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ABSTRACT the compensated features. On the contrary, cleaechp
models can be completely adapted into acousticadliched
In this paper, we introduce a new histogram eqatiin- models as far as the amount of adaptation dataoidded
based environmental model adaptation method fousibb enough in model adaptation. In this case, evengihdbe
speech recognition in noise environments. The mego information loss still exists in the noisy speeéattire, it
method adapts initially-trained acoustic mean med#la does not cause any discrepancies and can be dideegm
speech recognizer into the environmentally matehedels. the process of acoustic-phonetic classificationr Eas
The covariance models are adapted by using uttedlawel reason, the model adaptation approach can be supethe
local covariance matrices. We performed a series dBature compensation one in coping with the mishatc
experiments based on the Aurora2 framework to exami between training and test environments.
the effectiveness of the proposed environmental @hod In this paper, we propose a model adaptation method
adaptation technique. In both clean and multi-comdi based on the histogram equalization technique k& ta
trainings, the proposed approach achieved subatantiadvantage of its possible superiority to the featur
performance improvements over the baseline speedompensation approach. In the proposed approach, th
recognizers. histogram equalization technique adapts the trascedistic
mean models of the speech recognizers into envieatatly
Index  Terms—Histogram equalization, model matched models. The covariance models are adapted b

adaptation, robust speech recognition. using utterance-level sample covariance estimates.
Experiments on the Aurora2 framework confirmed the
1. INTRODUCTION effectiveness of the proposed approach for modsgbtadion.

Speech recognizers usually show considerable pesfore 2. HISTOGRAM EQUALIZATION FOR FEATURE
deterioration when they are deployed in the acocaldyi COMPENSATION

mismatched environments compared to the trainires ¢hy.

Thus, one of the major issues in automatic speechhe utilization of histogram equalization techniguéor
recognition is to provide the robustness agairsntismatch feature compensation (HEQ-FC) begins with such an
between training and test environments. Of a cowgfle assumption that the acoustic mismatch betweenereafer(or
robust speech recognition approaches, an easigsttava training) speech features and test speech onelsré@suhe
provide the robustness against the acoustic mismitc discrepancy between their corresponding probahi@psity
feature compensation [2]. Histogram equalizatioE() is  functions (PDFs). Then, HEQ-FC tries to compendasgt
known to be one of the most efficient feature consagion features into reference features by transformimgtést PDF
techniques due to its algorithmic simplicity [3]H7 into the reference one. Here, we assume that histog
Nevertheless, it shows considerable compensatioequalization is conducted in a component-by-compbbasis
effectiveness because of its nonlinear transfoomati for algorithmic simplicity. Then, a basic algorittehHEQ-FC
characteristics which are fundamentally requirediéaling is as follows.

with the logarithmic domain-based features suchkegstral For given reference and test random varialemndy,
coefficients [4]. However, since the noise corraptiand respectively, a transformation function by HEQ-F@pping
feature extraction usually cause some forms of sttwu the test PDP(y) into the reference PDI(X) is given as
phonetic information loss, it is difficult to fullyecover the

clean speech features from their correspondingyrsgisech x=F(y)=C{Cy (Y], 1)
features by using the feature compensation approssta

result, there would be some unavoidable discrepanci where C;(l is the inverse of the reference cumulative
between the clean speech models of a speech reeogmd



distribution function (CDFCx«(X), C(y) is the test CDF, and
F(y) is the transformation function of HEQ-FC, whichsh
monotonically nondecreasing characteristics. It bamoted
in (1) that the effectiveness of HEQ-FC is closediated to
the reliable estimation of both reference and @BFs. In
practice, the CDFs are approximated by their cuiivela
histograms. Therefore, the larger amount of samgla gives
the better CDF estimation. Due to its relativelggéaamount
of sample data in the training phase, the refer@igie can be
well estimated by its cumulative histograms. Howggarrent
speech recognizers may employ short utterancdgemsnput
unit. In this case, the amount of sample data eaindufficient
for the reliable estimation of the test CDF. Theref a
reliable estimation of the test CDF can be an itgurissue
for effective HEQ-FC in the short utterance-basedt t
environments. When the amount of sample data id,stima
order-statistic-based approach is known to provdere
reliable CDF estimation with an improved resolutidnbrief
algorithm of the order-statistics-based CDF estondt given
as follows [3].

Let us define a sequen&econsisting ofN frames of test
feature components as

S={y1, Y21 ¥nros YN} &)

wherey, is a certain test feature component atrttieframe.
The order-statistics of the sequenSein (2) is given by
rearranging its elements in ascending order as

Yro =Yre = SYro S SYrone @)

where T(r) denotes the original frame index of the feature
in which its rank i when the elements of the

component/yy

which is the inverse of the transformation functemployed

in HEQ-FC. In model adaptation, the trained acoustbdels

of a speech recognizer are transformed into theptada
models to match test environments acoustically.réfbee,

with the transformation functioly = G(x), the histogram
equalization technique for model adaptation (HEQ)MAN

transform the trained acoustic models into therenmentally

matched models. If the acoustic models under trgiand test
environments are denoted & and @, respectively, the
transformation by HEQ-MA is given by mapping théerence

PDFP,( @) into the test PDP({( @) as

& =G(2y) =F (&) =C/ (Cx (%)) (6)

We assume that the mean vector and covariancexroétri
a trained acoustic model in a speech recognizebased on
the Gaussian distribution and is giverybgnd 2, respectively.
If we further assume that HEQ-MA is applied to eaaban
vector on a component-by-component basis as in HEQ-
the adaptation rule for a trained acoustic meanpcoent by
HEQ-MA is given by using (6) and a linear intergima
between two test feature components in the sequ@ntech
are nearest to the trained mean component in &frithe CDF
value as

£1(K) = Cyfio (Cx iy (1(K)))
:[a(k)yT(m>(k)+ a-a()yrm (0, 1sm<N 7
a(k) Yoy () + A= a () (yr gy (K) + oK), m=N,

where f1(k) and (k) denote thekth components of the
adapted and trained mean vectors, respecﬂ@e,lﬁ() is the

sequenceS are sorted in ascending order. Then, the ordefaverse of the test CDF for thdh test feature component,

statistic-based test CDF estimate of the test featomponent
Vn is given as

A R

(o) =2,
where R(y,) denotes the rank of, among the feature
components composing the sequeBeecording to the order-
statistics defined in (3). From (1) and (4), arnineste of the
reference feature component by HEQ-FC given thddature
component, is obtained as

CRIC (y)] =C3 {R(y”)}

(4)

©®)

3. HISTOGRAM EQUALIZATION FOR MODEL
ADAPTATION

To employ the histogram equalization techniqueh& model
space, we interpret the acoustic mismatch betwestnaind
reference environments as a transformation fungtier(x),

Cx(k) (u(K)) is the reference CDF estimate of ttle mean
componeni(k), mis the rank index satisfying the relationship

éY(k) (¥Yr(m-2(K)) < éX(k) (uk)) < éY(k) (Yr(m(K)), (8)

AK) stands for a positive value at ke mean component for
the boundary condition, and(k) is the linear interpolation
factor of thekth mean component that is based on the order-
statistics-based test CDF of the sequeddefined in (4) and

is given by

Cr o (Vr(m (K)) = Cx oy (1(K))
CY(k)(yT(m) (k) - CY(k)(yT(m 1 (K)
=m- NCX(k) (u(Kk)),

where the test CDF estimate of the undefined featur
componentyygis assumed to be zero to satisfy its boundary
condition.

a(k) =
9)



As the noise corruption increases, the dynamic eaofy
certain features such as cepstral coefficientsstéadshrink
due to the spectral whitening effect. Because tyeachic
range is directly related to the covariance, weeekghat the
covariance shrinkage occurs in noisy features. this
reason, it is generally known that the improvemeyaimed

From a sequence of 23 mel-scaled log filter-bardrgas,

the 39-dimensional mel frequency cepstral coefficie
(MFCC)-based feature vectors, each consisting of 12
MFCCs, log energy, and their delta and accelerdéatures,
are extracted. The baseline speech recognizer gmpld
whole-word hidden Markov models (HMMs), which castsi

by using mean and covariance adaptation over meaf 11 digit models with 16 states, a silence mauéh three

adaptation only becomes significant in noisy enwvinents,
although adapting the means provides the majorctefia
performance in the cepstral feature-based speecigméion
[8]. The proposed HEQ-MA technique focuses its &atam
target on the mean models. Therefore, to cope théh
covariance shrinkage effect in the noisy envirorisiewe
introduce an efficient adaptation rule for covaciamatrices,
which is given by a linear interpolation of the irted
covariance matrix and the sequence-level samplarizmce
matrix as

2(k1)= BNZ (K1) + L= BN, (10)

states, and a short-pause model with a single. Sksteh
state in digit models consists of 3 Gaussians wthidese in
silence and short-pause models have 6 Gaussiaagoiml
covariance matrices are used in the HMMs. In the
performance evaluation, we examined the effectiseraf
the HEQ-MA compared to the baseline speech recegniz
trained on the clean as well as multi-conditiongeesh data,
respectively, and HEQ-FC. HEQ-FC is applied toddlthe
39-dimensional MFCCs independently for both tragnamd
test data. In model adaptation, the HEQ-based mean
adaptation and the proposed variance adaptatidmitees
are applied to the 39-dimensional mean vectorsdiangbnal
covariance matrices, respectively, of all trainddMk in the

where /X)) is a signal-to-noise ratio (SNR)-dependentpaseline speech recognizers. The number of histobias in
smoothing factor to deal with the higher covarianceeference CDFs was empirically chosen as 64. ThR-SN

shrinkage effect at the heavier noise conditior iargiven

dependent smoothing parametarandb in the covariance

by A()) = ay+ b, whereyis the averaged SNR value of the adaptation are empirically set to -0.03 and 0.Speetively.
sequenceS anda and b are empirically chosen slope and Each utterance, the averaged SNR vatweas estimated as

bias constants, respectively, ad denotes the global
sample covariance matrix of the sequeBobtained by

N
23(k.1) = %Z (Yn(K) =V (K)(yn () —v (1)), (11)

n=1

the ratio of the averaged frame energy to the geeranoise
energy of the initial silence region. The histogreguialization
is conducted on an utterance-by-utterance babistimfeature
compensation and model adaptation.

Figure 1 shows the recognition results for the g¢hre
Aurora2 test sets at various SNR conditions with ¢lean-

wherev(l) represents the sequence-level sample mean of t§€ndition training of the baseline speech recognizethe

Ith feature component.
4. EXPERIMENTAL RESULTS

The performance of the proposed model
approach is evaluated on the Aurora2 speech datakides
employed the ETSI Aurora-2 experimental framewank i
experiments as follows [9]. We trained the acoustadels
of two baseline speech recognizers with both of dlean
and multi-condition training sets, respectivelyelraluations,
we used the three Aurora2 test sets, where testiseadded
by four kinds of noise (subway, babble, car, ankilgtion),
test set B is corrupted by another four types oiseno
(restaurant, street, airport, and train stationy #&st set C is
contaminated by two of the eight kinds of noiséb(gay and
street) and channel distortion together. Each eftlinee test
sets is further composed of 6 noisy sub-sets Wi{R &vels
of 20, 15, 10, 5, 0, and -5 dB. In feature ext@attispeech
signals are firstly blocked into a sequence of gsreach
25ms in length with a 10ms interval. Next, speeeaimes are
pre-emphasized by a first-order FIR filter with actor of

0.97, and a Hamming window is applied to each frame™

figure, we observe that HEQ-MA gives significant
improvements compared to the baseline speech rzesgn
and also yields meaningful performance gains oVeQHFC.

The improvements obtained by HEQ-MA are more netabl

adaptatioﬁt the lower SNR range of 0-10dB. The figure inthsahat

HEQ-MA can be a very effective technique when the
acoustic models to be adapted are trained on thancl
speech data.

Figure 2 represents the recognition results fortknee
Aurora2 test sets at various SNR conditions whea
baseline speech recognizer is trained on the maoitdition
speech data. In this figure, we observe that HEQiMAot
as effective as HEQ-FC although it still outperfsrithe
baseline speech recognizer.

Tables | and Il show the word error rates obtaibgdhe
three techniques for the Aurora?2 test sets wherbéiseline
speech recognizers are trained in clean and nuiiiilitions,
respectively. In clean-condition training, HEQ-MAopides
an error reduction of 62.83% over the baseline dpee
recognizer. This error reduction can be regardgdifstant
compared to the reduction of 51.48% gained by HEQIR
ulti-condition training, HEQ-MA provides an error
reduction of 10.73% over the baseline speech rézegand

th
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Table I. Word error rates by baseline speech mizeg HEQ-FC,
and HEQ-MA on the Aurora?2 task with clean-condittomining.

Test Set Baselint HEQ-FC HEQ-MA
80 [ A 38.87 19.41 15.19
S B 44.43 18.32 14.00
> C 33.32 21.55 15.93
g Average 39.98 19.40 14.86
AN
RS Table Il. Word error rates by baseline speechgeizer, HEQ-FC,
= \ and HEQ-MA on the Aurora2 task with multi-condititmining.
a0 || o Baseline Test Sets Baseline HEQ-FC HEQ-MA
- HEQ-FC \ A 12.72 10.07 11.89
~HEQMA B 14.47 9.55 13.63
’ Clean 20 15 10 5 0 5 c 16.87 11.13 12.56
Averagg 14.25 10.07 12.72

SNR (dB)

Fig. 1. Recognition results with various SNR caiotis by the
baseline speech recognizer, HEQ-FC, and HEQ-MA be t
Aurora?2 task with clean-condition training.
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Fig. 2. Recognition results with various SNR caiotis by the
baseline speech recognizer, HEQ-FC, and HEQ-MA be t
Aurora2 task with multi-condition training.

it does not reach the reduction of 29.33% gainedHB®-
FC. Consequently, in the clean-condition trainithg, results
support our previous suggestion that the model tatiap
approach can give fundamentally better results tthen
feature compensation method. However, the resblaired
from the multi-condition training experiments dot moatch
our suggestion well. One reason for the infericuhls may
be the insufficient amount of adaptation data duoethie
utterance-by-utterance adaptation basis in
condition training, where the acoustic models coldle
very diverse environmental conditions.

5. CONCLUSION
We propose a histogram equalization-based envirotahe

model adaptation technique. It adapts the acoumtan
models of speech recognizers into the irenmentally

the imult

matched models by using the histogram equalization
algorithm. Covariance models are adapted by usingNR-
dependent linear interpolation with the utterareel
sample covariance matrix. In the Aurora2 experimietatsk,

the proposed approach showed significant improvésnen
with high computational efficiency. Further studyoat the
less improvement in the multi-condition traininghseded.
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