD. Details are discussed in section 4.7.2.

4.7.1 Multiple Occlusion Tests

Our rendering algorithm performs several optimiza-
tions to improve the overall performance. The
GL NV occlusion query on NVIDIA GeForce 3 and
GeForce 4 cards allows multiple occlusion queries at a
time and query the results at a later time. We traverse
the scene graph in a breadth first manner and perform all
possible occlusion queries for the nodes at a given level.
This traversal results in an improved performance. Note
that certain nodes may be occluded at a level and are not
tested for visibility. After that we query the results and
compute the visibility of each node. Let Li be the list of
nodes at level i which are being tested for visibility as well
as pixel-deviation error. We generate the list Li+1 that
will be tested at level i + 1 by pushing the children of a
node n ∈ Li only if its bounding box is visible, and it does
not satisfy the pixel-deviation error criterion. We use an
occlusion identifier for each node in the scene graph and
exploit the parallelism available in GL NV occlusion query
by performing multiple occlusion queries at each level.

4.7.2 Visibility for LOD Selection

The LODs in a scene graph are associated with a screen
space projection error. We traverse the scene graph until
each LOD satisfies the pixels-of-error metric. However, this
approach can be too conservative if the object is mostly oc-
cluded. We therefore utilize the visibility information in se-
lecting an appropriate LOD or HLOD of the object.

The number of visible pixels for a bounding box of a node
provides an upper bound on the number of visible pixels for
its geometry. The GL NV occlusion query also returns the
number of pixels visible when the geometry is rendered. We
compute the visibility of a node by rendering the bounding
box of the node and the query returns the number of visible
pixels corresponding to the box. If the number of visible
pixels is less than the pixels-of-error specified by a bound,
we do not traverse the scene graph any further at that node.
This additional optimization is very useful if only a very
small portion of the bounding box is visible, and the node
has a very high screen space projection error associated with
it.

4.8 Design Issues

Latency and reliability are two key components considered
in the design of our overall rendering system. In addition to
one frame of latency introduced by an occlusion-switch, our
algorithm introduces additional latency due to the transfer
of camera parameters and visible node identifiers across the
network. We also require reliable transfer of data among
different GPUs to ensure the correctness of our approach.

4.8.1 System Latency

A key component of any parallel algorithm implemented us-
ing a cluster of PCs is the network latency introduced in
terms of transmitting the results from one PC to another
during each frame. The performance of our system is depen-
dent on the latency involved in receiving the camera param-
eters by the GPUs involved in occlusion-switch. In addition,

Figure 3: Comparison of number of nodes transmitted with and
without incremental transmission (described in section 4.6) for
a sample path on Double Eagle Tanker model. Using incremen-
tal transmission, we observe an average reduction of 93% in the
number of nodes transmitted between the GPUs.

there is latency in terms of sending the camera parameters
from the GPU performing HC to the GPU performing RVG.
Moreover, latency is also introduced in sending the visible
nodes across the network to RVG and OR. We eliminate the
latency problem in receiving the camera parameters by the
GPU performing HC using the switching mechanism.

Let GPU1 and GPU2 constitute an occlusion-switch.
GPU1 performs HC for frame i and GPU2 generates OR for
frame i + 1. For frame i + 1, GPU1 generates OR for frame
i + 2, and GPU2 performs HC for frame i + 1. Given that
GPU2 has already rendered the occluders for frame i + 1,
it already has the correct camera parameters for performing
HC for frame i+1. As a result, no additional latency occurs
in terms of HC receiving the camera parameters. However,
the GPU performing OR requires the camera-parameters
from the GPU performing RVG. This introduces latency in
terms of receiving the camera parameters. Because HC takes
some time to perform hardware cull tests before transmitting
the first visible node to GPU performing OR, this latency
is usually hidden. We reduce the latency in transmitting
camera parameters from HC to RVG by sending them in the
beginning of each frame. Figure 2 illustrates the basic proto-
col for transferring the camera parameters among the three
GPU’s. We enumerate other sources of network latency in
Section 5.2.

4.8.2 Reliability

The correctness and conservativity of our algorithm depends
on the reliable transmission of camera parameters and the
visible nodes between the GPUs. Our system is synchronized
based on transmission of an end of frame (EOF) packet. This
protocol requires us to have reliable transmission of camera
parameters from GPU performing HC to GPU performing
RVG. Also, we require reliable transmission of node-ids and
EOF from GPU performing HC to each GPU performing OR
and RVG. We used reliable transfer protocols (TCP/IP) to
transfer the data across the network.

5 Implementation and Performance
We have implemented our parallel occlusion culling algo-
rithm on a cluster of three 2.2 GHz Pentium-4 PCs, each
having 4 GB of RAM (on an Intel 860 chipset) and a GeForce
4 Ti 4600 graphics card. Each runs Linux 2.4, with bigmem
option enabled giving 3.0 GB user addressable memory. The

Average FPS

Pixels of SWITCH Distributed GigaWalk

Model Error GigaWalk

PP 5 14.17 6.2 5.6
DE 20 10.31 4.85 3.50

B-777 15 13.01 5.82

Table 1: Average frame rates obtained by different acceleration
techniques over the sample path. FPS = Frames Per Second, DE
= Double Eagle Tanker model, PP = Power Plant model, B-777
= Boeing 777 model

Pixels of Number of Polygons

Model Error SWITCH GigaWalk Exact Visibility

PP 5 91550 119240 7500
DE 20 141630 173350 10890

Table 2: Comparison of number of polygons rendered to the ac-
tual number of visible polygons by the two implementations. DE =
Double Eagle Tanker model, PP = Power Plant model

PCs are connected via 100 Mb/s Ethernet. We typically ob-
tain a throughput of 1−2 million triangles per second in im-
mediate mode using triangle strips on these graphics cards.
Using NVIDIA OpenGL extension GL NV occlusion query,
we perform an average of around 50, 000 queries per second.

The scene database is replicated on each PC. Commu-
nication of camera parameters and visible node ids between
each pair of PCs is handled by a separate TCP/IP stream
socket over Ethernet. Synchronization between the PCs is
maintained by sending a sentinel node over the node sockets
to mark an end of frame(EOF).

We compare the performance of the implementation of
our algorithm (called SWITCH) with the following algo-
rithms and implementations:

• GigaWalk: A fast parallel occlusion culling system
which uses two IR2 graphics pipelines and three CPUs
[Baxter et al. 2002]. OR and RVG are performed in
parallel on two separate graphics pipelines while occlu-
sion culling is performed in parallel using a software
based hierarchical Z-buffer. All the interprocess com-
munication is handled using the shared memory.

• Distributed GigaWalk: We have implemented a dis-
tributed version of GigaWalk on two PCs with NVIDIA
GeForce 4 GPUs. One of the PCs serves as the occlu-
sion server implementing OR and occlusion culling in
parallel. The other PC is used as a display client. The
occlusion culling is performed in software similar to Gi-
gaWalk. Interprocess communication between PCs is
based on TCP/IP stream sockets.

We compared the performance of the three systems
on three complex environments: a coal fired Power Plant
(shown in the color plate) composed of 13 million polygons
and 1200 objects, a Double Eagle Tanker (shown in the color
plate) composed of 82 million polygons and 127K objects,
and part of a Boeing 777 (shown in the color plate) com-
posed of 20 million triangles and 52K objects. Figures 4,
5(a) and 5(b) illustrate the performance of SWITCH on a
complex path in the Boeing 777, Double Eagle and Power-
plant models, respectively (as shown in the video). Notice
that we are able to obtain 2− 3 times speedups over earlier
systems.

We have also compared the performance of occlusion
culling algorithm in terms of the number of objects and
polygons rendered as compared to the number of objects
and polygons exactly visible. Exact visibility is defined as

Pixels of Number of Objects

Model Error SWITCH GigaWalk Exact Visibility

PP 5 1557 2727 850
DE 20 3313 4036 1833

Table 3: Comparison of number of objects rendered to the actual
number of visible objects by the two implementations. DE = Double
Eagle Tanker model, PP = Power Plant model

the number of primitives actually visible up to the screen-
space and depth-buffer resolution from a given viewpoint.
The exact visibility is computed by drawing each primitive
in a different color to an “itembuffer” and counting the num-
ber of colors visible. Figures 6(a) and 6(b) show the culling
performance of our algorithm on the Double Eagle Tanker
model.

The average speedup in frame rate for the sample paths
is shown in Table 1. Tables 2 and 3 summarize the compar-
ison of the primitives rendered by SWITCH and GigaWalk
with the exact visibility for polygons and objects respec-
tively. As the scene graph of the model is organized in terms
of objects and we perform visibility tests at an object level
and not at the polygon level. Consequently, we observe a
discrepancy in the ratios of number of primitives rendered
to the exact visibility for objects and polygons.

5.1 Bandwidth Estimates

In our experiments, we have observed that the number of
visible objects n typically ranges in the order of 100 to 4000
depending upon scene complexity and the viewpoint. If we
render at most 30 frames per second (fps), header size h
(for TCP, IP and ethernet frame) is 50 bytes and buffer
size b is 100 nodes per packet, then we require a maximum
bandwidth of 8.3 Mbps. Hence, our system is not limited
by the available bandwidth on fast ethernet. However, the
variable window size buffering in TCP/IP [Jacobson 1988],
introduces network latency. The incremental transmission
algorithm greatly lowers the communication overhead be-
tween different GPUs. Figure 3 shows the number of node
identifiers transmitted with and without incremental trans-
mission for a sample path in the Double Eagle Tanker model.
We observe a very high frame-to-frame coherence and an
average reduction of 93% in the bandwidth requirements.
During each frame, the GPUs need to transmit pointers to
a few hundred nodes, which adds up to a few kilobytes. The
overall bandwidth requirement is typically a few megabytes
per second.

5.2 Performance Analysis

In this section, we analyze different factors that affect the
performance of occlusion-switch based culling algorithm.
One of the key issues in the design of any distributed ren-
dering algorithm is system latency. In our architecture, we
may experience latency due to one of the following reasons:

1. Network : Network latencies mainly depend upon
the implementation of transport protocol used to com-
municate between the PCs. The effective bandwidth
varies depending on the packet size. Implementations
like TCP/IP inherently buffer the data and may in-
troduce latencies. Transmission of a large number of
small size packets per second can cause packet loss and
re-transmission introduces further delays. Buffering of
node ids reduces loss but increases network latency.

2. Hardware Cull : The occlusion query can use only a
limited number of identifiers before the results of pixel
count are queried. Moreover, rendering a bounding box
usually requires more resources in terms of fill-rate as
compared to rasterizing the original primitives. If the
application is fill-limited, HC can become a bottleneck

in the system. In our current implementation, we have
observed that the latency in HC is smaller as compared
to the network latency. Using a front based ordered
culling, as described in section 4.6, reduces the fill-
requirement involved in performing the queries and re-
sults in a better performance.

3. OR and RVG : OR and RVG can become bottlenecks
when the number of visible primitives in a given frame is
very high. In our current implementation, HC performs
culling at the object level. As a result, the total number
of polygons rendered by OR or RVG can be quite high
depending upon the complexity of the model, the LOD
error threshold and the position of the viewer. We can
reduce this number by selecting a higher threshold for
the LOD error.

The overall performance of algorithm is governed by two
factors: culling efficiency for occlusion culling and the overall
frame-rates achieved by the rendering algorithm.

• Culling Efficiency: Culling efficiency is measured in
terms of the ratio of number of primitives in the po-
tential visible set to the number of primitives visible.
The culling efficiency of occlusion-switch depends upon
the occlusion-representation used to perform culling. A
good selection of occluders is crucial to the performance
of HC. The choice of bounding geometric representa-
tion used to determine the visibility of an object affects
the culling efficiency of HC. In our current implemen-
tation, we have used rectangular bounding box as the
bounding volume because of its simplicity. As HC is
completely GPU-based, we can use any other bounding
volume (e.g. a convex polytope, k-dop) and the per-
formance of the query will depend on the number of
triangles used to represent the boundary of the bound-
ing volume.

• Frame Rate: Frame rate depends on the culling effi-
ciency, load balancing between different GPUs and the
network latency. Higher culling efficiency results in OR
and RVG rendering fewer number of primitives. A good
load balance between the occlusion-switch and the RVG
would result in maximum system throughput. The or-
der and the rate at which occlusion tests are performed
affects the load balance across the GPUs. Moreover,
the network latency also affects the overall frame rate.
The frame rate also varies based on the LOD selection
parameter.

With faster GPUs, we would expect higher culling efficiency
as well as improved frame rates.

5.3 Comparison with Earlier Approaches

We compare the performance of our approach with two
other well-known occlusion culling algorithms: HZB [Greene
et al. 1993] and HOM [Zhang et al. 1997]. Both of these
approaches use a combination of object-space and image-
space hierarchies and are conservative to the image precision.
Their current implementations are based on frame-buffer
readbacks and performing the occlusion tests in software.
The software implementation incurs additional overhead in
terms of hierarchy construction. Moreover, they project the
object’s bounding volume to the screen space and compute a
2D screen space bounding rectangle to perform the occlusion
test. As a result, these approaches are more conservative as
compared to occlusion-switch based culling algorithm. Fur-
ther, the frame-buffer or depth-buffer readbacks can be ex-
pensive as compared to the occlusion queries, especially on
current PC systems. In practice, we obtained almost three

Figure 4: Frame rate comparison between SWITCH and distributed
Gigawalk at 1024× 1024 screen resolution and 15 pixels of error on
Boeing model.

times speed-up over an implementation of HZB on two PCs
(Distributed GigaWalk).

Our algorithm also utilizes the number of visible pix-
els parameter returned by GL NV occlusion query for LOD
selection. This bound makes our rendering algorithm less
conservative as compared to earlier LOD-based rendering
algorithms, which only compute a screen space bound from
the object space deviation error.

5.4 Limitations

Occlusion-switch based culling introduces an extra frame of
latency in addition to double-buffering. The additional la-
tency does not decrease the frame rate as the second pass
is performed in parallel. However, it introduces additional
latency into the system; the overall algorithm is best suited
for latency-tolerant applications. In addition, a distributed
implementation of the algorithm may suffer from network de-
lays, depending upon the implementation of network trans-
mission protocol used. Our overall approach is general and
independent of the underlying networking protocol.

Our occlusion culling algorithm also assumes high spatial
coherence between successive frames. If the camera position
changes significantly from one frame to the next, the visible
primitives from the previous frame may not be a good ap-
proximation to the occluder set for the current frame. As a
result, the culling efficiency may not be high.

Our algorithm performs culling at an object level and
does not check the visibility of each triangle. As a result, its
performance can vary based on how the objects are defined
and represented in the scene graph.

6 Summary and Future Work
We have presented a new occlusion culling algorithm based
on occlusion-switches and used it to render massive models
at interactive rates. The occlusion-switches, composed of
two GPUs, make use of the hardware occlusion query that
is becoming widely available on commodity GPUs. We have
combined the algorithm with pre-computed levels-of-detail
and highlighted its performance on three complex environ-
ments. We have observed 2− 3 times improvement in frame
rate over earlier approaches. The culling performance of the
algorithm is further improved by using a sub-object hierar-
chy and it is used for interactive shadow generation [Govin-
daraju et al. 2003].

Many avenues for future work lie ahead. A low latency
network implementation is highly desirable to maximize the
performance achieved by our parallel occlusion culling al-
gorithm. One possibility is to use raw GM sockets over

(a) Double Eagle Tanker model at 20 pixels of error (b) Powerplant model at 5 pixels of error

Figure 5: Frame rate comparison between SWITCH, GigaWalk and Distributed GigaWalk at 1024× 1024 screen resolution. We obtain 2− 3
times improvement in the frame rate as compared to Distributed GigaWalk and GigaWalk.

Myrinet. We are also exploring the use of a reliable protocol
over UDP/IP. Our current implementation loads the entire
scene graph and object LODs on each PC. Due to limita-
tions on the main memory, we would like to use out-of-core
techniques that use a limited memory footprint. Moreover,
the use of static LODs and HLODs can lead to popping ar-
tifacts as the rendering algorithm switches between different
approximations. One possibility is to use view-dependent
simplification techniques to alleviate these artifacts. Finally,
we would like to apply our algorithm to other complex en-
vironments.

Acknowledgments
Our work was supported in part by ARO Contract DAAD19-
99-1-0162, NSF award ACI 9876914, ONR Young Investiga-
tor Award (N00014-97-1-0631), a DOE ASCI grant, and by
Intel Corporation.

The Double Eagle model is courtesy of Rob Lisle, Bryan
Marz, and Jack Kanakaris at NNS. The Power Plant envi-
ronment is courtesy of an anonymous donor. The Boeing 777
model is courtesy of Tom Currie, Bill McGarry, Marie Mur-
ray, Nik Prazak, and Ty Runnels at the Boeing Company.
We would like to thank David McAllister, Carl Erikson,
Brian Salomon and other members of UNC Walkthrough
group for useful discussions and support.

References
Airey, J., Rohlf, J., and Brooks, F. 1990. Towards image realism

with interactive update rates in complex virtual building environ-
ments. In Symposium on Interactive 3D Graphics, 41–50.

Bartz, D., Meibner, M., and Huttner, T. 1999. Opengl assisted oc-
clusion culling for large polygonal models. Computer and Graphics
23, 3, 667–679.

Baxter, B., Sud, A., Govindaraju, N., and Manocha, D. 2002.
Gigawalk: Interactive walkthrough of complex 3d environments.
Proc. of Eurographics Workshop on Rendering.

Cohen-Or, D., Chrysanthou, Y., and Silva, C. 2001. A survey of
visibility for walkthrough applications. SIGGRAPH Course Notes
30 .

Coorg, S., and Teller, S. 1997. Real-time occlusion culling for models
with large occluders. In Proc. of ACM Symposium on Interactive
3D Graphics.

Durand, F., Drettakis, G., Thollot, J., and Puech, C. 2000. Con-
servative visibility preprocessing using extended projections. Proc.
of ACM SIGGRAPH , 239–248.

El-Sana, J., Sokolovsky, N., and Silva, C. 2001. Integrating occlusion
culling with view-dependent rendering. Proc. of IEEE Visualiza-
tion.

Erikson, C., Manocha, D., and Baxter, B. 2001. Hlods for fast
display of large static and dynmaic environments. Proc. of ACM
Symposium on Interactive 3D Graphics.

Govindaraju, N., Lloyd, B., Yoon, S., Sud, A., and Manocha, D.
2003. Interactive shadow generation in complex environments.
Tech. rep., Department of Computer Science, University of North
Carolina.

Greene, N., Kass, M., and Miller, G. 1993. Hierarchical z-buffer
visibility. In Proc. of ACM SIGGRAPH, 231–238.

Greene, N. 2001. Occlusion culling with optimized hierarchical z-
buffering. In ACM SIGGRAPH COURSE NOTES ON VISIBIL-
ITY, # 30.

Hillesl, K., Salomon, B., Lastra, A., and Manocha, D. 2002. Fast
and simple occlusion culling using hardware-based depth queries.
Tech. Rep. TR02-039, Department of Computer Science, University
of North Carolina.

Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., and Zhang,
H. 1997. Accelerated occlusion culling using shadow frusta. In
Proc. of ACM Symposium on Computational Geometry, 1–10.

Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., and
Hanrahan, P. 2001. Wiregl: A scalable graphics system for clus-
ters. Proc. of ACM SIGGRAPH .

Jacobson, V. 1988. Congestion avoidance and control. Proc. of ACM
SIGCOMM , 314–329.

Klowoski, J., and Silva, C. 2000. The prioritized-layered projection
algorithm for visible set estimation. IEEE Trans. on Visualization
and Computer Graphics 6, 2, 108–123.

Klowoski, J., and Silva, C. 2001. Efficient conservative visiblity
culling using the prioritized-layered projection algorithm. IEEE
Trans. on Visualization and Computer Graphics 7, 4, 365–379.

Meissner, M., Bartz, D., Huttner, T., Muller, G., and Einighammer,
J. 2002. Generation of subdivision hierarchies for efficient occlusion
culling of large polygonal models. Computer and Graphics.

(a) At polygon level (b) At object level

Figure 6: Double Eagle Tanker: Comparison of exact visibility computation with SWITCH and GigaWalk at 20 pixels of error at 1024×1024
screen resolution. SWITCH is able to perform more culling as compared to GigaWalk. However, it renders one order of magnitude more
triangles or twice the number of objects as compared to exact visibility.

Parker, S., Martic, W., Sloan, P., Shirley, P., Smits, B., and
Hansen, C. 1999. Interactive ray tracing. Symposium on In-
teractive 3D Graphics.

Samanta, R., Funkhouser, T., Li, K., and Singh, J. P. 2000. Hy-
brid sort-first and sort-last parallel rendering with a cluster of pcs.
Eurographics/SIGGRAPH workshop on Graphics Hardware, 99–
108.

Samanta, R., Funkhouser, T., and Li, K. 2001. Parallel rendering
with k-way replication. IEEE Symposium on Parallel and Large-
Data Visualization and Graphics.

Schaufler, G., Dorsey, J., Decoret, X., and Sillion, F. 2000. Con-
servative volumetric visibility with occluder fusion. Proc. of ACM
SIGGRAPH , 229–238.

Teller, S. J. 1992. Visibility Computations in Densely Occluded
Polyheral Environments. PhD thesis, CS Division, UC Berkeley.

Wald, I., Slusallek, P., and Benthin, C. 2001. Interactive distributed
ray-tracing of highly complex models. In Rendering Techniques,
274–285.

Wonka, P., Wimmer, M., and Schmalstieg, D. 2000. Visibility prepro-
cessing with occluder fusion for urban walkthroughs. In Rendering
Techniques, 71–82.

Wonka, P., Wimmer, M., and Sillion, F. 2001. Instant visibility. In
Proc. of Eurographics.

Zhang, H., Manocha, D., Hudson, T., and Hoff, K. 1997. Visibility
culling using hierarchical occlusion maps. Proc. of ACM SIG-
GRAPH .

Figure 1: Performance of occlusion-switch algorithm on the DoubleEagle Tanker model: This environment consists of more than 82 million
triangles and our algorithm renders it a t 9− 15 fps on a cluster of 3 PCs, each consisting of an NVIDIA GeForce 4 GPU. Occlusion-switch
culls away most occluded portions of the model and renders around 200K polygons in the view shown. Objects are rendered in following colors
- visible: yellow; view-frustum culled: violet; and occlusion-culled: orange.

(a) Portion of a Boeing 777 model rendered at 15 pixels of error.
Our system, SWITCH, is able to render it at 11− 18 frames per
second on a 3-PC cluster.

(b) Powerplant model composed of more than 12.7 million trian-
gles. SWITCH can render it at 11 − 19 frames per second using
5 pixels of deviation error.

Figure 2: Performance of Occlusion-switch on complex CAD models: Both the models are rendered at 1024 × 1024 screen resolution using
NVIDIA GeForce 4 cards.

