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ABSTRACT 
 
In this paper, we introduce a new histogram equalization-
based environmental model adaptation method for robust 
speech recognition in noise environments. The proposed 
method adapts initially-trained acoustic mean models of a 
speech recognizer into the environmentally matched models. 
The covariance models are adapted by using utterance-level 
local covariance matrices. We performed a series of 
experiments based on the Aurora2 framework to examine 
the effectiveness of the proposed environmental model 
adaptation technique. In both clean and multi-condition 
trainings, the proposed approach achieved substantial 
performance improvements over the baseline speech 
recognizers. 
 

Index Terms—Histogram equalization, model 
adaptation, robust speech recognition. 
 

1. INTRODUCTION 
 
Speech recognizers usually show considerable performance 
deterioration when they are deployed in the acoustically 
mismatched environments compared to the training ones [1]. 
Thus, one of the major issues in automatic speech 
recognition is to provide the robustness against the mismatch 
between training and test environments. Of a couple of 
robust speech recognition approaches, an easiest way to 
provide the robustness against the acoustic mismatch is 
feature compensation [2]. Histogram equalization (HEQ) is 
known to be one of the most efficient feature compensation 
techniques due to its algorithmic simplicity [3]-[7]. 
Nevertheless, it shows considerable compensation 
effectiveness because of its nonlinear transformation 
characteristics which are fundamentally required in dealing 
with the logarithmic domain-based features such as cepstral 
coefficients [4]. However, since the noise corruption and 
feature extraction usually cause some forms of acoustic-
phonetic information loss, it is difficult to fully recover the 
clean speech features from their corresponding noisy speech 
features by using the feature compensation approach. As a 
result, there would be some unavoidable discrepancies 
between the clean speech models of a speech recognizer and 

the compensated features. On the contrary, clean speech 
models can be completely adapted into acoustically matched 
models as far as the amount of adaptation data is provided 
enough in model adaptation. In this case, even though the 
information loss still exists in the noisy speech feature, it 
does not cause any discrepancies and can be disregarded in 
the process of acoustic-phonetic classification. For this 
reason, the model adaptation approach can be superior to the 
feature compensation one in coping with the mismatch 
between training and test environments.  

In this paper, we propose a model adaptation method 
based on the histogram equalization technique to take 
advantage of its possible superiority to the feature 
compensation approach. In the proposed approach, the 
histogram equalization technique adapts the trained acoustic 
mean models of the speech recognizers into environmentally 
matched models. The covariance models are adapted by 
using utterance-level sample covariance estimates. 
Experiments on the Aurora2 framework confirmed the 
effectiveness of the proposed approach for model adaptation. 
 

2. HISTOGRAM EQUALIZATION FOR FEATURE 
COMPENSATION 

 
The utilization of histogram equalization techniques for 
feature compensation (HEQ-FC) begins with such an 
assumption that the acoustic mismatch between reference (or 
training) speech features and test speech ones results in the 
discrepancy between their corresponding probability density 
functions (PDFs). Then, HEQ-FC tries to compensate test 
features into reference features by transforming the test PDF 
into the reference one. Here, we assume that histogram 
equalization is conducted in a component-by-component basis 
for algorithmic simplicity. Then, a basic algorithm of HEQ-FC 
is as follows. 

For given reference and test random variables x and y, 
respectively, a transformation function by HEQ-FC mapping 
the test PDF PY(y) into the reference PDF PX(x) is given as  
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where 1−
XC  is the inverse of the reference cumulative 



distribution function (CDF) CX(x), CY(y) is the test CDF, and 
F(y) is the transformation function of HEQ-FC, which has 
monotonically nondecreasing characteristics. It can be noted 
in (1) that the effectiveness of HEQ-FC is closely related to 
the reliable estimation of both reference and test CDFs. In 
practice, the CDFs are approximated by their cumulative 
histograms. Therefore, the larger amount of sample data gives 
the better CDF estimation. Due to its relatively large amount 
of sample data in the training phase, the reference CDF can be 
well estimated by its cumulative histograms. However, current 
speech recognizers may employ short utterances as their input 
unit. In this case, the amount of sample data can be insufficient 
for the reliable estimation of the test CDF. Therefore, a 
reliable estimation of the test CDF can be an important issue 
for effective HEQ-FC in the short utterance-based test 
environments. When the amount of sample data is small, the 
order-statistic-based approach is known to provide more 
reliable CDF estimation with an improved resolution. A brief 
algorithm of the order-statistics-based CDF estimation is given 
as follows [3]. 

Let us define a sequence S consisting of N frames of test 
feature components as 
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where yn is a certain test feature component at the nth frame. 
The order-statistics of the sequence S in (2) is given by 
rearranging its elements in ascending order as 
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where T(r) denotes the original frame index of the feature 
component yT(r) in which its rank is r when the elements of the 
sequence S are sorted in ascending order. Then, the order-
statistic-based test CDF estimate of the test feature component 
yn is given as 
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where R(yn) denotes the rank of yn among the feature 
components composing the sequence S according to the order-
statistics defined in (3). From (1) and (4), an estimate of the 
reference feature component by HEQ-FC given the test feature 
component yn is obtained as 
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3. HISTOGRAM EQUALIZATION FOR MODEL 

ADAPTATION 
 
To employ the histogram equalization technique in the model 
space, we interpret the acoustic mismatch between test and 
reference environments as a transformation function y = G(x), 

which is the inverse of the transformation function employed 
in HEQ-FC. In model adaptation, the trained acoustic models 
of a speech recognizer are transformed into the adapted 
models to match test environments acoustically. Therefore, 
with the transformation function y = G(x), the histogram 
equalization technique for model adaptation (HEQ-MA) can 
transform the trained acoustic models into the environmentally 
matched models. If the acoustic models under training and test 
environments are denoted as ΦX and ΦY, respectively, the 
transformation by HEQ-MA is given by mapping the reference 
PDF Px(ΦX) into the test PDF PY(ΦY) as 
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We assume that the mean vector and covariance matrix of 
a trained acoustic model in a speech recognizer are based on 
the Gaussian distribution and is given by µ and Σ, respectively. 
If we further assume that HEQ-MA is applied to each mean 
vector on a component-by-component basis as in HEQ-FC, 
the adaptation rule for a trained acoustic mean component by 
HEQ-MA is given by using (6) and a linear interpolation 
between two test feature components in the sequence S which 
are nearest to the trained mean component in terms of the CDF 
value as 
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where )(ˆ kµ  and µ(k) denote the kth components of the 

adapted and trained mean vectors, respectively, 1
)(

−
kYC  is the 

inverse of the test CDF for the kth test feature component, 

))((ˆ
)( kC kX µ  is the reference CDF estimate of the kth mean 

component µ(k), m is the rank index satisfying the relationship  
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ρ(k) stands for a positive value at the kth mean component for 

the boundary condition, and α(k) is the linear interpolation 

factor of the kth mean component that is based on the order-

statistics-based test CDF of the sequence S defined in (4) and 

is given by 
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where the test CDF estimate of the undefined feature 
component yT(0) is assumed to be zero to satisfy its boundary 
condition. 



As the noise corruption increases, the dynamic range of 
certain features such as cepstral coefficients tends to shrink 
due to the spectral whitening effect. Because the dynamic 
range is directly related to the covariance, we expect that the 
covariance shrinkage occurs in noisy features. For this 
reason, it is generally known that the improvements gained 
by using mean and covariance adaptation over mean 
adaptation only becomes significant in noisy environments, 
although adapting the means provides the major effect on 
performance in the cepstral feature-based speech recognition 
[8]. The proposed HEQ-MA technique focuses its adaptation 
target on the mean models. Therefore, to cope with the 
covariance shrinkage effect in the noisy environments, we 
introduce an efficient adaptation rule for covariance matrices, 
which is given by a linear interpolation of the trained 
covariance matrix and the sequence-level sample covariance 
matrix as  
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where β(γ) is a signal-to-noise ratio (SNR)-dependent 
smoothing factor to deal with the higher covariance 
shrinkage effect at the heavier noise conditions and is given 
by β(γ) = aγ + b, where γ is the averaged SNR value of the 
sequence S and a and b are empirically chosen slope and 
bias constants, respectively, and Σs denotes the global 
sample covariance matrix of the sequence S obtained by 
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where v(l) represents the sequence-level sample mean of the 
lth feature component. 
 

4. EXPERIMENTAL RESULTS 
 
The performance of the proposed model adaptation 
approach is evaluated on the Aurora2 speech database. We 
employed the ETSI Aurora-2 experimental framework in 
experiments as follows [9]. We trained the acoustic models 
of two baseline speech recognizers with both of the clean 
and multi-condition training sets, respectively. In evaluations, 
we used the three Aurora2 test sets, where test set A is added 
by four kinds of noise (subway, babble, car, and exhibition), 
test set B is corrupted by another four types of noise 
(restaurant, street, airport, and train station), and test set C is 
contaminated by two of the eight kinds of noise (subway and 
street) and channel distortion together. Each of the three test 
sets is further composed of 6 noisy sub-sets with SNR levels 
of 20, 15, 10, 5, 0, and -5 dB. In feature extraction, speech 
signals are firstly blocked into a sequence of frames, each 
25ms in length with a 10ms interval. Next, speech frames are 
pre-emphasized by a first-order FIR filter with a factor of 
0.97, and a Hamming window is applied to each frame. 

From a sequence of 23 mel-scaled log filter-bank energies, 
the 39-dimensional mel frequency cepstral coefficient 
(MFCC)-based feature vectors, each consisting of 12 
MFCCs, log energy, and their delta and acceleration features, 
are extracted. The baseline speech recognizer employs 13 
whole-word hidden Markov models (HMMs), which consist 
of 11 digit models with 16 states, a silence model with three 
states, and a short-pause model with a single state. Each 
state in digit models consists of 3 Gaussians while those in 
silence and short-pause models have 6 Gaussians. Diagonal 
covariance matrices are used in the HMMs. In the 
performance evaluation, we examined the effectiveness of 
the HEQ-MA compared to the baseline speech recognizers 
trained on the clean as well as multi-conditioned speech data, 
respectively, and HEQ-FC. HEQ-FC is applied to all of the 
39-dimensional MFCCs independently for both training and 
test data. In model adaptation, the HEQ-based mean 
adaptation and the proposed variance adaptation techniques 
are applied to the 39-dimensional mean vectors and diagonal 
covariance matrices, respectively, of all trained HMMs in the 
baseline speech recognizers. The number of histogram bins in 
reference CDFs was empirically chosen as 64. The SNR-
dependent smoothing parameters a and b in the covariance 
adaptation are empirically set to -0.03 and 0.9, respectively. 
Each utterance, the averaged SNR value γ was estimated as 
the ratio of the averaged frame energy to the averaged noise 
energy of the initial silence region. The histogram equalization 
is conducted on an utterance-by-utterance basis in both feature 
compensation and model adaptation. 

Figure 1 shows the recognition results for the three 
Aurora2 test sets at various SNR conditions with the clean-
condition training of the baseline speech recognizer. In the 
figure, we observe that HEQ-MA gives significant 
improvements compared to the baseline speech recognizer 
and also yields meaningful performance gains over HEQ-FC. 
The improvements obtained by HEQ-MA are more notable 
at the lower SNR range of 0-10dB. The figure indicates that 
HEQ-MA can be a very effective technique when the 
acoustic models to be adapted are trained on the clean 
speech data. 

Figure 2 represents the recognition results for the three 
Aurora2 test sets at various SNR conditions when the 
baseline speech recognizer is trained on the multi-condition 
speech data. In this figure, we observe that HEQ-MA is not 
as effective as HEQ-FC although it still outperforms the 
baseline speech recognizer. 

Tables I and II show the word error rates obtained by the 
three techniques for the Aurora2 test sets when the baseline 
speech recognizers are trained in clean and multi-conditions, 
respectively. In clean-condition training, HEQ-MA provides 
an error reduction of 62.83% over the baseline speech 
recognizer. This error reduction can be regarded significant 
compared to the reduction of 51.48% gained by HEQ-FC. In 
multi-condition training, HEQ-MA provides an error 
reduction of 10.73% over the baseline speech recognizer and  



0

20

40

60

80

100

Clean 20 15 10 5 0 -5

SNR (dB)

W
o

rd
 A

cc
u

ra
cy

 (
%

)

Baseline

HEQ-FC

HEQ-MA

 
Fig. 1.  Recognition results with various SNR conditions by the 
baseline speech recognizer, HEQ-FC, and HEQ-MA on the 
Aurora2 task with clean-condition training. 
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Fig. 2.  Recognition results with various SNR conditions by the 
baseline speech recognizer, HEQ-FC, and HEQ-MA on the 
Aurora2 task with multi-condition training. 
 
it does not reach the reduction of 29.33% gained by HEQ-
FC. Consequently, in the clean-condition training, the results 
support our previous suggestion that the model adaptation 
approach can give fundamentally better results than the 
feature compensation method. However, the results obtained 
from the multi-condition training experiments do not match 
our suggestion well. One reason for the inferior results may 
be the insufficient amount of adaptation data due to the 
utterance-by-utterance adaptation basis in the multi-
condition training, where the acoustic models could have 
very diverse environmental conditions. 
 

5. CONCLUSION 
 

We propose a histogram equalization-based environmental 
model adaptation technique. It adapts the acoustic mean 
models   of  speech  recognizers   into   the   environmentally  

Table I.  Word error rates by baseline speech recognizer, HEQ-FC, 
and HEQ-MA on the Aurora2 task with clean-condition training. 

Test Sets Baseline HEQ-FC HEQ-MA 
A 38.87 19.41 15.19 

B 44.43 18.32 14.00 
C 33.32 21.55 15.93 

Average 39.98 19.40 14.86 

 
Table II.  Word error rates by baseline speech recognizer, HEQ-FC, 
and HEQ-MA on the Aurora2 task with multi-condition training. 

Test Sets Baseline HEQ-FC HEQ-MA 
A 12.72 10.07 11.89 

B 14.47 9.55 13.63 

C 16.87 11.13 12.56 

Average 14.25 10.07 12.72 

 
matched models by using the histogram equalization 
algorithm. Covariance models are adapted by using an SNR-
dependent linear interpolation with the utterance-level 
sample covariance matrix. In the Aurora2 experimental task, 
the proposed approach showed significant improvements 
with high computational efficiency. Further study about the 
less improvement in the multi-condition training is needed. 
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