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Abstract 
GeoSpelling as the basis of the Geometrical Product Specifications (GPS) standard [1] enables a 
comprehensive modeling framework and an unambiguous language to describe geometrical variations 
during the overall product life cycle. This is accomplished by providing a set of concepts and operations 
based on the fundamental concept of the “Skin Model”. However, the definition of GeoSpelling has not been 
successfully completed. This paper presents a novel approach for a formal description of GeoSpelling 
concepts. In addition to mapping fundamental concepts and operations to discrete geometry objects, we 
investigate the use of Monte Carlo Simulation techniques for skin model simulation when considering 
geometrical specifications. The results of the skin model simulations and visualizations are shown and the 
performances of the described simulation methods are compared to each other. 
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1 INTRODUCTION 

The control of product geometrical variations during the 
whole development process is an important issue for cost 
reduction, quality improvement and company 
competitiveness in the global manufacturing era [2].  

During the design phase, geometric functional 
requirements and tolerances are derived from the design 
intent. The modeling of product shapes and dimensions is 
now largely supported by geometric modeling tools. 
However, permissible geometrical variations cannot be 
intuitively assessed using existing modeling tools, and this 
results in the specification uncertainty. 

In addition, the manufacturing and measurement stages 
are the main geometrical variations generators according 
to the two following axioms [3-4]: 

 • Axiom of manufacturing imprecision: all manufacturing 
processes are inherently imprecise and produce parts 
that vary. 

 • Axiom of measurement uncertainty: no measurement 
can be absolutely accurate and with every 
measurement there is some uncertainty about the 
measured value or measured attribute. 

To reduce the total uncertainty, the product geometrical 
variations should be considered during the whole product 
life cycle (figure 1).  

In order to evaluate product geometrical variations and 
ensure that the fabricated product can satisfy the 
functional requirements, designers should determine the 
limited values that constrain product geometrical 
variations. This process is now well known as 
specification. 

In the context of Digital Mock-Ups (DMUs), the design 
process is supported by modeling, simulation and 
visualization tools such as CAD systems. The Digital 
Mock-Up, as a “digital” alternative to constructing physical 
parts, should be enriched by geometrical variation models 
to allow testing of design errors on assemblies and 

realistic visualization of the product. At the manufacturing 
level, multiple representations based on smooth surfaces 
and discrete representations (triangular meshes) are 
considered. Moreover, an ordered or unordered set of 
points resulting from manufactured part acquisition is 
processed for the purpose of product inspection. 

 

Figure 1: Geometrical variations during the product life 
cycle. 

A comprehensive view of Geometrical Product 
Specifications should consider multiple geometric 
representations, and as well as suitable processing 
techniques and algorithms. The discrete geometry theory 
can offer a great support in this area, since discrete 
geometry is a mathematical research field related to 
geometrical objects whose nature or property is discrete. 
Therefore, it can provide the theory to handle both point 
and polyhedral mesh based descriptions. 

The organization of this paper is as follows. After a 
comprehensive review of Geometrical Product 
Specifications and geometric tolerancing approaches 
(section 2) we show their limitations in considering 
multiple geometric representations and non-ideal entities. 
The principle of discrete geometry for GeoSpelling is 
described in section 3. Skin model simulation and 
visualization are highlighted in section 4. Afterwards, the 
skin model simulations which consider geometric 
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tolerances and results comparison are developed in 
section 5. The conclusion is given in section 6. 

 

2 RELATED WORK 

Many efforts to build specification models for geometrical 
tolerancing have been attempted in recent years. The 
existing approaches can be mainly classified into 
standard-based and mathematical models for tolerancing . 

The standard-based methods rely on technical drawings, 
and are based on the concepts of tolerance features, 
tolerance zones and datum. This geometrical tolerancing 
representation was adopted by ISO 1101-2004, ISO 5459-
2000, and ASME Y14.5-2009, and it was the most popular 
way to describe tolerance requirements in the past years. 
However, this method cannot keep up with current 
tolerance requirements, since it is based on human 
interpretation and is not convenient to transfer the data 
what is now a digitally- based industry. 

Mathematical models for tolerancing can be classified into 
several groups. The offset zone approach proposed by 
Requicha [5] obtains the tolerance zone by offsetting the 
ideal feature a certain distance and this method is suitable 
to geometrical models with simple shape representations. 
Jayaraman and Srinivasan introduced the Virtual 
Boundary Requirements (VBRs) method [6] to improve 
the offset zone method and to define the virtual boundary 
by mathematical foundations. The VBRs method 
considers assembly and material volume requirements. 
However, its shortcoming is that the results are not 
compatible with GPS standards and cannot describe all 
kinds of tolerances. Hoffman [7] and Turner [8] defined 
tolerancing models in different dimension spaces, and 
Fortini [9] introduced the vector tolerancing concept in 
parameter space, and then Wirtz [10] argued that vector 
tolerancing should be included in the ISO standards. The 
shortcoming of the vector tolerancing method is that it is 
not able to describe the tolerance features and the 
geometrical variation requirements. Bourdet and Clement 
[11] proposed the Small Displacement Torsor (SDT) 
theory, which can describe the tolerancing types by the 
small rigid displacement movement of geometric features. 
In contrast, this method is only appropriate for ideal 
features. Clement and Riviere [12] introduced the 
Technologically and Topologically Related Surfaces 
(TTRS) theory. According to TTRS, three-dimensional 
surfaces or features are classified according to their 
respective degree of invariance under the action of rigid 
motions. Basically, seven main features equivalent to 
kinematic lower pairs are identified: planar feature, 
cylindrical feature, revolution feature, spherical feature, 
prismatic feature, helicoïdal feature and complex feature. 
Each main feature is then described by a unique minimum 
geometrical reference element (MGRE) that allows 
positioning in Euclidean space. An MGRE is set as a 
combination of elementary geometrical objects: point, line 
and plane. TTRS Theory has been adopted by ISO 
TC213 and successfully implemented in the CATIA v5 
CAD system to manage assembly constraints and 
tolerance annotations. 

All of the methods described above cannot consider non-
ideal features, and some of them even lead to ambiguous 
interpretations. The model of GeoSpelling [13] adopted by 
ISO-17450 allows a unified description of ideal and non-
ideal features and permits a unique expression of 
mathematical parameterization of geometric features. 

 

3 DISCRETE GEOMETRY FUNDAMENTALS OF 
GEOSPELLING 

GeoSpelling proposed by Mathieu and Ballu [14] is used 
to describe both ideal and non-ideal geometric features 

[1]. Indeed, it allows the expression of product 
specifications from function to verification with a common 
language. This model is based on geometrical operations 
which are applied not only to ideal features defined by 
CAD systems, but also to the non-ideal features which 
can represent a real part. These operations include 
partition, extraction, filtration, association, collection and 
construction items. 

Discrete geometry research focuses on basic discrete 
geometrical objects, such as points, segments, triangles 
and other convex discrete shapes, and it is quite efficient 
to implement digital discrete processing techniques. 

Therefore, discrete geometry theories and techniques are 
suited to enhance the data processing capabilities of 
GeoSpelling. Based on the standard [4], a specification is 
defined as a condition on a characteristic defined from 
geometric features which are created from a skin model 
by different operations. The concepts of "characteristic," 
"feature," and "operation" are then mapped to their 
underlying discrete geometry mathematical concepts as 
summarized in table1.  

 GeoSpelling Discrete Geometry 

Feature non-ideal 
feature 

point, segment, 
triangle, point set, 
polyline, mesh 

ideal feature geometric shapes: 
plane, cylinder, 
sphere, … 

Characteristic distance point to segment, 
point to triangle, 
segment to segment, 
segment to triangle 

angle segment to segment, 
segment to plane, 
plane to plane 

Operation partition segmentation 

extraction sampling 

filtration outlier removal, 
filtering 

association approximation, 
interpolation 

collection union-Boolean 
operation 

construction intersection-Boolean 
operation 

Table 1: Concepts mapping between GeoSpelling and 
discrete geometry. 

3.1 Features 

In GeoSpelling, features include non-ideal features and 
ideal features. In discrete geometry, non-ideal features 
are discrete shapes, such as points, segments, triangles, 
point sets, polylines, and polyhedral meshes. Ideal 
features are derived from the classification of 3D surfaces 
based on their invariance under the action of rigid 
motions. Ideal features can be obtained by association 
operations.   

3.2 Characteristics 

In GeoSpelling, characteristics include distances and 
angles. While in discrete geometry, distances are defined 
between discrete shapes: point-point, point-segment, 
point-triangle, segment-segment, segment-triangle and in 
a general case to Hausdorff distances. The angles are 
related to the three well-known cases: angles between 
segment-segment, segment-plane, and plane-plane. 



 

3.3 Operations  

Partition operation is used to identify bounded features [1]. 
In discrete geometry this kind of operation is called 
segmentation. The majority of point set segmentation 
methods can be classified into three categories: edge-
detection method, region-growing method and hybrid 
method [15]. The main problem of the edge-based 
method is that when the points are near sharp edges they 
are quite unreliable. This problem means that the edge-
based method has a relatively high sensitivity to 
occasional spurious points. The advantage of face-based 
techniques is that they work on a larger number of points 
to reduce the risk of sensitivity to occasional spurious 
points, and they can identify the points that belong to each 
surface, but the main disadvantage is time processing. 
The hybrid method has been developed by combining the 
edge-based and region-based methods together to 
overcome the limitations involved in the original methods. 

Extraction operations are used to identify a finite number 
of points from a feature with specific rules [1]. In discrete 
geometry these rules are equivalent to sampling 
techniques. Zhang et al. [16] classified the extraction 
strategy into four categories: grid extraction, stratified 
extraction, special curve extraction and point extraction. 
Depending on the invariant class of the surface, users can 
determine the prior extraction strategy. Other extraction 
strategies were investigated in literature [17], such as 
Hammersley sequence sampling, the Halton-Zaremba 
sequence, Aligned systematic sampling, and Systematic 
random sampling. 

Filtration operations are used to distinguish roughness, 
waviness, form, and so on, by separating the different 
wavelength components into predefined bandwidths [1]. 
There are already some options in today’s GPS 
standards, such as polynomial fitting, 2RC filtering, 
Gaussian fitting, wavelet filtering, etc. [18]. In discrete 
geometry, signal processing filtering techniques and other 
techniques such as outlier removal, based on a certain 
criterion, are reported in [19]. 

Association operations are used to fit ideal feature(s) to 
non-ideal feature(s) according to specific rules [1]. In 
discrete geometry, association operations fit ideal 
feature(s) to discrete geometric feature(s) according to 
given criteria, such as the Moving Least Squares (MLS) 
method. MLS methods take the distance influence into 
account when calculating the association arithmetic  [20]. 

Collection operations are used to consider some features 
together, which play a functional role, and construction is 
used to build ideal feature(s) from other ideal feature(s) 
[1]. In discrete geometry union-Boolean operations and 
intersection-Boolean operations [21] respectively have the 
same capability. 

 

4 SKIN MODEL SIMULATION 

The skin model is a non-ideal surface model. It is a virtual 
model imagined by designers when taking into account 
different kinds of geometric defects. The main originality of 
GeoSpelling is to build geometric models for tolerancing 
specification not from nominal models but from the skin 
model itself. It can also help designers to express 
specifications corresponding to manufacturing 
requirements. Few research studies have focused on the 
skin model simulation. Chiabert developed a shape 
identification method of the skin model using rigid body 
motion and Monte Carlo simulation [22]. Samper [23] 
proposed a finite element analysis method to simulate 
form defect expressions of skin models. However, there is 
no uniform way to express the skin model nowadays. 
Therefore, the skin model simulation method will be 
discussed here. Three different statistical methods are 

considered in this paper: 1D Gaussian distribution, multi-
Gaussian distributions and Gibbs sampling. The details of 
each method are explained below.  

4.1 1D-Gaussian method 

In probability theory, the Gaussian distribution is a 
continuous probability distribution that is often used as a 
first approximation to describe real-valued random 
variables that tend to cluster around a single mean value. 
The graph of the associated probability density function is 
“Bell”-shaped as showed in figure 2.  

 

Figure 2: The principle of 1D-Gaussian method. 

The principle of the 1D-Gaussian method can be 
described in figure 2. The “bell” shape reflects the scope 
of the 1D-Gaussian distribution acting on one point. It is a 
random value and it can be calculated by the probability 
density function of the 1D-Gaussian (Formula 1). In this 
formula, the mean value is the input points’ coordinates, 
and the variance determines the width of the Gaussian 
distribution. This method uses the Gaussian variable as 
the deviation value in the direction of vertex normal (the 
vertex normal estimation method is explained in section  
3.3), then it applies this calculation to each point, the 
distribution parameters yield formula 2, and then the 
result is illustrated in figure 3 with different views of the 
skin model of a plane. 
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(a) skin model         (b) front view             (c) left view 

Figure 3: 1D-Gaussian skin model. 

4.2 Multi-Gaussian method 

A multivariate Gaussian distribution is used to generate 
random vectors. The trivariate Gaussian distribution is 
considered in this work. A spatial random vector is 

defined as
1 2 3

( , , )
T

X X X X= . The probability density 

function of multivariate Gaussian distribution can be 
expressed as formula 3. 

( , ) : ( )X N f xµ≈ ∑ =

1

3 1
2 2

1 1
exp( ( ) ( ))

2(2 )

T
x xµ µ

π

−

− − ∑ −

∑

                     (3) 



 

Where∑  is the covariance matrix, ∑  is the determinant 

value, and µ is the mean vector. 

The principle of this method is described in figure 4. The 
ellipsoid reflects the scope of 3D-Gaussian distribution 
acting on one point. It is a random vector and can be 
calculated by the probability density function of the 3D-
Gaussian (formula 3). In this formula, the mean value is 
the point’s coordinates, and the relationships among each 
axis are constrained by the covariance matrix. Figure 5 
displays different views of the skin model of a plane when 
applying this calculation to each point. 

 

 

Figure 4: The principle of 3D-Gaussian method. 

 

 

 

 

(a) skin model         (b) front view            (c) left view 

Figure 5:  3D-Gaussian skin model. 

4.3 Gibbs Method 

The Gibbs sampling algorithm is used to generate a 
sequence of samples from the joint probability distribution 
of two or more random variables. It is an iterative method 
based on Markov chain Monte Carlo (MCMC) algorithms. 
It aims to design a Markov chain whose stationary 
distribution is the target distribution. It requires an initial 
value of the parameters, and at each iteration, each 
parameter of interest is sampled a given value from the 
other parameters and data. Once all the parameters of 
interest are sampled, the nuisance parameters are 
sampled given the parameters of interest and the 
observed data [24-25]. This characteristic of the Gibbs 
method can make the random distribution of point set of 
skin models approximate a Gaussian distribution. 

In order to determine the number of iterative runs, the 
probability distribution of the normality assumptions of 
Gibbs should be considered. The normal distributions are 
simulated using Minitab software for different iterative runs 
(figure 6). The results show a good convergence at 10000 
iterations. 

(a) N=10                 (b) N=100             (c) N=10000 

Figure 6: Normality assumption of Gibbs method. 
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Gibbs sampler select candidate points from this 
dimension conditional distribution. The related process is 

that, at beginning, the time is equal to zero ( = 0t ) and it 

has an initial value (0)X . When t is increasing 

( = 1, 2, ...,t T ), then ( )X t follows a certain function to 

generate new point to replace old one and iterative 
calculation is performed until it converges to the target 
value. The corresponding pseudo-code is described as 
follow.  

1. Let 
1 1

= ( - 1)X tx  

2. Let j is a variable between [1,d ]. For 1, 2, ...,j d= , 

using ( )-jj
xf X to get candidate point ( )

*

j
tX , and 

then update ( )
*

j
tX . 

3. Let 
*

1
( ), ..., ( ))( ) = (

*

d
t tX t X X and then increase t . 

This iterative process generates random variables, which 
follow the bivariate normal distribution, can simulate the 
skin model. The result is showed in figure 7. 

 

 

 

(a) skin model            (b) front view           (c) left view 

Figure 7: Gibbs Sampling Skin model. 

4.4 Skin model visualization 

Tolerance values are much smaller than features’ sizes, 
so it is difficult to visualize the skin model with multi-scale 
geometry. This section proposes to use RGB color scale 
mapping technique to visualize the geometrical deviations 
on the vertex normal direction. The skin model can be 
reflected by a continuous color strip. 

Vertex normal estimation 

A normal vector is a local geometric property of a 3D 
surface, which is specific to a given point or a planar 
facet. Many attempts have already been made for reliable 
estimation of normal vectors from discrete point data [15].  

Given a polyhedral mesh surface, the normal vector at a 
vertex can be estimated as the weighted average of the 
normal vectors of the adjacent triangle facets around it. 
Considering an arbitrary vertex p  in a discrete mesh 

surface Σ , assuming its neighbor contains N  triangles, 
then the normal vector at p could be estimated using 

formula 4. 
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Where, 
i
n ( 1, ... )i N=  indicate the unit normal vector of 

the i th triangle facet. 
i

ω ( 1,...i N= ) are the weight 

coefficients corresponding to the normal vectors of 

facets
i
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The method used here for the weight coefficients 
computation considers the influence of the area of each 
adjacent triangle facet and the distance between the given 
vertex and the barycenter of each adjacent facet. 

Parameter
i

ω  can be calculated by formula 5. 
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                                                            (5) 

Where, 
i

A ( 1,...i N= ) represents the area of the i th 

triangle facet. 
i

d ( 1,...i N=  ) are the distances between 

the vertex p  and the barycenter of the i th triangle facet. 

Parameter N is the number of all the triangle facets 
adjacent to the given vertex. 

The notations mentioned in the above formula are 
described in figure 8. Figure 9 shows examples of vertex 
normal estimation considering planar and cylindrical 
shapes.   

     

(a) mesh structure                 (b) vertex normal 

Figure 8: Vertex normal estimation. 

 

 

 

 

 

 

 

 

 

Figure 9:  Example of vertex normal estimation on discrete 
shapes. 

RGB mapping technique 

The geometrical deviations between the simulated skin 
model and the initial point set are computed by projecting 
the deviation vectors on the vertices normal. A continuous 
RGB color scale is then used to visualize the skin model 
(figure 10). 

       

(a) point set                   (b) color scale 

Figure 10: Skin model with color scale. 

 

5 CONSTRAINT-BASED SKIN MODEL 

After creating the random point set to simulate the 
unconstrained skin model, geometrical and dimensional 
tolerances should be considered to satisfy the 
specification requirements. The following section mainly 
discusses the form, orientation and position tolerance 
considerations to enhance the skin model simulation. 

Form specification 

To estimate form specification, the first step is to 
determine the tolerance zone direction using the Principal 
Component Analysis (PCA) method. Then all of the point 
set should belong to the tolerance zone. The principle of 
this method can be described by figure11, where n is the 

vector of principle direction of the point set, 
1
M and 

2
M are two arbitrary points, and d is the distance between 

these two points in the direction of the vector n . 

 

Figure 11: Principle of flatness specification. 

PCA is a statistical method for principal component 
analysis by covariance analysis. 

Consider a discrete shape 
N
P  represented by an arbitrary 

set of points , ,[ ]
T

i i i i
P x y z= . The PCA method 

computes the principal axes of the discrete shape using 
the following three steps. 

1. The origin of the principal coordinates system is 

determined as the centroid of 
N
P  which is calculated 

by formula 6. 

1

1
( )

N

pca i i N
i

o p p P
N =

∑= ∈                                       (6) 

2. The covariance matrix is defined by formula 7. 

cov
1

( )( ) ( )
N T

i pca i pca i N
i

M p o p o p P
=

∑= − − ∈                (7) 

3. Eigenvalues and eigenvectors are estimated. The 
first principal axis is the eigenvector corresponding to 
the largest eigenvalue. The two other principal axes 
are obtained from the remaining eigenvectors. 

The tolerance zone direction is determined using the PCA 
method, and the point set should satisfy the tolerance 
zone constraint (formula 8). 

( ) ( )
flatness

Max Min t⋅ − ⋅ ≤
i i

m n m n                                (8) 

Where m
i
 is the vector of i th point, and n is the vector of 

tolerance direction, 
flatness

t is the flatness tolerance value. 

Orientation and position specification 

Besides form constraints, the orientation and position 
constraints must also be considered. For these two 
constraints, the tolerance direction is the same as the 



 

normal direction of the datum plane and all the points 
should be within the tolerance zone. 

The parallelism specification (figure 12) satisfies the 
constraints in formula 9.  

( ) ( ) parallelismi i
d Max Min t= ⋅ − ⋅ ≤m n m n                    (9) 

 

Figure 12: Principle of parallelism specification. 

Where n is the normal direction of the datum plane, 
i

M  is 

an arbitrary point, and d is the distance between two 

points in the direction of vector n . 

For position specification (figure 13), the related constraint 
is described by formula 10. 

( , ) [ , ]
2 2

position position

i A

t t

d Dist m P a a= ∈ − +                (10) 

 

Figure 13: Principle of position specification. 

Where n  is the normal direction of the datum plane, 
i

M is 

an arbitrary point, and d is the distance between the point 

to datum plane 
A
P  in the direction of vector n , and a is 

the nominal distance value of position tolerance.  

Comparisons 

The skin model is created using the three different 
simulation methods proposed in this paper. A point cloud 
of a plane composed by 273 points is the reference test, 
and the specification constraints are flatness, parallelism 
and position tolerances which are equal to 0.01 mm, 0.02 
mm and 0.05 mm respectively. The 50 skin models are 
generated and the main statistical characteristics are 
computed for comparison. In the Gibbs sampling method, 
the iterative time is equal to 10000. 

The comparison items include the average deviation 
value, the limit value, and the processing time. The 
distribution of the deviation values is computed using 
Minitab statistical software. The result is shown in figure 
14. Corresponding standard deviations are summarized in 
table 2. From this table, it can be deduced that the Gibbs 
method offers the closest simulation result to the target 
value, but it is much more time consuming. 

Table 2: Results of comparison of the three methods.

   

(a) 1D-Gaussian method (b) 3D-Gaussian method (c) Gibbs method 

Figure 14: Statistical distribution results. 

 

6 SUMMARY AND CONCLUDING REMARKS  

In this paper, we saw that discrete geometry for 
GeoSpelling provides a new mathematical framework for 
Geometrical Product Specifications. Starting from the 
fundamental concepts of the skin model and non-ideal 

features, skin model simulation and visualization using 1D 
Gaussian, 3D-Gaussian and Gibbs method is developed 
and compared.  

With new foundations for Geometrical Product 
Specifications, this paper concludes that discrete 

Items 1D-Gaussian 3D-Gaussian Gibbs 

Average 
Value 

0.008666 0.008705 0.008883 

Standard 
deviation 

0.000567 0.001287 0.000521 

Maximum 
value 

0.009869 0.009831 0.009778 

Minimum 
value 

0.006943 0.000510 0.007488 

Time <0.001 s <0.001 s 0.297s 



 

geometry and statistical shape techniques are promising 
approaches towards skin model consideration during the 
product life cycle.  
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