
Generating Optimal Disassembly Process Plans from AND/OR Relationships using a
Hierarchical Genetic Algorithm

R. Edmunds, M. Kobayashi, M. Higashi

Engineering Design Laboratory, Research Center for Sustainable Mechanical Systems,

Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan

Email: edmunds@toyota-ti.ac.jp

Abstract
A Hierarchical Genetic Algorithm (HGA) is presented which, not only successfully finds the optimal
disassembly sequence – under a set of given criteria – using information derived from AND/OR relationships,
but also reduces the problem size. Whilst many authors agree that AND/OR graphs are the most complete
representation of Disassembly Process Plans (DPPs), few have generated optimal sequences from
AND/OR information due to the rapid increase of solution paths. For complex systems having a natural
hierarchical structure often the optimal solution can be missed, HGA overcomes this and has been proven to
be faster and more accurate than traditional Genetic Algorithms.

Keywords:
Disassembly, AND/OR Graph, Numerical Optimization, Hierarchical Structure

1 INTRODUCTION

The biggest damage to the environment is done when a
product completes its useful life. However, many products
are already in existence for which their End-Of-Life (EOL)
use was never considered. Disassembly of a system into
its component parts or subassemblies is vital to most EOL
strategies. This paper uses a Hierarchical Genetic
Algorithm (HGA) to find optimal disassembly paths from
the space of all feasible Disassembly Process Plans
(DDPs) described using AND/OR information.

Development of a disassembly theory is fundamental for
practically all EOL policies devised for the disposal of
products – in particular, the careful selection and removal
of components for recycling and reuse.

With environmental ideologies ingrained in the public
consciousness, and with large new deposits of natural
resources becoming increasingly rare, there is extra
pressure on industry to take back possession of products
at the end of their useful life for reclamation of parts and
materials, plus safe disposal of waste products. For the
companies, this involves extra time, effort and money, and
so the process must be done in the most economically
and environmentally viable way [1].

Therefore, there are three elements that will be evaluated
when assessing an EOL decision [2]: the costs and
benefits of each recovery option; the present disposal cost
and the possibility that disassembly is required to recover
a valuable part.

If disassembly is needed, the arrangement of the
components will, most likely, constrain the sequences
such that removal of parts in perfect order (e.g. that the
most expensive are removed first and the heaviest last) is
unlikely [2-3].

As a consequence, it is necessary to represent the
relationships between the components. The most
common methods are via AND/OR graphs, which show
the possible operations applicable to the current assembly,
and precedence graphs, which show the geometrical
relationships between the components. Both lead to a
hierarchical structure.

For problems with an inherent hierarchical arrangement,
traditional Genetic Algorithms (GAs) can miss the true
optimal solution [4]. Even if the correct optimum is found,
this can take increased computational time when
compared to systems with vector arrangements. The
Hierarchical Genetic Algorithm [4-5] was developed to
overcome these issues and has been proven to work
better than standard GAs for hierarchical systems [4–8].

Using the permissible operations upon the assembly to
find the antecedents for each of its subassemblies, the
configuration required for optimization with HGA is
constructed. In doing this, for complete disassembly, the
problem size is appreciably reduced. Extra constraints
upon the removal order are easily added under this
formulation.

The possibly of partial disassembly can also be
introduced. This increases the dimensions of the
hierarchy, but as it is mainly the width that is augmented,
HGA still allows rapid and efficient resolution to obtain the
optimal disassembly path.

The paper continues by giving a brief overview of
disassembly and explains the difference between the two
graphical representations. This is followed by an
explanation of the HGA routine, which is subsequently
used to model two examples from the literature and
optimal disassembly paths are generated. Thus it is
shown how disassembly problems represented via
AND/OR graphs can be solved using HGA and highlights
the benefits of doing this. Finally conclusions are drawn.

2 DISASSEMBLY

The addition of disassembly into the recovery process
incurs extra costs. Specifically, disassembly contributes to
the investment and labour overheads [9].

The cost involved in these operations are then constraints
upon the methods employed and minimizing the cost of
some or all of them can lead to finding the optimal choice,
a preferred sequence that maximizes the reclaimed value.

CIRP Design Conference 2011

Optimal disassembly sequence generation – in terms of
minimal cost, maximum benefit and the degree of
disassembly – is a non-trivial task. It is often done by
analysing design characteristics of the assembly [2]:

• Geometrical relationships;

• Characteristics of operations such as tooling or
accessibility and how much they overlap;

• Clustering of materials;

• Concurrent operations and the amount of material
recovered.

To find the optimal sequence it is usually considered that
all of the feasible paths – called Disassembly Process
Plans (DPPs) (or Disassembly Sequence Plans (DSPs)) –
must be generated and assessed, leading to a two-stage
process [2,10]. Generating the total sequences often
involves some sort of complex searching methodology
and a significant amount of research has been put into
extracting the DPPs from assembly diagrams and
representing these plans in graphical form [11].

Most disassembly problems are variations of the same
basic model structure, which is described as a list of
possible disassembly operations or subassemblies [11].
From these feasible subassemblies and feasible actions,
hierarchical disassembly graphs can be built by, either
representing the geometric/relational properties (AND/OR
graphs), or via the precedence knowledge alone
(precedence graphs) [12]. In both cases this information
can then be used to find the optimal sequence based on
one or more criteria.

Although there is no general procedure for converting one
type into the other [13], often assemblies can be
described using both precedence and AND/OR
information. The latter is the more flexible of the
representations and there are a number of products that
can be formulated using AND/OR graphs alone.

Precedence graphs are constructed by determining the
parts directly obstructing the removal for each component
and hence which other components must be extracted
prior to their removal. By adhering to the structure – the
existence of precedence relations stops every
combinatorially possible permutation of parts resulting in a
feasible subassembly [14] – the graphs hold all of the
information on the possible solution paths.

Thus precedence graphs are conceptually simple and, as
they consist of conditions that must be satisfied by the
sequences, they are compact and have few nodes.

A major disadvantage with using precedence graphs to
represent an assembly is that, although it is possible to
concatenate ``OR'' sequences using dummy operations,
for most products, no single graph can encompass every
sequence [15].

Precedence relationships themselves, which represent
individual operations or logical combinations of operations,
can encompass all plans; however, this set of operations
must be fixed – only the order can change – and can only
be executed serially (parallel operations cannot be
represented).

In fact, six types of disassembly relationship exist [16]:

• No precedents;

• No antecedents;

• AND relationships;

• OR relationships;

• AND relationships within an OR;

• OR relationships within an AND.

A representation methodology should be able to cope with
these types, as well as have the ability to handle parallel
disassembly operations.

AND/OR graphs map the tasks that can be performed on
the assembly and thus are capable of depicting all
technically feasible sequences. They are therefore explicit
and it can be seen when operations can be executed in
parallel [13,17].

The drawback of this completeness is that the growth of
AND/OR graphs is exponential and representing all DPPs
using AND/OR graphs is computationally expensive [18].
As a result it has, in general, proved impractical to use
AND/OR data in order to find optimal disassembly paths –
the search for all solutions leading to combinatory
explosion.

These problems are reduced by organizing AND/OR
information expressing the DDPs into the format utilized
by HGA and then optimizing. This is especially true in the
case of complete disassembly.

3 HIERARCHICAL GENETIC ALGORITHM

Many (complex) systems have a hierarchical structure. In
conventional GAs and other optimization methods such
hierarchical systems are transformed into a one-
dimensional data array. However, these arrays are not
suitable for expressing problems having hierarchical
structures as lower level genotype variables depend upon
upper level genotype variables.

Although there are several methods for dealing with
hierarchical structures [5], for concurrent optimization of
variables in different levels of the structural hierarchy,
other techniques must carry out separate optimizations
and the structure is not accurately represented. This is
especially true as problems grow in size and finding the
optimal solution becomes more complicated.

Such issues are avoided by using a genetic algorithm in
which the hierarchical genotype coding exactly expresses
the structure and detail of the hierarchical system. This
uses the idea that when the upper level genotype
variables change, the lower level genotype variables must
also change. As the length of the genes may additionally
vary, new crossover and mutation operators for treating
the hierarchical genotype representations have also been
required to be defined [5].

Crossover operations between individuals are conducted
by: selecting another individual as the crossover partner
and then exchanging the corresponding genes of the
individuals, where to preserve consistency, all
corresponding lower substructures are also swapped.
Mutation operators are applied to the set of genes at the
highest level of the hierarchical structural system, and
then recursively applied to their child genes in the same
manner as the crossover operator.

To represent a hierarchical structural system:

When a substructure has n lower substructures, each of
which has ai alternatives (i = 1, 2, …, n), this is denoted
(a1, a2, …, an). When the substructure corresponds to the
tth alternative for the sth substructure at the upper
substructures level, the prefix symbols s, t- are added to
the original notation (a1, a2, …, an). If there are upper
level substructures, these procedures are repeated, and
further prefix symbols are added to the notation.

Hence, using this method, each of the substructures is
independently described. The positions of all
substructures in the hierarchical structure are denoted by
nodes, where a node located higher than the node being
considered is called a "parent" node and one located in a
lower position a "child" node.

 (a) (b)

Figure 1: (a) Example of a hierarchical structure for a machine, (b) Representation of the structure of the machine as required
by HGA. (Following Yoshimura and Izui [5])

Figure 1(a) shows a simple hierarchical design example,
composed of substructures A and B. A has two
alternatives and B has three alternatives. Alternative A-2
has two lower substructures a and b, where a has three
alternatives and b has two alternatives. Using this
example, as substructure a has alternatives: a-1, a-2, a-3;
and b has alternatives: b-1, b-2; the description is 1, 2-(3,
2). The full system is represented in Figure 1(b).

It is seen from Figure 1(a) that, by putting a system into
the form required for HGA, AND operations are combined
and, with HGA working best with short, wide hierarchies,
these are then naturally admitted from disassembly
AND/OR data. If further constraints are added to the
problem, these are easily included by eliminating the
appropriate paths from the problem structure. The
possibility of incomplete disassembly can also be
incorporated by putting extra OR options into the
hierarchy allowing the solution path to stop.

Next it is shown how disassembly problems described
using AND/OR information can be reformulated using the
antecedents of the subassemblies such that the
configuration required for HGA can be achieved. In doing
this the size of the output hierarchical graphs becomes
more compact – significantly, if all components are to be
removed – and the benefits of generating the optimal
disassembly path using HGA are gained.

For example, intricate structures can appear in even
straightforward systems; in particular, complex AND/OR
relationships can exist where, if C1 – C4 are components
in an assembly, C1 along with either C2 or C3 must be
removed prior to C4 [15]. Most research does not deal
with these; however these relationships can be included
using HGA.

4 SOLUTION METHOD AND EXAMPLES

In order that the optimal disassembly path can be found
using HGA, the data used to construct the AND/OR graph
must first be slightly modified. This is done by finding the
antecedents of the feasible subassemblies.

AND/OR graphs are usually described via the set of all
feasible subassemblies that become available during the
extraction process and the operations that are allowed on
each of these parent subassemblies such that two child
assemblies are created. Thus, from the operations, the
antecedents to each subassembly can be generated.

Antecedents of the subassemblies are used as they
remove ambiguity from the possible solution paths.
Precedents can cause situations where: operation x is
preceded by operation y, only if y is not proceeded by
operation z; this further complication is eliminated using
antecedents.

The methodology is outlined as follows (this procedure
has been automated.):

• First enumerating the subassemblies and operations,
using these labels, the antecedents for each
subassembly are found. These are written in terms “&”
and “/”, which are used to express AND and OR
operators respectively. The operations associated with
the antecedents are also listed, as well as any other
optimization criteria, e.g. the profit gained in releasing
the subassemblies.

• If full disassembly is required, now begins a process of
amalgamating the subassemblies, during which the
number of alternative paths is diminished (for
incomplete disassembly only stage 1 is performed):

1. Single components are initially removed from the
list of subassemblies, as they have no antecedents,
operations or profit associated with them.

2. Subassemblies with a single AND antecedent
consisting of purely of components are identified.
Removing these, the antecedents of the remaining
subassemblies are checked to see if they contain
only the removed subassemblies. If the answer is
“yes”, the label of the removed subassembly is
replaced with its antecedent. For example, if the
only antecedent of subassembly 18 is 20&21,
where 20 and 21 are components, then if
subassembly 12 has antecedents 15&18 / 13&16,
this is replaced by: 15&20&21 / 13&16.

3. In a similar manner, all subassemblies with a
single AND antecedent are found and removed.
Again, if the antecedents of the remaining
assemblies contain any of the removed
subassemblies, these are replaced with the
associated antecedent.

(Remark: 3. may need to be done iteratively as the
removed subassemblies may contain other
removed subassemblies.)

4. In doing 2. and 3., when the antecedents are
replaced, the operations and other values linked to
the subassemblies are added to those already
present, leading to a partial ordering of the
operations and the costs/benefits carrying these
out.

• With only OR operations remaining, the data is in a
form that can then be optimized using HGA, such that
the path that minimizes/maximizes the optimization
criteria can be located.

• The flexibility of the AND/OR representation in
showing parallel operations can be maintained whilst
doing procedures 1–4. However, it is more simple to
do a post-analysis of the output sequence to highlight
whether any concurrency to the operations exists and
a routine is added to achieve this.

The approach is now illustrated by way of two examples.
The first of these is the famous “Bourjault’s Pen” [19], a
simple example to highlight the details of the solution
method.

4.1 Example 1: Bourjault’s Pen

The benefit of using HGA is that, not only is the structure
of the assembly maintained, but it is also used at the core
of the optimization process. In the remainder of this
section it is shown how, by using the subassembly
antecedents generated from the AND/OR information,
HGA can be implemented such that optimized solutions
are found.

Figure 2: Pen studied by Bourjault [19]. (After Lambert
and Gupta [11])

To outline the technicalities in the application of HGA in
practice a deliberately simple case study is first
considered. This is the well-known disassembly of a
ballpoint pen, as introduced and studied extensively by
Bourjault [19]. The assembly for this pen is shown in
Figure 2.

Label Subassembly Label Subassembly

1 ABCDEF 9 CD

2 ABCDE 10 A

3 ABCDF 11 B

4 ABCD 12 C

5 ABF 13 D

6 BCD 14 E

7 AB 15 F

8 AE

Table 1: Subassemblies for Bourjault’s pen.

Here the full AND/OR problem is optimized, which
includes parallel operations and the obtainable
subassemblies are given in Table 1.

Following Lambert & Gupta [11], a set of operations to
reach the subassemblies given in Table 2, the profit
gained in doing each of these operations, is also
described. The optimal disassembly path is therefore
found by maximizing the total profit recovered by
completely removing all of the components.

Operation Parent Children Profit

(1) 1 2, 15 4

(2) 1 3, 14 5

(3) 2 8, 6 4

(4) 2 4, 14 8

(5) 3 4, 15 9

(6) 3 5, 9 1

(7) 4 10, 6 3

(8) 4 7, 9 3

(9) 6 11, 9 5

(10) 5 7, 15 9

(11) 9 12, 13 5

(12) 8 10, 14 6

(13) 7 10, 11 5

Table 2: Permissible operations upon the subassemblies
and the profit recovered in performing them.

Once the operations have been defined it becomes a
fairly trivial task to identify the antecedents for each
subassembly. As a result, using Table 2, the information
in Table 3 is generated, where “&” is used to specify that
the two antecedent assemblies are released in parallel
(AND operator) and “/” represents a choice between
antecedents (OR operator). A graph showing the
relationships between the subassemblies is given in
Figure 3.

Subassembly Antecedents Profits Operations

1 2&15 / 3&14 4 / 5 (1) / (2)

2 4&14 / 6&8 8 / 4 (4) / (3)

3 4&15 / 5&9 9 / 1 (5) / (6)

4 7&9 / 6&10 3 / 3 (8) / (7)

5 7&15 9 (10)

6 9&11 5 (9)

7 10&11 5 (13)

8 10&14 6 (12)

9 12&13 5 (11)

10 ─ ─ ─

11 ─ ─ ─

12 ─ ─ ─

13 ─ ─ ─

14 ─ ─ ─

15 ─ ─ ─

Table 3: Antecedence information for the subassemblies.

If a solution path consists of only AND operators, i.e. there
are no alternative paths and only leaves of the hierarchy
are involved, when optimizing, HGA merely combines any
associated values. This evaluation gives the same result
at all stages of resolving the system and must be done for
every iteration. This redundancy is removed by combining
AND operators and hence the amalgamation procedure
described in 1–4 is done.

The first stage involves removing the components from
Table 3. Subassemblies 10–15 are single components
and these are therefore eliminated. It can also be seen
that subassemblies 7–9 have solitary antecedents which
consist of only components and these are also subtracted
from Table. Studying the remaining subassemblies, it is
ascertained that 2–6 all have antecedents containing the
removed subassemblies and hence for these antecedents,
“7” is replaced with “10&11”, “8” with “10&14” and “9” with
“12&13”. Additionally the profits and operations

associated with 7–9 are added to those of the
antecedents altered, leading to Table 4.

Figure 3: Antecedence graph of the subassemblies.

From Table 4, it is subsequently observed that
subassemblies 5 and 6 have lone AND antecedents and
so these are removed. As before, it is recognized that
subassemblies 2–4 have antecedents which include those
deleted and, as a result, in these antecedents “5” and “6”
are replaced with “10&11&15” and “12&13&11”
respectively and the related profits and operations are
again incorporated into those associated with the
antecedent. Finally Table 5 is obtained.

This data is in the correct form to be solved by HGA as it
can be represented by the hierarchical structure given in
Figure 4. In this diagram, the labels within the solid boxes
are the number of choices available at each level of the
hierarchy.

Sub Antecedents Profits Operations

1 2&15 / 3&14 4 / 5 (1) / (2)

2 4&14 / 6&10&14 8 / 10 (4) / (3)-(12)

3 4&15 / 5&12&13 9 / 6 (5) / (6)-(11)

4
10&11&12&13 /

6&10
13 / 3

(8)-(13)-(11) / (7)

5 10&11&15 14 (10)-(13)

6 12&13&11 10 (9)-(11)

Table 4: Antecedence information after steps 1 and 2
have been performed.

When this label is “0”, it represents a leaf in the tree and
attached to each leaf are the operations that lead to parts
of the assembly being released. The respective profit
obtained by performing the operations is then shown by
the numbers on the hyperarcs.

By examining Figure 4, for total disassembly of the pen, it
is obvious that the maximum profit is found when the
sequence of operations is either:

(2) – (5) – (7) – (9) – (11) or (2) – (5) – (8) – (13)&(11).

Optimizing the problem using HGA confirms this.

4.2 Example 2: Kang et al. Photocopier

Figure 5: BOM for a photocopier (After Kang et al. [20]).

Subassemblies Antecedents Profits Operations

1 2&15 / 3&14 4 / 5 (1) / (2)

2 4&14 / 12&13&11&10&14 8 / 20 (4) / (3)-(12)-(9)-(11)

3 4&15 / 10&11&15&12&13 9/ 20 (5) / (6)-(11)-(10)-(13)

4 10&11&12&13 / 12&13&11&10 13 / 13 (8)-(13)-(11) / (7)-(9)-(11)

Table 5: Antecedence information after steps 3 and 4 have been performed.

Figure 4: Resulting hierarchical structure required for HGA.

Attention is turned to the more complex and realistic
industrial example of dismantling a photocopier in order to
obtain the materials for recycling. This was first examined
by Kang et al. [20] and, following that article, the Bill of
Materials (BOM) is shown in Figure 5.

This example is used to illustrate how the possibility of
incomplete disassembly is included as a solution and also
how extra constraints are added to the problem structure.
Whilst the former can increase the number of levels in the
hierarchy, when compared to complete disassembly, the
benefits of HGA to deal with both wide structures and sub-
hierarchies means that the optimal path can still be
obtained efficiently.

Label Sub Cost Label Sub Cost

1 ABE–L 965 15 AB 355

2 AE–L 949 16 EF 321

3 BE–L 915 17 GH 267

4 ABG–L 880 18 IJ 142

5 E–L 829 19 KL 107

6 AG–L 817 20 A 43

7 BG–L 806 21 B -156

8 G–L 739 22 E -216

9 ABEF 721 23 F -258

10 GHIJ 653 24 G -370

11 GHKL 507 25 H -384

12 IJKL 482 26 I -410

13 AEF 374 27 J -481

14 BEF 362 28 K -528

 29 L -575

Table 6: Photocopier subassemblies and respective
disposal/recycling costs.

The available combinations of materials A – L are given in
Table 6. To the set up the optimization problem, a cost is
associated with each combination and singular material
and these are also given in Table 6.

Often it possible to recycle an assembly consisting of
more than one material, if the material types are
compatible. However, none of the groupings in Table 6
involve only metals or plastics and, as a result, a disposal
cost is assigned to all assemblies of more than one
substance.

For the individual materials, value is gained by recycling
and this is reflected in Table 6, by a negative cost. The
exception is the toner (material A), which is considered a
hazardous substance having a harmful environmental
impact, thus it must be disposed of safely.

From Kang et al. [20], the set of allowable operations to
release the materials for recycling, and the cost of
performing these operations, are given in Table 7. From
this table the relationship between the subassemblies is
depicted in Figure 5.

As in Section 4.1, the optimal disassembly path is found
by maximizing the total profit recovered, where the profit
is found using the formula:

Recovered Profit = Cost(Parent) - Cost(Child 1) -
 Cost(Child 2) + Cost(Operation) . (1)

Figure 6 shows that, similarly to Bourjault’s pen, if
complete disassembly is required, converting the AND/OR
information to a format solvable using HGA notably
reduces the problem size.

Operation Parent Children Cost

(1) 1 2, 21 73.50

(2) 1 3, 20 70.00

(3) 2 5, 20 61.10

(4) 3 5, 21 61.00

(5) 6 8, 20 49.80

(6) 7 8, 21 48.60

(7) 9 13, 21 30.60

(8) 9 14, 20 25.20

(9) 13 16, 20 20.30

(10) 14 16, 21 18.30

(11) 15 20, 21 12.60

(12) 16 22, 23 7.10

(13) 17 24, 25 3.60

(14) 18 26, 27 3.20

(15) 19 28, 29 3.10

(16) 1 4, 16 85.50

(17) 2 6, 16 80.80

(18) 3 7, 16 77.20

(19) 4 8, 15 74.60

(20) 5 8, 16 57.40

(21) 8 10, 19 47.00

(22) 8 11, 18 46.50

(23) 8 12, 17 39.40

(24) 9 15, 16 37.60

(25) 10 17, 18 36.20

(26) 11 17, 19 23.70

(27) 12 18, 19 21.10

(28) 1 8, 9 98.40

(29) 2 8, 13 89.50

(30) 3 8, 14 85.80

(31) 4 6, 21 53.70

(32) 4 7, 20 51.80

Table 7: Permissible operations with execution costs.

Figure 5: Antecedence graph of the subassemblies.

Figure 6: HGA hierarchical structure. (Note the repetition of the sub-hierarchy marked with a star.)

It can also be seen from Figure 6 that a regular
occurrence in DDPs is duplication of at least one part of
the hierarchy. It is particularly advantageous for HGA to
recognize these recurring sub-hierarchies as they can be
optimized as a pre-process and therefore do not have to
repeatedly resolved, thus increasing the efficiency.

In fact, only the data pertaining to subassemblies 1, 2, 3,
4, 8 and 9 remain and, optimizing with the HGA routine,
the series of operations leading to the maximum
recovered profit is quickly obtained:

(28) – [(8) – (10) – (12)] & [(23) – (13)&(27) – (14)&(15)].

Adding further constraints

As HGA uses the problem structure directly, extra
constraints upon the ordering of the operations are added
without difficulty. This is done by simply eradicating the
paths that become infeasible through the introduction of
the constraints.

By way of example, suppose that it is necessary to
remove the toner (subassembly 20) as early as possible
within the disassembly sequence. Looking at Table 7,
there are four initial operations: (1), (2), (16) and (28); of
these only operation (2) involves the toner. Hence all
paths that do not follow directly from operation (2) can be
ignored.

As a result, the new optimal path is:

(2) – (30) – [(10) – (12)] & [(23) – (13)&(27) – (14)&(15)].

If the toner must be extracted within the first two
operations then, as before, all paths emanating from
operation (2) are feasible. Moreover, the disassembly
paths starting with sub-sequences: (1) – (3), (16) – (12)
and (28) – (8) are also viable. In this case the optimal
solution reverts to that for the full problem.

Incomplete Disassembly

Determining the depth of disassembly, the extent to which
components should be subtracted, is also a vital part of
creating an optimal process plan.

Depending on the motives for disassembly, the “best”
cause of action maybe to halt the plan partway through its
execution and leave the rest of the assembly as it is. This
is particularly true when balancing the value of the
recovered elements with the cost of obtaining them and
when performing maintenance.

To this end, a robust solution method for discovering the
optimal ordering of removal of parts must incorporate the
option of incomplete disassembly. Formulating the
problems such that they are optimized using HGA admits
this possibility.

This is done by inserting an extra choice when each “OR”
function is encountered. This choice uses a dummy

operation – operation (0) – and is a potential dead-end,
allowing the resolution routine to stop at this point if it is
deemed to be the optimal result.

Figure 7: Including partial disassembly into the
hierarchical structure. Note that the repeated sub-

hierarchy denoted by the star is omitted.

Figure 7 illustrates the new solution hierarchy structure for
the leftmost branch of the graph associated with the
photocopier when applying this methodology. As
previously, an algorithm has been constructed to
automate the generation of this arrangement of the
operation data.

The value associated with selecting operation (0) depends
on the stage of disassembly and often corresponds to
cost of disposing of what remains of the assemblage.

From Figure 7 it can be seen that the full structure of the
problem must be used, it is no longer practical to
condense the representation. However, although
supplementary levels can be added to the hierarchy in
doing this; including partial disassembly predominantly
increases the width of the graph. HGA is specifically
designed to cope with wide hierarchies, hence the speed
and efficiency of optimization is not impaired.

Furthermore, in this situation, the benefit of finding the
optimal paths for repeated/shared sub-hierarchies as a
precursor to solving the main body of the problem
becomes more pertinent.

By way of an example, regard the cost of the operations
as being zero in all cases. The recovered profit is then a
comparison between the cost of disposing of the
remaining subassembly and of disposing/recycling its
potential children.

The optimization criterion is taken to be that
disassembling any subassembly must be advantageous.
Thus disassembly only continues as long as the
disposal/recycling cost of two children is less than the
disposal of their parent (i.e. the profit is positive). To do
this, the operation (0) is given zero value.

The optimal sequence of operations, as can be seen in
Figure 7, is: (1) – (3), i.e. by performing operations (1) and
(3) a profit is achieved; after this the cost of disposal of
the rest of the subassembly is less than the disposal of its
children.

5 SUMMARY AND CONCLUSIONS

This paper introduces a Hierarchical Genetic Algorithm,
which has previously been used to optimize a number of
engineering problems and successfully utilizes it to find
the optimal disassembly path from the group of all feasible
process plans derived from AND/OR information.

Products are often considered as modular systems, with
the resulting AND/OR data that represents them having a
hierarchical configuration. This structure can be exploited
by solving using HGA.

The advantages of using HGA to optimize problems best
depicted by AND/OR graphs is highlighted through the
solution of several assemblies from the literature. In all
cases, the optimal disassembly path can be found using
the methodology. Additionally, by using the antecedents
to convert the problem definition into that required for
HGA, the size of the structure is condensed.

However, with the possibility of combinatorial explosion
with AND/OR graphs, even with a reduction in the number
of solution paths, there is still the difficulty that the
problem may get unmanageable. For very large examples,
by combining HGA with “lumping” – where the product is
first separated into principle modules – and “branch and
bound” techniques [18], an efficient strategy may be built
to find the optimal disassembly path for even highly
complex systems.

6 ACKNOWLEDGMENTS

This study was supported in part by a Grant-in-Aid for
Forming Strategic Research Infrastructure from Ministry of
Education, Culture, Sport, Science, and Technology,
Japan (MEXT), 2008-2012 (S0801058).

7 REFERENCES

[1] Lambert, A.J.D., 1997, Optimal disassembly of
complex products, International Journal of Product
Research, 35(9): 2509-2523.

[2] Johnson, M.R., Wang, M.H., 1995, Planning product
disassembly for material recovery opportunities,
International Journal of Production Research,
33(11): 3119-3142.

[3] Wang, M.H., Johnson, M.R., 1995, Design for
disassembly and recyclability: a concurrent
engineering approach, Concurrent Engineering:
Research and Applications, 3(2): 131-134.

[4] Yoshimura, M., Izui, K., 2000, Optimization of
machine system designs based on decomposition
and hierarchical ordering of criteria and design
variables, Proceedings of the ASME 2000
International Design Engineering Technical
Conferences & Computers and Information in
Engineering Conference, 1-15.

[5] Yoshimura, M., Izui, K., 2002, Smart optimization of
machine systems using hierarchical genotype

representations}, ASME Journal of Mechanical
Design, 124: 375-384.

[6] Kumar, R., Izui, K., Yoshimura, M., Nishiwaki, S.,
2009, Multilevel redundancy allocation optimization
using Hierarchical Genetic Algorithm, Reliability
Engineering & System Safety, 94(4): 891-904.

[7] Kumar, R., Izui, K., Yoshimura, M., Nishiwaki, S.,
2009, Optimal multilevel redundancy allocation in
series and series-parallel systems, Computers &
Industrial Engineering, 57(1): 169-180.

[8] Kobayashi, M., Suzuki, Y., Higashi, M., 2009,
Integrated optimization for supporting functional and
layout designs during conceptual design phase,
Proceedings of the ASME 2009 International Design
Engineering Technical Conferences & Computers
and Information in Engineering Conference,
DETC2009-86810:1-9.

[9] Lambert, A.J.D., 1999, Linear programming in
disassembly/clustering sequence generation,
Computers and Industrial Engineering, 36: 723-738

[10] Delchambre, A., Wafflard, A., 1991, An automatic,
systematic and user-friendly computer-aided planner
for robotized assembly, Proceedings of the 1991
IEEE International Conference on Robotics and
Automation, 592-598.

[11] Lambert, A.J.D., Gupta, S.M., 2005, Disassembly
Modeling for Assembly, Maintenance, Reuse, and
Recycling, CRC, Boca Raton.

[12] Subramani, A.K., Dewhurst, P., 1991, Automatic
generation of product disassembly sequences,
Annals of the CIRP, 40(1): 115-118.

[13] Homem de Mello, L.S., Sanderson, A.C, 1989,
Representations of Assembly Sequences,
International Joint Conferences on Artificial
Intelligence, 1035-1042.

[14] Lambert, A.J.D., 2001, Automatic determination of
transition matrices in optimal disassembly sequence
generation, Proceedings of the 4th IEEE
International Symposium on Assembly and Task
Planning, 220-225.

[15] Homen De Mello, L.S., Sanderson, A.C., 1990,
AND/OR graph representation of assembly plans,
IEEE Transactions on Robotics and Automation,
6(2): 188-199.

[16] Moore, K.E., Güngör A., Gupta, S.M., 2001, Petri net
approach to disassembly process planning for
products with complex AND/OR precedence
relationships, European Journal of Operational
Research, 135: 428-449.

[17] Zussman, E., Kriwet, A., Seliger, G., 1994,
Disassembly-orientated assessment methodology to
support design for recycling, Annals of the CIRP,
43(1): 9-14.

[18] Güngör, A., Gupta, S.M., 2001, Disassembly
sequence plan generation using a branch-and-bound
algorithm, International Journal of Production
Research, 39(3): 481-509.

[19] Bourjault, A., 1987, Methodology of assembly
automation: a new approach, Abstracts of 2nd
International Conference on Robotics and Factories
of the Future, 37-45.

[20] Kang, J.-G., Lee, D.-H., Xirouchakis, P., Persson, J.-
G., 2001, Parallel disassembly sequencing with
sequence-dependent operation times, Annals of the
CIRP, 50(1): 343-346.

