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HIDEEP: a systems approach to 
predict hormone impacts on drug 
efficacy based on effect paths
Mijin Kwon1, Jinmyung Jung   2,3, Hasun Yu2 & Doheon Lee   1,2

Experimental evidence has shown that some of the human endogenous hormones significantly 
affect drug efficacy. Since hormone status varies with individual physiological states, it is essential 
to understand the interplay of hormones and drugs for precision medicine. Here, we developed an in 
silico method to predict interactions between 283 human endogenous hormones and 590 drugs for 
20 diseases including cancers and non-cancer diseases. We extracted hormone effect paths and drug 
effect paths from a large-scale molecular network that contains protein interactions, transcriptional 
regulations, and signaling interactions. If two kinds of effect paths for a hormone-drug pair intersect 
closely, we expect that the influence of the hormone on the drug efficacy is significant. It has been 
shown that the proposed method correctly distinguishes hormone-drug pairs with known interactions 
from random pairs in blind experiments. In addition, the method can suggest underlying interaction 
mechanisms at the molecular level so that it helps us to better understand the interplay of hormones 
and drugs.

Hormone-drug interactions are crucial for drug treatment, thus sufficient understanding of relations between 
hormones and drugs is required. Numerous reports have concluded that hormones can change drug efficacy. 
For example, a group found that stress hormones (e.g. cortisol, norepinephrine, and epinephrine) significantly 
decrease the apoptotic efficacy of paclitaxel in triple-negative breast cancer cells by affecting DNA damage and 
cell cycle regulation1. In addition, another group observed that men and women with chronic depression showed 
different responses to treatment of sertraline and imipramine, and further reported that female sex hormones can 
improve response to sertraline and hinder response to imipramine2. However, only small part of hormone-drug 
pairs among an enormous number of hormones and drugs have been studied so far. Most of the previous studies 
have focused on only certain types of hormones (especially stress hormones) and drugs (especially cancer-treating 
drugs). For the better understanding of relationships between hormones and drugs, we need a model that can 
systematically test all pairwise combinations of them.

Most of the related previous studies have been performed through in vitro or in vivo based approaches, par-
ticularly using cell lines because mainly studied drugs were cancer-treating drugs. For example, in an experi-
ment to compare apoptotic cells with/without glucocorticoid pretreatment before chemotherapy of paclitaxel and 
doxorubicin respectively in breast cancer cell lines (MCF-7 and MDA-MB-231), it resulted that glucocorticoids 
constrain apoptosis induced by chemotherapy3. In vitro or in vivo based approaches are accurate and reliable, but 
they are not appropriate for screening whole pairwise combinations of hormones and drugs because they require 
high costs. Recently an in silico based approach was used for hormone and drug study. For example, in silico 
modeling was performed to uncover how epinephrine affects apoptosis-regulating mechanisms of eight prostate 
cancer drugs, using ordinary differential equations (ODE)4. They found that epinephrine activates anti-apoptotic 
signaling pathways and eventually decreases the chemotherapeutic efficacy of prostate cancer drugs. Parametric 
characteristics of quantitative models such as ODE models facilitate accurate network analysis but require opti-
mization of numerous parameters. Thus, the performance of quantitative modeling is limited to small networks 
that should be determined by prior knowledge. However, the studies of hormones and drugs require comprehen-
sive and large-scale networks because hormones can affect drug efficacy by inducing signaling crosstalk to drug 
mechanisms of action (MOA) in indirect ways as well as direct ways. For example, epinephrine causes distant 
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signaling crosstalk to MOA of prostate cancer drugs via intermediate molecules4. We thus need comprehensive 
and large-scale networks including MOA of drugs and their neighboring pathways. Large-scale and heterogene-
ous networks have been frequently utilized to predict interactions between two entities. Some research groups 
inferred drug-target interactions by using heterogeneous networks consisting of three sub-networks whose edges 
represent drug-drug chemical structure similarity, target-target sequence similarity, and known drug-target inter-
actions5,6. The models showed good performance for drug-target prediction problem, but they are not fit to pre-
dict hormone-drug relations (more exactly hormone impacts on drug efficacy). For example, hormones consist 
of non-steroid hormones such as peptide hormones as well as steroid hormones, which makes it hard to calculate 
chemical structure similarity between hormones.

Here, we take advantage of large-scale networks to develop a new in silico model for screening the interplay of 
hormones and drugs. We aim to discover that hormones affecting drug efficacy under a specific disease condition. 
To this end, firstly we construct a biological network by collecting molecular interactions from public databases. 
Secondly, two kinds of paths for a hormone-drug pair are inferred: (1) drug effect paths and (2) hormone effect 
paths. Drug effect paths (DEPs) are defined as all possible shortest paths from each drug target to the nearest 
disease gene, which implies drug MOA. Hormone effect paths (HEPs) are defined as the shortest paths from 
hormone receptors to the nearest molecule of the DEPs, and HEPs possibly induce signaling crosstalk to drug 
MOA. Lastly, a scoring function is defined under the main assumption that a hormone whose receptors are closer 
to DEPs of a drug has higher potential to affect the drug efficacy than distant hormones. High-ranked but yet 
unknown hormone-drug pairs are suggested as candidates, and they are supported by their underlying mech-
anisms of interference inferred by the proposed method. This approach is termed as a prediction of Hormone 
Impact on Drug Efficacy based on Effect Paths (HIDEEP). We hope that this large-scale network-based approach 
will improve our understanding of crosstalks between a hormone and a drug.

Results
Data collection.  A biological network consists of molecular interactions collected from three public data-
bases: BioGRID7, KEGG pathways8, TRANSFAC9 (see Materials and methods). Total 192,232 of molecular inter-
actions are collected, including 189,417 gene-gene interactions, 1,198 gene-compound interactions, and 1,617 
compound-compound interactions between 16,744 genes and 1,487 compounds. We collect following data from 
public databases: 1) human endogenous hormones and their receptors from EndoNet10, 2) drug-disease associa-
tions and disease-gene associations from comparative toxicogenomics database (CTD)11, 3) drug-target associa-
tions from DrugBank12 (see Materials and methods). Hormones, drugs, and diseases respectively should have at 
least one receptor, target, and disease gene. As a result, 283 human hormones, 4,781 drugs, and 139 diseases are 
finally extracted.

Disease selection.  Twenty diseases are selected under three criteria for case studies: 1) the number of gold 
standard samples is three or more, 2) the number of disease genes is one or more, 3) various disease types are 
considered (see Materials and methods). Among 4,881 diseases with one or more disease genes, 139 diseases with 
three or more gold standard samples are filtered. Highly ranked ones out of 139 diseases based on the number of 
gold standard samples are non-cancer disease types. Thus, fifteen high-ranked non-cancer diseases and extra five 
cancer diseases are determined as case study diseases. In this way, we choose final twenty diseases, avoiding bias 
to any certain disease type. Table 1 shows the selected twenty diseases and their number of gold standard samples, 
disease genes, and drugs.

Drug effect paths.  Drug effect paths (DEPs), which imply drug MOA, are defined as the shortest paths from 
each drug target to the nearest disease-causing gene (see Materials and methods). The biological network we con-
struct does not include drugs as entities, thus DEPs start vicariously from drug targets. The length of each DEP is 
calculated by distance from a target to a disease gene. For example, the path length of a DEP consisting of three 
molecules becomes two. Drugs ultimately aim to affect disease genes either by physically bindings to them or by 
signal transduction via intermediate molecules. In the case of a drug physically binding to a disease gene as a drug 
target, the length of DEPs becomes zero. A drug may have different DEPs for different disease treatment because 
DEPs of a drug are determined by disease genes of each disease.

Hormone effect paths.  Hormone effect paths (HEPs), which can cause signaling crosstalk on DEPs, are 
defined as the shortest paths from hormone receptors to molecules of DEPs (see Materials and methods). The 
biological network we construct does not include hormones as entities, thus HEPs start vicariously from hor-
mone receptors. A hormone has one or more receptors, and DEPs of a drug consist of one or more molecules. 
A hormone-drug pair, thus, has receptor-molecule pairwise combinations and each receptor-molecule pair can 
have the different shortest paths with a different length. Thus, HEPs become the very shortest paths among the 
all possible shortest paths. HEPs may impact on upstream (e.g. drug target), downstream (e.g. disease gene), or 
intermediate molecules of DEPs, which results in signaling crosstalk on DEPs.

Scoring function.  For a hormone-drug pair, a potential impact that the hormone has an intervention on the 
drug efficacy is evaluated by a scoring function defined under the following assumptions: 1) hormones whose 
receptors are closer to DEPs (i.e. a hormone with shorter HEPs) have a higher potential to affect the efficacy of 
drugs, 2) the more receptors of a hormone are involved in HEPs, the more the hormone affects the efficacy of the 
drug, 3) the more molecules of DEPs are involved in HEPs, the more the hormone affects the efficacy of the drug. 
For example, although two hormones A and B have the same number and length of HEPs for a drug, hormone 
A which has two receptors involved in HEPs is more likely to have impacts on the efficacy of the drug than hor-
mone B which has only one receptor involved in HEPs. Likewise, although two hormones C and D have the same 
number and length of HEPs for a drug, hormone C which has two molecules of DEPs involved in HEPs is more 
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likely to have impacts on the efficacy of the drug than hormone D which has only one molecule of DEPs involved 
in HEPs. Given h, a hormone, d, a drug, R(h), the set of hormone receptors, M(d), the set of molecules of DEPs, 
n(S), the number of distinct start nodes (i.e. receptors involved in HEPs), n(E), the number of distinct end nodes 
(i.e. molecules of DEPs involved in HEPs), we define a potential impact i.as equation (1).

α= × ×− ∈ ∈i h d n S n E( , ) ( ) ( ) (1)d r mmin ( , )r R m M d, ( )

where d(r,m), the shortest path length from receptor r to molecule m and α, a decay constant. Thus, 
∈ ∈ d r mmin ( , )r R h m M d( ), ( )  means a length of HEPs. When there is no HEPs for hormone h and drug d, the length of 

HEPs is represented by infinite and i(h, d) converges to zero. A hormone-drug pair whose n(S) or n(E) is higher 
has a stronger potential impact i.

Model evaluation.  For model evaluation, unlabeled hormone-drug pairs for each disease are randomly sam-
pled from the human hormone set and the corresponding disease-treating drug set. A dataset for each disease 
consists of a gold standard set and an unlabeled set. In order to cover different areas of the search space, each 
disease has five datasets that consist of five different unlabeled sets sampled by multiple permutations. In addition, 
to show results for different sizes of unlabeled sets, we determine the five different sizes of unlabeled sets (i.e. 1, 3, 
5, 7, and 10 times of the size of the corresponding gold standard sets) (Supplementary Table 1). Thus, each disease 
has five datasets per size and totally 25 datasets for the five sizes.

We analyze DEPs and HEPs for every hormone-drug pairs of gold standard sets and unlabeled sets. Every 
hormone-drug pair is scored by the scoring function. The area under the receiver operating characteristic curve 
(AUROC) is used to evaluate how well this model distinguishes known hormone-drug pairs from random 
hormone-drug pairs. In order to calculate AUROC, we draw a Receiver operating characteristic (ROC) curve, 
whose x-axis is the false positive rate (1-specificity) and y-axis is the true positive rate (sensitivity) while varying 
threshold scores. In order to optimize a decay constant, α, we, first of all, apply HIDEEP to datasets with ‘10 
times’ size and evaluate AUROC performance while varying α from two to ten. The performance continuously 
increases as α increases, but it reaches a saturation level at α = 8 (AUROC 0.89) (Supplementary Fig. 1). Thus, 
α is determined as eight for model evaluation and performance comparison in this study. For each of the five 
different sizes, HIDEEP shows the same performance with AUROC 0.89 on average for 20 diseases although 
there are slight differences in individual diseases depending on the sizes (Table 2). Figure 1 shows AUROC per-
formances for five datasets with size ‘10 times’ for each disease. ROC curves for 20 diseases per data size are also 
shown in Supplementary Figs 2, 3, 4, 5, and 6. We additionally evaluate model performance using the area under 
the precision-recall curve (AUPR). The average AUPR for overall 20 diseases is 0.89, 0.77, 0.66, 0.60, and 0.55 
respectively for five unlabeled set sizes (1, 3, 5, 7, and 10 times of gold standard sets). Precision-recall curves for 
20 diseases per data size are also shown in Supplementary Figs 7, 8, 9, 10, and 11. The every AUPR is over 0.77 or 
0.5 for datasets with size ‘1 time’ or size ‘3 times’.

In order to validate the assumption that hormones whose receptors are closer to DEPs have a higher potential 
to affect the efficacy of drugs, we test how significantly short HEPs of gold standard samples are in comparison to 
HEPs of unlabeled samples. To this end, we analyze distributions of the average HEP lengths of a gold standard set 
and five unlabeled sets with ‘10 times’ size for each disease (Supplementary Fig. 12). A two-sample multivariate 

No. Disease # of gold standard samples # of drugs # of disease genes

1 Hypertension 38 199 153

2 Tachycardia 25 88 16

3 Myocardial Infarction 24 88 70

4 Angina Pectoris 23 50 1

5 Diabetes Mellitus, Type 2 22 29 117

6 Atrial Fibrillation 22 42 19

7 Heart Failure 19 86 70

8 Hypotension 17 90 46

9 Seizures 15 189 79

10 Hyperalgesia 15 110 60

11 Hyperglycemia 12 33 18

12 Postoperative Complications 11 55 3

13 Diabetic Nephropathies 11 33 29

14 Venous Thromboembolism 9 6 8

15 Acute Kidney Injury 7 47 55

16 Breast Neoplasms 6 97 404

17 Colonic Neoplasms 6 48 118

18 Ovarian Neoplasms 4 39 77

19 Lung Neoplasms 4 47 167

20 Prostatic Neoplasms 4 70 450

Table 1.  The number of gold standard samples, drugs, and disease genes of selected twenty diseases.
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No. Disease

AUROC

1 times 3 times 5 times 7 times 10 times

1 Acute Kidney Injury 0.92 0.95 0.95 0.96 0.94

2 Angina Pectoris 0.87 0.87 0.87 0.87 0.87

3 Atrial Fibrillation 0.77 0.76 0.76 0.78 0.77

4 Breast Neoplasms 0.81 0.80 0.80 0.76 0.79

5 Colonic Neoplasms 0.89 0.91 0.90 0.87 0.90

6 Diabetes Mellitus, Type 2 0.76 0.73 0.76 0.74 0.74

7 Diabetic Nephropathies 0.84 0.87 0.88 0.89 0.86

8 Heart Failure 0.95 0.94 0.92 0.93 0.93

9 Hyperalgesia 0.91 0.95 0.93 0.94 0.93

10 Hyperglycemia 0.96 0.98 0.98 0.98 0.97

11 Hypertension 0.85 0.87 0.89 0.88 0.87

12 Hypotension 0.92 0.92 0.91 0.91 0.93

13 Lung Neoplasms 0.89 0.93 0.92 0.95 0.95

14 Myocardial Infarction 0.91 0.91 0.91 0.90 0.92

15 Ovarian Neoplasms 0.94 0.98 0.97 0.96 0.98

16 Postoperative Complications 0.92 0.94 0.92 0.92 0.90

17 Prostatic Neoplasms 0.93 0.86 0.85 0.85 0.86

18 Seizures 0.84 0.83 0.83 0.82 0.83

19 Tachycardia 0.93 0.90 0.91 0.90 0.91

20 Venous Thromboembolism 0.91 0.93 0.90 0.91 0.89

Average 0.89 0.89 0.89 0.89 0.89

Table 2.  Performance evaluation of the HIDEEP per the size of unlabeled datasets (AUROC).

Figure 1.  Performance evaluation for five datasets whose unlabeled sets are 10 times of the corresponding 
gold standard set. We evaluate performance for each disease using five datasets whose unlabeled sets are ‘10 
times’ of the gold standard set. The area under the receiver operating characteristic (AUROC) was measured for 
performance evaluation. Here, α, the decay constant, of the scoring function is 8.
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t-test is used to estimate the significance of the difference between the average HEP lengths of two types of sample 
sets for a disease, and 18 out of 20 diseases result in less than p-value 0.01 (Supplementary Table 2). The average 
HEP lengths of a gold standard set and five unlabeled sets with ’10 times’ size for each disease are measured, and 
those for overall twenty diseases are on average 1.00 and 2.42 respectively (Fig. 2a). The average HEP length of 
gold standard samples is less than that of unlabeled samples in every disease. In addition, we compare the per-
centage of hormone-drug pairs whose HEP lengths are zero or one for a gold standard set and unlabeled sets 
for each disease (Fig. 2b). The percentage of a gold standard set exceeds that of unlabeled sets in every disease. 
Compared to 34.93% of unlabeled sets, 82.25% of gold standard sets on average for twenty diseases have HEPs 
with length either zero or one.

We further evaluate whether the proposed method, HIDEEP, still robustly performs when taking out some 
information from the network. There are unique 451 receptors for the 283 hormones: 428 receptors for only a 
single hormone, 17 receptors for two hormones, two receptors for three hormones, one receptor for four hor-
mones, one receptor for seven hormones, and two receptors for eight hormones. We select top six receptors that 
have the most number of interacting hormones under the assumption that a receptor interacting with more hor-
mones is more likely to be critical for the performance of the model: LTB4R2 and CYSLTR1 (eight hormones), 
LTB4R (seven hormones), NR3C1 (four hormones), ADRA2A and CRHR2 (three hormones). We reconstruct 
eight different networks where each of the top six receptors is removed (case 1–6), a network where the top three 
receptors are removed (case 7), and a network where the all top six receptors are all removed (case 8). The average 
AUROC value for 20 diseases is either 0.89 or 0.90 in every case, which shows that there is no big difference from 
the original case performing AUROC 0.89 for overall 20 diseases in every dataset size (1, 3, 5, 7, and 10 times of 
gold standard sets). These results indicate that HIDEEP seems to be robust even when part of the information is 
hidden.

Performance comparison.  We compare the proposed method, HIDEEP, with a state-of-the-art method 
which is closely related to HIDEEP despite the fact that it was published to handle a slightly different problem, 
prediction of drug-drug interactions13. This study predicts pharmacodynamic drug-drug interactions through 
signaling propagation interference using the random walk with restart algorithm on molecular networks (shortly 
called RWDDI). It uses network features only to define a scoring function and represents drugs with their receptor 
proteins, which makes it available to apply this model to our problem. We score gold standard sets and unlabeled 
sets with ‘10 times’ size for 20 diseases by RWDDI. Here, restarting probability of the random walker at each time 
step, r, is determined to 0.7 as it was in the original study. The average, minimum and maximum AUROC values 
of HIDEEP are respectively 0.89 (all diseases), 0.74 (diabetes mellitus, type 2) and 0.98 (lung neoplasms), with 
standard deviation 0.0653 (Fig. 3). Whereas, the average, minimum and maximum AUROC values of RWDDI are 
respectively 0.84 (all diseases), 0.59 (breast neoplasms) and 0.97 (prostatic neoplasms), with standard deviation 
0.0855 (Supplementary Fig. 13). Additionally, the average AUPR of RWDDI for overall 20 diseases is 0.44 while 
that of HIDEEP is 0.55. These results show that HIDEEP is more robust for disease types compared to RWDDI.

HIDEEP is compared with one other closely related method, prediction of drug-target interactions (DTI), 
although it was developed to solve a slightly different problem14. This study implemented a bipartite drug-target 
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network-based DTI inference (shortly called NBDTI). NBDTI requires only information of known DTIs to pre-
dict new DTIs, which makes it available to apply this model to infer hormone-drug interactions. For performance 
comparison, we adopt the same evaluation strategy, 30 times of 10-fold cross-validation used in NBDTI study. The 
13 out of 20 diseases have ten or more positive samples, and the 13 diseases are selected. For cross-validation setup, 
we firstly generate ten folds using one out of five datasets that consist of gold standard sets and unlabeled sets with 
‘10 times’ size. Each of the ten folds has an identical ratio of gold standard samples and unlabeled samples. One 
fold is taken for testing a model while the other nine folds are used for training the model if needed. This proce-
dure is implemented repeatedly ten times, switching a target test fold. The previous sequence from generating ten 
folds to switching a test fold ten times is iterated 30 times. The previous whole process is identically applied to the 
all five datasets. The three methods (NBDTI, RWDDI, and HIDEEP) are tested with the same test folds for a fair 
comparison. Based on this cross-validation strategy, the average AUROC for 13 diseases is measured. HIDEEP 
shows the best performance at α = 8 among values from two to ten, which is consistent with the value of the alpha 
previously tuned by using all datasets (Supplementary Table 3). Figure 3 shows the result of performance compari-
son. Firstly, the average, minimum and maximum AUROC values of NBDTI are respectively 0.57 (all diseases), 0.5 

Figure 3.  Performance comparison with two previous methods. The performance of HIDEEP (pink), 
RWDDI (light blue) and NBDTI (green) for 13 diseases was evaluated by the area under the receiver operating 
characteristic curve (AUROC). For this performance comparison, we adopt an evaluation strategy, 30 times of 
10-fold cross validation used to evaluate NBDTI in the original study. HIDEEP, RWDDI and NBDTI are applied 
to five datasets consisting of a gold standard set and five unlabeled sets with ‘10 times’ for 13 diseases with 10 or 
more positive samples. Thus, each box includes 150 AUROC values for five datasets.
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(hypertension, tachycardia, angina pectoris, heart failure, hypotension, seizures, hyperalgesia, postoperative compli-
cations, diabetic nephropathies) and 0.91 (diabetes mellitus, type 2). The average, minimum and maximum AUROC 
values of RWDDI are respectively 0.84 (all diseases), 0.72 (atrial fibrillation) and 0.94 (hypotension). Whereas, the 
average, minimum and maximum AUROC values of HIDEEP at α = 8 are respectively 0.88 (all diseases), 0.74 (dia-
betes mellitus, type 2), 0.97 (hyperglycemia). The standard deviations of NBDTI, RWDDI, and HIDEEP are respec-
tively 0.1216, 0.0641, and 0.0658. The average AUPRs of RWDDI and NBDTI for overall 13 diseases are respectively 
0.52 and 0.60 whereas that of HIDEEP is 0.58. NBDTI shows random performance 0.5 for the nine of thirteen 
diseases. We figure out that NBDTI is a known drug-target (or hormone-drug) interaction-based approach and its 
characteristic is that only drugs (or hormones) with at least one target (or drug) can be inferred to interaction with 
other targets (or drugs). That is, if either a hormone or a drug in a test pair is not included in the bipartite network, 
this pair is unavailable to be tested by NBDTI and has a score, zero. Unlike drug-target interactions, not many 
hormone-drug interactions have been revealed yet, and NBDIT is not appropriate to predict a problem that does not 
have sufficient positive samples such as hormone impacts on drug efficacy.

Previous work reproduction.  One previous study quantitatively modeled MOA of epinephrine and eight 
prostate cancer drugs by using ODE4. This ODE-based model could describe how epinephrine impacts on the 
drug actions. The eight drugs are inhibitors for molecules of signaling pathways which activates anti-apoptosis in 
prostate cancer. Because those inhibitors are not included in the drug list in this study, we further test the com-
binations of epinephrine and two inhibitors (BADS112A, LY294002) whose efficacy is the highest among eight 
inhibitors. First, as for the epinephrine-BADS112A pair, they figured out that while BADS112A inhibits BAD 
whose phosphorylated proteins have an anti-apoptotic function, epinephrine has the reverse action of BADS112A 
in the following way: epinephrine activates cAMP, cAMP activates PKA, and PKA activates BAD. HIDEEP results 
that BADS112A inhibits BAD and epinephrine has HEPs such as cAMP → PKA family → BAD (Fig. 4a). The 
underlying mechanisms of epinephrine and BADS112A are exactly identical to the findings of the previous study. 
Second, as for the epinephrine-LY294002 pair, the previous study figured out that while LY294002 inhibits PI3K 
which activates BAD, epinephrine has the reverse action of LY294002 in the following ways: epinephrine activates 
cAMP, cAMP activates PKA, and PKA activates BAD. HIDEEP results that LY294002 has DEPs such as PI3K 
family → YWHAQ → BAD and epinephrine has a HEP such as TNF → YWHAQ (Fig. 4b). They used indirect 
association between PI3K and BAD due to lack of molecular interaction information, but HIDEEP reveals more 
in detail that PI3K family has signal transduction to BAD via ‘YWHAQ’15,16. In addition, HIDEEP infers that 
downstream signaling path of epinephrine induces signaling crosstalk on YWHAQ of DEPs of LY294002z and 
related findings are observed in previous studies17,18.

We also examine hormone-drug pairs tested in the previous breast cancer study which is one of in vitro based 
study and which has a limitation to account for underlying mechanisms of interference3. This study reported 
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that dexamethasone decreases the apoptotic efficacy of both paclitaxel and doxorubicin treating breast cancer. 
HIDEEP reveals that paclitaxel has DEPs such as MAPT → EGFR and MAP4 → FN1 and dexamethasone impacts 
on EGFR and FN1 via NR3C1 and ANXA1 respectively, which implies changes in the efficacy of paclitaxel19,20 
(Fig. 4c). Furthermore, HIDEEP reveals that doxorubicin directly targets TOP2A, one of breast cancer-causing 
genes, and dexamethasone has impacts on TOP2A through HEPs such as ANXA1 → SUMO3 → TOP2A and 
NR0B1 → UBC → TOP2A (Fig. 4d). These uncovered molecular relations of the DEPs and HEPs have been 
observed in previous studies21–24.

Network analysis for top three diseases.  For overall five data sizes, HIDEEP averagely best performs 
for hyperglycemia (AUROC 0.98), ovarian neoplasms (AUROC 0.97), and acute kidney injury (AUROC 0.95) 
among twenty diseases, and we implement network analysis for hormone-drug pairs on high ranks for the three 
diseases in order to help us better understand the interplay between hormones and drugs. To this end, for each 
disease we select maximum three hormone-drug pairs satisfying following criteria: 1) pairs within top ten in each 
dataset, 2) pairs with over score ‘1.0’, and 3) unlabeled pairs.

First, hyperglycemia has five hormone-drug pairs satisfying above criteria, and we analyze underlying mech-
anisms of the three pairs with high scores through HIDEEP to support the evidence. Dehydroepiandrosterone 
(DHEA) has DEPs from 14 drug targets (i.e. BABRA1, BABRA2, BABRA3, BABR4, BABR5, BABR6, BABRB1, 
BABR2, BABRD, BABRG1, BABRG2, BABRG3, BABRP, and BABRQ) to eleven disease genes (i.e. SP1, PRKCB, 
NF32L2, INS, INSR, IRS2, NOS3, PTGS2, HMGA1, GCK, and SIM1) via intermediate molecules. Whereas, 
gamma-aminobutyric acid (GABA) physically binds to the 14 targets as well, which means that DHEA and 
GABA share the same targets and receptors. Figure 5a shows some crosstalk mechanisms whose DEPs are the 
shortest. Ellagic acid has DEPs from 15 drug targets (i.e. CA1, CA12, CA14, CA2, CA3, CA4, CA5A, CA5, CA9, 
CSNK2A1, PRKACA, PRKCA, SQLE, and SYK) to 13 disease genes (i.e. GCK, HMGA1, HSD11B1, INS, INSR, 
IRS2, LEPR, NFE2L2, NOS3, PRKCB, PTGS2, SIM1, and SP1) via intermediate molecules. Whereas, melatonin 
has HEPs with length one from six receptors (i.e. CALM3, CALR, ESR1, MTNR1A, MTNR1B, and NQO2) to 27 
molecules of DEPs. Figure 5b shows some crosstalk mechanisms whose DEPs are the shortest. Tolbutamide has 
DEPs from two drug targets (i.e. ABCC8, KCNJ1) to eleven disease genes (i.e. HMGA1, HSD11B1, INS, INSR, 
IRS2. NF32L2, NOS3, PRKCB, PTGS2, and SP1) via intermediate molecules. Whereas, melatonin has HEPs with 
length one from four receptors (i.e. CALMC, CALR, ESR1, and NQO2) to 14 molecules of DEPs. Figure 5c shows 
some crosstalk mechanisms whose DEPs are the shortest. Melatonin has been reported to suppress hyperglyce-
mia, which implies that it can help therapeutic influence of ellagic acid and tolbutamide25.

Second, ovarian neoplasm has two hormone-drug pairs satisfying above criteria. Quercetin has DEPs from 
three drug targets (i.e. ATP5B, HIBCH, and STK17B) to 24 disease genes (i.e. AKT1, BIRC5, BRCA2, CCNE1, 
CDH1, CDKN1B, CTNNB1, EDNRA, EGFR, ERBB2, FASN, HDAC6, IL6ST, MAPK1, MAPK3, MET, MLH1, 
NR5A1, SKP2, SOD1, STAT3, TERT, XIAP, and YAP1) via intermediate molecules. Whereas, transforming 
growth factor beta 1 (TGF-beta1) has HEPs with length one from two receptors (i.e. VASN and TGFBR2) to three 
molecules of DEPs. Figure 5d shows some particular crosstalk mechanisms whose DEPs are the shortest or cross-
talk mechanisms that TGF-beta 1 affects greater than two molecules of each DEP. TGF-beta1 has been reported to 
modulate ovarian cancer invasion through upregulation of CAF-derived versican, which implies that it may have 
interference on the therapeutic efficacy of quercetin26. Disulfiram has DEPs from two drug targets (i.e. ALDH2 
and DBH) to three disease genes (i.e. EGFR, MAPK1, and MAPK3) via intermediate molecules. Whereas, calcit-
riol has HEPs with length one from one receptor (VDR) to three molecules of DEPs. Figure 5e shows all possible 
crosstalk mechanisms inferred by HIDEEP. Calcitriol has been observed to inhibit the proliferation of ovarian 
cancer cells, which implies that it can help therapeutic influence of disulfiram27.

Third, acute kidney injury has five hormone-drug pairs satisfying above criteria, and we select three pairs with 
high scores for mechanism analysis. Dinoprostone has DEPs from three drug targets (i.e. PTGER1, PTGER2, and 
PTGER4) to 18 disease genes (i.e. ALB, BAX, CCR5, CD44, GSK3B, HBEGF, HSPA1A, NFE2L2, NOS2, NOS3, 
OCLN, PPARG, RAPGER3, SIRT1, SPP1, TNF, TP53, and VEGFA) via intermediate molecules. Whereas, serotonin 
has HEPs with length one from 14 receptors (i.e. ADRA2A, ADRA2B, HTR1A, HTR1B, HTR1D, HTR1E, HTR1F, 
HTR2A, HTR2B, HTR2C, HTR4, HTR5A, HT6, and HTR7) to nine molecules of DEPs. Figure 5f shows the par-
ticular crosstalk mechanisms that serotonin’s HEPs affect more than two molecules of each DEP. It was observed that 
serotonin reuptake inhibition causes kidney vasoconstriction with resultant hypoperfusion. In other words, sero-
tonin may have assistant influence for therapeutic efficacy of dinoprostone by preventing or treating acute kidney 
injury28. Fenoldopam has DEPs from seven drug targets (i.e. ADRA1A, ADRA1D, ADRA2A, ADRA2B, ADRA2C, 
DRD1, and DRD5) to 18 disease genes (i.e. ALB, BAX, CCR5, CD44, GSK3B, HB3GF, HSPA1A, NFE2L2, NOS2, 
NOS3, OCLN, PPARG, RAPGEF3, SIRT1, SPP1, TNF, TP53, and VEGFA) via intermediate molecules. Whereas, 
acetylcholine has HEPs with length one from five receptors (i.e. CHRM2, CHRM3, CHRM4, CHRM5, and 
CHRNB1) to eleven molecules of DEPs. Figure 5g shows some particular crosstalk mechanisms whose DEPs include 
ELAVL1, one of the intermediate molecules. It was observed that acetylcholine receptor agonist attenuates septic 
acute kidney injury, which implies that acetylcholine can help therapeutic influence of fenoldopam by suppressing 
inflammation29. Alprostadil has DEPs from two drug targets (i.e. PTGER1 and PTGER2) to 15 disease genes (i.e. 
BAX, CD44, GSK3B, HBEGF, NFE2L2, NOS2, NOS3, OCLN, PPARG, RAPGEF3, SIRT1, SPP1, TNF, TP53, and 
VEGFA) via intermediate molecules. Whereas, progesterone has HEPs with length one from four receptors (i.e. 
ESR1, NR3C2, OPRK1, and PGR) to eleven molecules of DEPs. Figure 5h shows some particular crosstalk mecha-
nisms involving ESR1 which has the most number of HEPs among all receptors. It was observed that progesterone 
participates in kidney electrolyte balance whose abnormality can cause acute kidney injury, and this observation 
implies that progesterone can change the therapeutic efficacy of alprostadil30.
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Discussion
We developed an in silico model called as HIDEEP that predicts hormone-drug pairs whose hormones have 
potential impacts on drug actions and eventually can change drug efficacy. To this end, we took advantage of com-
prehensive and large-scale molecular networks in consideration of that a hormone can cause signaling crosstalk 
to MOA of a drug in direct or indirect (distant) way. HIDEEP has following four characteristics. First, it is not 
confined to specific disease types but can be applied to any disease which has one or more disease genes. Second, 
it can be applied to any hormone-drug pair whose hormone receptors and drug targets are known. Third, it gives 

Figure 5.  Underlying mechanisms of hormone-drug pairs with high scores for top 3 diseases, hyperglycemia, ovarian 
neoplasms and acute kidney injury. Each node type means drug (black), hormone (purple), drug target (green), 
disease gene (red), hormone target (yellow), intermediate molecule (gray). Each figure shows how a hormone causes 
crosstalk to drug MOA using drug effect paths and hormone effect paths analyzed by HIDEEP. (a–c) Three figures are 
for hyperglycemia. (d,e) Two figures are for ovarian neoplasms. (f–h) Three figures are for acute kidney injury.
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not simple interactions (e.g. hormone A and drug B interact each other) but intimately directional relations of 
hormone-drug pairs (e.g. hormone A has an impact on drug B efficacy). Last, it shows underlying mechanisms of 
candidate hormone-drug pairs and helps to understand how a hormone induces signaling crosstalk to drug MOA 
and results in changes in drug efficacy.

The average HEP lengths of known hormone-drug pairs exceed those of unlabeled pairs in all twenty diseases, 
supporting the assumption that hormones have the higher potential to affect the efficacy of drugs if their recep-
tors are closer to DEPs of the drugs. In addition, HIDEEP performs AUROC 0.89 on average for diverse twenty 
diseases and this result implies that HIDEEP can be widely applied to various kinds of other diseases. The perfor-
mance comparison with a state-of-the-art method (i.e. RWDDI) and a closely related method (i.e. NBDTI) shows 
that HIDEEP averagely better performs for overall diseases with high AUROC value and small variance than 
RWDDI and NBDTI. It implies that the HIDEEP is more robust for disease types compared to the two methods. 
In addition, HIDEEP uses paths to predict hormone impacts on drug efficacy, thus it can elucidate hormones’ 
signaling crosstalk mechanism.

Hormones are affected by numerous factors (e.g. a disease, drug treatment, growth, weight change, aging, 
dietary, or psychological stress), which results in different hormone levels in individuals. As sertraline was deter-
mined as a more appropriate antidepressant rather than imipramine for a depressed woman by taking account 
into the sex hormones2, individual hormone difference should be considered for effective drug treatment. Thus, 
precision medicine can be accelerated by considering hormone impacts on drug efficacy. HIDEEP can serve as a 
first-step computational approach for high-throughput identification of signaling crosstalks between hormones 
and drugs and also can give new insights into better precision medicine. Due to limited known hormone-drug 
pairs whose hormones impact on the efficacy of the drugs, the sizes of gold standard sets used in this study are not 
sufficiently large. More studies about hormone-drug association are required and hormone-drug pairs with high 
scores graded by HIDEEP can be suggested as candidates for future in vitro or in vivo experiments. Additionally, 
in the future, we plan to challenge weighted networks that can make it feasible for a model to come closer to the 
real biological system and improve the predictive power.

Methods
Integration of massive molecular interactions.  We collect molecular interactions from three public 
databases: BioGRID7 (protein-protein interactions), KEGG pathways8 (signaling interactions, gene regulatory 
interactions, and protein-protein interactions), and TRANSFAC9 (gene regulatory interactions). In order to inte-
grate heterogeneous data from the three different databases, we use reference identifiers as follows: Entrez iden-
tifiers for genes31 and KEGG compound identifiers8 for chemical compounds. Proteins are represented by their 
encoding genes, thus each entity of the molecular interactions is either a gene (protein) or a compound.

Interactions from KEGG pathways are collected from KEGG Markup Language (KGML) files using KEGGgraph 
R package32. Interactions from KEGG pathways have sixteen relation types whose entities are genes (proteins) or 
compounds. We filter out particular relation types if they are metabolic reactions, if the number of relations is too 
small, or if the meaning or direction of relations is not clear. Interactions for eight relations types, therefore, are 
extracted (i.e. activation, inhibition, expression, repression, phosphorylation, dephosphorylation, binding/associ-
ation, and dissociation). Gene regulatory interactions are collected from TRANSFAC as well as KEGG pathways.

Protein-protein interactions facilitate rich network analysis with massive molecular interaction data. Physical 
interactions are extracted from BioGRID. In order to construct a reliable network, we extract only physical protein 
interactions which have interactions types such as direct interaction, physical association, and co-localization. For 
network analysis, protein-protein interactions are considered as bidirectional while the other signaling interac-
tions and gene regulatory interactions are considered as unidirectional.

Arrangement of hormones, drugs, and disease genes.  EndoNet provides physical interactions 
between human hormones and their receptor proteins. DrugBank provides physical interactions between drugs 
and their target proteins. We extract hormones that have one or more receptors and drugs which have one or 
more targets. CTD provides two relation types (‘marker/mechanism’ and ‘therapeutic’) for disease-gene associa-
tions. ‘Marker/mechanism’ means that a gene is a biomarker of a disease or play a role in the etiology of disease on 
the other hand ‘therapeutic’ means that a gene is a therapeutic target for disease treatment11. In order to consider 
etiology associations, only disease-gene associations with ‘marker/mechanism’ are extracted.

Arrangement of gold standard sets.  There has been no database or article yet which provides lists of 
hormone-drug pairs whose hormones affect drug efficacy. In order to define gold standard sets for each dis-
ease, we determine to extract hormone-drug interactions from drug-drug interactions. DrugBank provides 
drug-drug interactions and their detailed descriptions which include directional relations between drugs (e.g. 
trastuzumab-doxorubicin: trastuzumab may increase the cardiotoxic activities of doxorubicin). Therefore, we 
firstly clarify a directional relation for every drug-drug interaction. The relations can be classified into four cat-
egories such as ‘drug A enhances the action of drug B’, ‘drug A disturbs the action of drug B’, ‘drug A induces 
adverse effects from drug B’, or ‘unknown’. We filter out hormone-drug pairs with ‘unknown’ relation so that 
extracted ‘drug A - drug B interactions’ are converted to ‘influence from drug A to drug B’. Secondly, the ‘influ-
ence from drug A to drug B’ is extracted if drug A is one of the human hormones we collect from EndoNet (i.e. 
from ‘influence from drug A to drug B’ to ‘influence from hormone A to drug B’). We finally choose it as a gold 
standard sample if its drug is included in target disease-treating drugs.

Selection of diseases.  We aim to apply HIDEEP to twenty as various diseases as possible. To this end, we 
extract 139 diseases which have at least three gold standard samples as well as at least one disease gene. It is firstly 
required to filter out similar or superior diseases of other diseases to avoid overlaps. Thus, we eliminate superior 
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diseases which have over two subordinate (child) diseases based on MeSH hierarchical trees33. Second, diseases 
are tested whether they have similar MESH descriptions or neighbor MESH tree numbers to other diseases, and 
then similar diseases except for one representative disease are eliminated. When extracted diseases are sorted by 
the sizes of gold standard samples, diseases on high ranks are mostly non-cancer diseases. In order to avoid any 
bias coming from particular disease types, we determine to cover cancer diseases as well as non-cancer diseases 
even though the cancer types are not on high ranks in sorted disease list. Consequentially fifteen non-cancer 
diseases and five cancer diseases are selected for case studies.

Inference of drug effect paths.  In order to show therapeutic efficacy for disease treatment, drugs ulti-
mately target disease genes either by indirectly affecting them via intermediate molecules or by directly binding to 
them (Fig. 6a). Disease genes tend to cluster each other by being in the neighborhood, and diseases are caused by 
a breakdown of a disease gene set rather than a single disease gene34,35. A research group figured out that it is not 
necessary for a drug to target all disease genes, and they defined a new method called ‘closest paths’ which implies 
drug MOA36 (Fig. 6b). We, therefore, refer to the ‘closest paths’ and newly define drug effect paths (DEPs) as a set 
of all possible shortest paths from each drug target to the nearest disease gene, which implies MOA of a drug. The 
shortest paths between two molecules are searched based on the breadth-first search algorithm. As Fig. 6c shows, 
for example, a drug has two drug targets, T1 and T2, and their nearest disease genes, S1 and S2 respectively. The 
shortest path from T1 to S1 has four molecules and path length three, and each of the shortest paths from T2 to S2 
has three molecules and path length two (Fig. 6c). Thus, here the drug has totally three DEPs.

Inference of hormone effect paths.  We assume that hormones whose receptors are closer to DEPs have 
the higher potential to affect drug efficacy. Thus, hormone effect paths (HEPs) are newly defined as the shortest 
paths from hormone receptors to molecules of DEPs and HEPs possibly cause signaling crosstalk to DEPs. As 
Fig. 6d shows, for example, a hormone has two receptors, R1 and R2, and their nearest molecules of DEPs, T2 and 
S1. The length of the shortest paths from R1 to T2 is shorter (i.e. two) than that of the shortest path from R2 to 
S1 (i.e. three). We only consider the very shortest paths among all shortest paths from each receptor to molecules 
of DEPs, thus HEPs become the shortest paths from R1 to T1 (i.e. R1 → M1 → T2 and R1 → M2 → T2). DEPs 
consist of the shortest paths from each drug target to the nearest disease gene, which results that the DEPs have 
one or more different lengths (e.g. two and three) in Fig. 6c. Whereas, HEPs consist of shortest paths from overall 
receptors to the nearest molecules of DEPs, which results that HEPs have the only one length (e.g. two) in Fig. 6d.

Code availability.  The code and data used in the analysis are available at: https://github.com/MijinKwon/
HIDEEP.
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