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Abstract 
A Hierarchical Genetic Algorithm (HGA) is presented which, not only successfully finds the optimal 
disassembly sequence – under a set of given criteria – using information derived from AND/OR relationships, 
but also reduces the problem size. Whilst many authors agree that AND/OR graphs are the most complete 
representation of Disassembly Process Plans (DPPs), few have generated optimal sequences from 
AND/OR information due to the rapid increase of solution paths. For complex systems having a natural 
hierarchical structure often the optimal solution can be missed, HGA overcomes this and has been proven to 
be faster and more accurate than traditional Genetic Algorithms. 
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1 INTRODUCTION 

The biggest damage to the environment is done when a 
product completes its useful life. However, many products 
are already in existence for which their End-Of-Life (EOL) 
use was never considered. Disassembly of a system into 
its component parts or subassemblies is vital to most EOL 
strategies. This paper uses a Hierarchical Genetic 
Algorithm (HGA) to find optimal disassembly paths from 
the space of all feasible Disassembly Process Plans 
(DDPs) described using AND/OR information. 

Development of a disassembly theory is fundamental for 
practically all EOL policies devised for the disposal of 
products – in particular, the careful selection and removal 
of components for recycling and reuse. 

With environmental ideologies ingrained in the public 
consciousness, and with large new deposits of natural 
resources becoming increasingly rare, there is extra 
pressure on industry to take back possession of products 
at the end of their useful life for reclamation of parts and 
materials, plus safe disposal of waste products. For the 
companies, this involves extra time, effort and money, and 
so the process must be done in the most economically 
and environmentally viable way [1]. 

Therefore, there are three elements that will be evaluated 
when assessing an EOL decision [2]: the costs and 
benefits of each recovery option; the present disposal cost 
and the possibility that disassembly is required to recover 
a valuable part. 

If disassembly is needed, the arrangement of the 
components will, most likely, constrain the sequences 
such that removal of parts in perfect order (e.g. that the 
most expensive are removed first and the heaviest last) is 
unlikely [2-3]. 

As a consequence, it is necessary to represent the 
relationships between the components. The most 
common methods are via AND/OR graphs, which show 
the possible operations applicable to the current assembly, 
and precedence graphs, which show the geometrical 
relationships between the components. Both lead to a 
hierarchical structure. 

 

 

 

 

 

For problems with an inherent hierarchical arrangement, 
traditional Genetic Algorithms (GAs) can miss the true 
optimal solution [4]. Even if the correct optimum is found, 
this can take increased computational time when 
compared to systems with vector arrangements. The 
Hierarchical Genetic Algorithm [4-5] was developed to 
overcome these issues and has been proven to work 
better than standard GAs for hierarchical systems [4–8]. 

Using the permissible operations upon the assembly to 
find the antecedents for each of its subassemblies, the 
configuration required for optimization with HGA is 
constructed. In doing this, for complete disassembly, the 
problem size is appreciably reduced. Extra constraints 
upon the removal order are easily added under this 
formulation. 

The possibly of partial disassembly can also be 
introduced. This increases the dimensions of the 
hierarchy, but as it is mainly the width that is augmented, 
HGA still allows rapid and efficient resolution to obtain the 
optimal disassembly path. 

The paper continues by giving a brief overview of 
disassembly and explains the difference between the two 
graphical representations. This is followed by an 
explanation of the HGA routine, which is subsequently 
used to model two examples from the literature and 
optimal disassembly paths are generated. Thus it is 
shown how disassembly problems represented via 
AND/OR graphs can be solved using HGA and highlights 
the benefits of doing this. Finally conclusions are drawn. 
 
2 DISASSEMBLY 

The addition of disassembly into the recovery process 
incurs extra costs. Specifically, disassembly contributes to 
the investment and labour overheads [9]. 

The cost involved in these operations are then constraints 
upon the methods employed and minimizing the cost of 
some or all of them can lead to finding the optimal choice, 
a preferred sequence that maximizes the reclaimed value. 
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Optimal disassembly sequence generation – in terms of 
minimal cost, maximum benefit and the degree of 
disassembly – is a non-trivial task. It is often done by 
analysing design characteristics of the assembly [2]: 

• Geometrical relationships; 

• Characteristics of operations such as tooling or 
accessibility and how much they overlap; 

• Clustering of materials; 

• Concurrent operations and the amount of material 
recovered. 

To find the optimal sequence it is usually considered that 
all of the feasible paths – called Disassembly Process 
Plans (DPPs) (or Disassembly Sequence Plans (DSPs)) – 
must be generated and assessed, leading to a two-stage 
process [2,10]. Generating the total sequences often 
involves some sort of complex searching methodology 
and a significant amount of research has been put into 
extracting the DPPs from assembly diagrams and 
representing these plans in graphical form [11]. 

Most disassembly problems are variations of the same 
basic model structure, which is described as a list of 
possible disassembly operations or subassemblies [11]. 
From these feasible subassemblies and feasible actions, 
hierarchical disassembly graphs can be built by, either 
representing the geometric/relational properties (AND/OR 
graphs), or via the precedence knowledge alone 
(precedence graphs) [12]. In both cases this information 
can then be used to find the optimal sequence based on 
one or more criteria. 

Although there is no general procedure for converting one 
type into the other [13], often assemblies can be 
described using both precedence and AND/OR 
information. The latter is the more flexible of the 
representations and there are a number of products that 
can be formulated using AND/OR graphs alone. 

Precedence graphs are constructed by determining the 
parts directly obstructing the removal for each component 
and hence which other components must be extracted 
prior to their removal. By adhering to the structure – the 
existence of precedence relations stops every 
combinatorially possible permutation of parts resulting in a 
feasible subassembly [14] – the graphs hold all of the 
information on the possible solution paths. 

Thus precedence graphs are conceptually simple and, as 
they consist of conditions that must be satisfied by the 
sequences, they are compact and have few nodes. 

A major disadvantage with using precedence graphs to 
represent an assembly is that, although it is possible to 
concatenate ``OR'' sequences using dummy operations, 
for most products, no single graph can encompass every 
sequence [15]. 

Precedence relationships themselves, which represent 
individual operations or logical combinations of operations, 
can encompass all plans; however, this set of operations 
must be fixed – only the order can change – and can only 
be executed serially (parallel operations cannot be 
represented). 

In fact, six types of disassembly relationship exist [16]: 

• No precedents; 

• No antecedents; 

• AND relationships; 

• OR relationships; 

• AND relationships within an OR; 

• OR relationships within an AND. 

A representation methodology should be able to cope with 
these types, as well as have the ability to handle parallel 
disassembly operations. 

AND/OR graphs map the tasks that can be performed on 
the assembly and thus are capable of depicting all 
technically feasible sequences. They are therefore explicit 
and it can be seen when operations can be executed in 
parallel [13,17]. 

The drawback of this completeness is that the growth of 
AND/OR graphs is exponential and representing all DPPs 
using AND/OR graphs is computationally expensive [18]. 
As a result it has, in general, proved impractical to use 
AND/OR data in order to find optimal disassembly paths – 
the search for all solutions leading to combinatory 
explosion. 

These problems are reduced by organizing AND/OR 
information expressing the DDPs into the format utilized 
by HGA and then optimizing. This is especially true in the 
case of complete disassembly. 
 

3 HIERARCHICAL GENETIC ALGORITHM 

Many (complex) systems have a hierarchical structure. In 
conventional GAs and other optimization methods such 
hierarchical systems are transformed into a one-
dimensional data array. However, these arrays are not 
suitable for expressing problems having hierarchical 
structures as lower level genotype variables depend upon 
upper level genotype variables. 

Although there are several methods for dealing with 
hierarchical structures [5], for concurrent optimization of 
variables in different levels of the structural hierarchy, 
other techniques must carry out separate optimizations 
and the structure is not accurately represented. This is 
especially true as problems grow in size and finding the 
optimal solution becomes more complicated. 

Such issues are avoided by using a genetic algorithm in 
which the hierarchical genotype coding exactly expresses 
the structure and detail of the hierarchical system. This 
uses the idea that when the upper level genotype 
variables change, the lower level genotype variables must 
also change. As the length of the genes may additionally 
vary, new crossover and mutation operators for treating 
the hierarchical genotype representations have also been 
required to be defined [5]. 

Crossover operations between individuals are conducted 
by: selecting another individual as the crossover partner 
and then exchanging the corresponding genes of the 
individuals, where to preserve consistency, all 
corresponding lower substructures are also swapped. 
Mutation operators are applied to the set of genes at the 
highest level of the hierarchical structural system, and 
then recursively applied to their child genes in the same 
manner as the crossover operator. 

To represent a hierarchical structural system: 

When a substructure has n lower substructures, each of 
which has ai alternatives (i = 1, 2, …, n), this is denoted 
(a1, a2, …, an). When the substructure corresponds to the 
tth alternative for the sth substructure at the upper 
substructures level, the prefix symbols s, t- are added to 
the original notation (a1, a2, …, an). If there are upper 
level substructures, these procedures are repeated, and 
further prefix symbols are added to the notation. 

Hence, using this method, each of the substructures is 
independently described. The positions of all 
substructures in the hierarchical structure are denoted by 
nodes, where a node located higher than the node being 
considered is called a "parent" node and one located in a 
lower position a "child" node. 
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Figure 1: (a) Example of a hierarchical structure for a machine, (b) Representation of the structure of the machine as required 
by HGA. (Following Yoshimura and Izui [5])

Figure 1(a) shows a simple hierarchical design example, 
composed of substructures A and B. A has two 
alternatives and B has three alternatives. Alternative A-2 
has two lower substructures a and b, where a has three 
alternatives and b has two alternatives. Using this 
example, as substructure a has alternatives: a-1, a-2, a-3; 
and b has alternatives: b-1, b-2; the description is 1, 2-(3, 
2). The full system is represented in Figure 1(b). 

It is seen from Figure 1(a) that, by putting a system into 
the form required for HGA, AND operations are combined 
and, with HGA working best with short, wide hierarchies, 
these are then naturally admitted from disassembly 
AND/OR data. If further constraints are added to the 
problem, these are easily included by eliminating the 
appropriate paths from the problem structure. The 
possibility of incomplete disassembly can also be 
incorporated by putting extra OR options into the 
hierarchy allowing the solution path to stop.  

Next it is shown how disassembly problems described 
using AND/OR information can be reformulated using the 
antecedents of the subassemblies such that the 
configuration required for HGA can be achieved. In doing 
this the size of the output hierarchical graphs becomes 
more compact – significantly, if all components are to be 
removed – and the benefits of generating the optimal 
disassembly path using HGA are gained. 

For example, intricate structures can appear in even 
straightforward systems; in particular, complex AND/OR 
relationships can exist where, if C1 – C4 are components 
in an assembly, C1 along with either C2 or C3 must be 
removed prior to C4 [15]. Most research does not deal 
with these; however these relationships can be included 
using HGA. 
 
4 SOLUTION METHOD AND EXAMPLES 

In order that the optimal disassembly path can be found 
using HGA, the data used to construct the AND/OR graph 
must first be slightly modified. This is done by finding the 
antecedents of the feasible subassemblies. 

AND/OR graphs are usually described via the set of all 
feasible subassemblies that become available during the 
extraction process and the operations that are allowed on 
each of these parent subassemblies such that two child 
assemblies are created. Thus, from the operations, the 
antecedents to each subassembly can be generated.  

Antecedents of the subassemblies are used as they 
remove ambiguity from the possible solution paths. 
Precedents can cause situations where: operation x is 
preceded by operation y, only if y is not proceeded by 
operation z; this further complication is eliminated using 
antecedents. 

The methodology is outlined as follows (this procedure 
has been automated.):  

• First enumerating the subassemblies and operations, 
using these labels, the antecedents for each 
subassembly are found. These are written in terms “&” 
and “/”, which are used to express AND and OR 
operators respectively. The operations associated with 
the antecedents are also listed, as well as any other 
optimization criteria, e.g. the profit gained in releasing 
the subassemblies.  

• If full disassembly is required, now begins a process of 
amalgamating the subassemblies, during which the 
number of alternative paths is diminished (for 
incomplete disassembly only stage 1 is performed):  

1. Single components are initially removed from the 
list of subassemblies, as they have no antecedents, 
operations or profit associated with them. 

2. Subassemblies with a single AND antecedent 
consisting of purely of components are identified. 
Removing these, the antecedents of the remaining 
subassemblies are checked to see if they contain 
only the removed subassemblies. If the answer is 
“yes”, the label of the removed subassembly is 
replaced with its antecedent. For example, if the 
only antecedent of subassembly 18 is 20&21, 
where 20 and 21 are components, then if 
subassembly 12 has antecedents 15&18 / 13&16, 
this is replaced by: 15&20&21 / 13&16. 

3. In a similar manner, all subassemblies with a 
single AND antecedent are found and removed. 
Again, if the antecedents of the remaining 
assemblies contain any of the removed 
subassemblies, these are replaced with the 
associated antecedent. 

(Remark: 3. may need to be done iteratively as the 
removed subassemblies may contain other 
removed subassemblies.) 



 

4. In doing 2. and 3., when the antecedents are 
replaced, the operations and other values linked to 
the subassemblies are added to those already 
present, leading to a partial ordering of the 
operations and the costs/benefits carrying these 
out. 

• With only OR operations remaining, the data is in a 
form that can then be optimized using HGA, such that 
the path that minimizes/maximizes the optimization 
criteria can be located. 

• The flexibility of the AND/OR representation in 
showing parallel operations can be maintained whilst 
doing procedures 1–4. However, it is more simple to 
do a post-analysis of the output sequence to highlight 
whether any concurrency to the operations exists and 
a routine is added to achieve this. 

The approach is now illustrated by way of two examples. 
The first of these is the famous “Bourjault’s Pen” [19], a 
simple example to highlight the details of the solution 
method. 

4.1 Example 1: Bourjault’s Pen 

The benefit of using HGA is that, not only is the structure 
of the assembly maintained, but it is also used at the core 
of the optimization process. In the remainder of this 
section it is shown how, by using the subassembly 
antecedents generated from the AND/OR information, 
HGA can be implemented such that optimized solutions 
are found. 

 

Figure 2: Pen studied by Bourjault [19]. (After Lambert 
and Gupta [11]) 

To outline the technicalities in the application of HGA in 
practice a deliberately simple case study is first 
considered. This is the well-known disassembly of a 
ballpoint pen, as introduced and studied extensively by 
Bourjault [19]. The assembly for this pen is shown in 
Figure 2. 

Label Subassembly  Label Subassembly 

1 ABCDEF   9 CD 

2 ABCDE  10 A 

3 ABCDF   11 B 

4 ABCD   12 C 

5 ABF  13 D 

6 BCD  14 E 

7 AB  15 F 

8 AE    

Table 1: Subassemblies for Bourjault’s pen. 

Here the full AND/OR problem is optimized, which 
includes parallel operations and the obtainable 
subassemblies are given in Table 1. 

Following Lambert & Gupta [11], a set of operations to 
reach the subassemblies given in Table 2, the profit 
gained in doing each of these operations, is also 
described. The optimal disassembly path is therefore 
found by maximizing the total profit recovered by 
completely removing all of the components. 

Operation Parent Children Profit 

(1) 1 2, 15 4 

(2) 1 3, 14 5 

(3) 2 8, 6 4 

(4) 2 4, 14 8 

(5) 3 4, 15 9 

(6) 3 5, 9 1 

(7) 4 10, 6 3 

(8) 4 7, 9 3 

(9) 6 11, 9 5 

(10) 5 7, 15 9 

(11) 9 12, 13 5 

(12) 8 10, 14 6 

(13) 7 10, 11 5 

Table 2: Permissible operations upon the subassemblies 
and the profit recovered in performing them. 

Once the operations have been defined it becomes a 
fairly trivial task to identify the antecedents for each 
subassembly. As a result, using Table 2, the information 
in Table 3 is generated, where “&” is used to specify that 
the two antecedent assemblies are released in parallel 
(AND operator) and “/” represents a choice between 
antecedents (OR operator). A graph showing the 
relationships between the subassemblies is given in 
Figure 3. 

Subassembly Antecedents Profits Operations 

1 2&15 / 3&14 4 / 5 (1) / (2) 

2 4&14 / 6&8 8 / 4 (4) / (3) 

3 4&15 / 5&9 9 / 1 (5) / (6) 

4 7&9 / 6&10 3 / 3 (8) / (7) 

5 7&15 9 (10) 

6 9&11 5 (9) 

7 10&11 5 (13) 

8 10&14 6 (12) 

9 12&13 5 (11) 

10 ─ ─ ─ 

11 ─ ─ ─ 

12 ─ ─ ─ 

13 ─ ─ ─ 

14 ─ ─ ─ 

15 ─ ─ ─ 

Table 3: Antecedence information for the subassemblies. 

If a solution path consists of only AND operators, i.e. there 
are no alternative paths and only leaves of the hierarchy 
are involved, when optimizing, HGA merely combines any 
associated values. This evaluation gives the same result 
at all stages of resolving the system and must be done for 
every iteration. This redundancy is removed by combining 
AND operators and hence the amalgamation procedure 
described in 1–4 is done. 

The first stage involves removing the components from 
Table 3. Subassemblies 10–15 are single components 
and these are therefore eliminated. It can also be seen 
that subassemblies 7–9 have solitary antecedents which 
consist of only components and these are also subtracted 
from Table. Studying the remaining subassemblies, it is 
ascertained that 2–6 all have antecedents containing the 
removed subassemblies and hence for these antecedents, 
“7” is replaced with “10&11”, “8” with “10&14” and “9” with 
“12&13”. Additionally the profits and operations



 

associated with 7–9 are added to those of the 
antecedents altered, leading to Table 4. 

 

Figure 3: Antecedence graph of the subassemblies. 

From Table 4, it is subsequently observed that 
subassemblies 5 and 6 have lone AND antecedents and 
so these are removed. As before, it is recognized that 
subassemblies 2–4 have antecedents which include those 
deleted and, as a result, in these antecedents “5” and “6” 
are replaced with “10&11&15” and “12&13&11” 
respectively and the related profits and operations are 
again incorporated into those associated with the 
antecedent. Finally Table 5 is obtained. 

This data is in the correct form to be solved by HGA as it 
can be represented by the hierarchical structure given in 
Figure 4. In this diagram, the labels within the solid boxes 
are the number of choices available at each level of the 
hierarchy. 

 

Sub Antecedents Profits Operations 

1 2&15 / 3&14 4 / 5 (1) / (2) 

2 4&14 / 6&10&14 8 / 10 (4) / (3)-(12) 

3 4&15 / 5&12&13 9 / 6 (5) / (6)-(11) 

4 
10&11&12&13 / 

6&10 
13 / 3 

 
(8)-(13)-(11) / (7) 

 

5 10&11&15 14 (10)-(13) 

6 12&13&11 10 (9)-(11) 

Table 4: Antecedence information after steps 1 and 2 
have been performed. 

When this label is “0”, it represents a leaf in the tree and 
attached to each leaf are the operations that lead to parts 
of the assembly being released. The respective profit 
obtained by performing the operations is then shown by 
the numbers on the hyperarcs. 

By examining Figure 4, for total disassembly of the pen, it 
is obvious that the maximum profit is found when the 
sequence of operations is either: 

(2) – (5) – (7) – (9) – (11) or (2) – (5) – (8) – (13)&(11). 

Optimizing the problem using HGA confirms this. 

4.2 Example 2: Kang et al. Photocopier 

 

Figure 5: BOM for a photocopier (After Kang et al. [20]). 

Subassemblies Antecedents Profits Operations 

1 2&15 / 3&14 4 / 5 (1) / (2) 

2 4&14 / 12&13&11&10&14 8 / 20 (4) / (3)-(12)-(9)-(11) 

3 4&15 / 10&11&15&12&13 9/ 20 (5) / (6)-(11)-(10)-(13) 

4 10&11&12&13 / 12&13&11&10 13 / 13 (8)-(13)-(11) / (7)-(9)-(11) 

Table 5: Antecedence information after steps 3 and 4 have been performed.

Figure 4: Resulting hierarchical structure required for HGA. 



 

Attention is turned to the more complex and realistic 
industrial example of dismantling a photocopier in order to 
obtain the materials for recycling. This was first examined 
by Kang et al. [20] and, following that article, the Bill of 
Materials (BOM) is shown in Figure 5. 

This example is used to illustrate how the possibility of 
incomplete disassembly is included as a solution and also 
how extra constraints are added to the problem structure.  
Whilst the former can increase the number of levels in the 
hierarchy, when compared to complete disassembly, the 
benefits of HGA to deal with both wide structures and sub-
hierarchies means that the optimal path can still be 
obtained efficiently. 

Label Sub Cost  Label Sub Cost 

1 ABE–L 965  15 AB 355 

2 AE–L  949  16 EF 321 

3 BE–L  915  17 GH 267 

4 ABG–L  880  18 IJ 142 

5 E–L 829  19 KL 107 

6 AG–L 817  20 A 43 

7 BG–L 806  21 B -156 

8 G–L 739  22 E -216 

9 ABEF 721  23 F -258 

10 GHIJ 653  24 G -370 

11 GHKL 507  25 H -384 

12 IJKL 482  26 I -410 

13 AEF 374  27 J -481 

14 BEF 362  28 K -528 

    29 L -575 

Table 6: Photocopier subassemblies and respective 
disposal/recycling costs. 

The available combinations of materials A – L are given in 
Table 6. To the set up the optimization problem, a cost is 
associated with each combination and singular material 
and these are also given in Table 6. 

Often it possible to recycle an assembly consisting of 
more than one material, if the material types are 
compatible. However, none of the groupings in Table 6 
involve only metals or plastics and, as a result, a disposal 
cost is assigned to all assemblies of more than one 
substance. 

For the individual materials, value is gained by recycling 
and this is reflected in Table 6, by a negative cost. The 
exception is the toner (material A), which is considered a 
hazardous substance having a harmful environmental 
impact, thus it must be disposed of safely.  

From Kang et al. [20], the set of allowable operations to 
release the materials for recycling, and the cost of 
performing these operations, are given in Table 7. From 
this table the relationship between the subassemblies is 
depicted in Figure 5. 

As in Section 4.1, the optimal disassembly path is found 
by maximizing the total profit recovered, where the profit 
is found using the formula: 

Recovered Profit = Cost(Parent) - Cost(Child 1) -   
       Cost(Child 2) + Cost(Operation) .     (1) 

Figure 6 shows that, similarly to Bourjault’s pen, if 
complete disassembly is required, converting the AND/OR 
information to a format solvable using HGA notably 
reduces the problem size. 

 

Operation Parent Children Cost 

(1) 1 2, 21 73.50 

(2) 1 3, 20 70.00 

(3) 2 5, 20 61.10 

(4) 3 5, 21 61.00 

(5) 6 8, 20 49.80 

(6) 7 8, 21 48.60 

(7) 9 13, 21 30.60 

(8) 9 14, 20 25.20 

(9) 13 16, 20 20.30 

(10) 14 16, 21 18.30 

(11) 15 20, 21 12.60 

(12) 16 22, 23 7.10 

(13) 17 24, 25 3.60 

(14) 18 26, 27 3.20 

(15) 19 28, 29 3.10 

(16) 1 4, 16 85.50 

(17) 2 6, 16 80.80 

(18) 3 7, 16 77.20 

(19) 4 8, 15 74.60 

(20) 5 8, 16 57.40 

(21) 8 10, 19 47.00 

(22) 8 11, 18 46.50 

(23) 8 12, 17 39.40 

(24) 9 15, 16 37.60 

(25) 10 17, 18 36.20 

(26) 11 17, 19 23.70 

(27) 12 18, 19 21.10 

(28) 1 8, 9 98.40 

(29) 2 8, 13 89.50 

(30) 3 8, 14 85.80 

(31) 4 6, 21 53.70 

(32) 4 7, 20 51.80 

Table 7: Permissible operations with execution costs. 

 

Figure 5: Antecedence graph of the subassemblies. 



 

   

Figure 6: HGA hierarchical structure. (Note the repetition of the sub-hierarchy marked with a star.) 

It can also be seen from Figure 6 that a regular 
occurrence in DDPs is duplication of at least one part of 
the hierarchy. It is particularly advantageous for HGA to 
recognize these recurring sub-hierarchies as they can be 
optimized as a pre-process and therefore do not have to 
repeatedly resolved, thus increasing the efficiency.   

In fact, only the data pertaining to subassemblies 1, 2, 3, 
4, 8 and 9 remain and, optimizing with the HGA routine, 
the series of operations leading to the maximum 
recovered profit is quickly obtained: 

(28) – [(8) – (10) – (12)] & [(23) – (13)&(27) – (14)&(15)]. 

Adding further constraints 

As HGA uses the problem structure directly, extra 
constraints upon the ordering of the operations are added 
without difficulty. This is done by simply eradicating the 
paths that become infeasible through the introduction of 
the constraints. 

By way of example, suppose that it is necessary to 
remove the toner (subassembly 20) as early as possible 
within the disassembly sequence. Looking at Table 7, 
there are four initial operations: (1), (2), (16) and (28); of 
these only operation (2) involves the toner. Hence all 
paths that do not follow directly from operation (2) can be 
ignored. 

As a result, the new optimal path is: 

(2) – (30) – [(10) – (12)] & [(23) – (13)&(27) – (14)&(15)]. 

If the toner must be extracted within the first two 
operations then, as before, all paths emanating from 
operation (2) are feasible. Moreover, the disassembly 
paths starting with sub-sequences: (1) – (3), (16) – (12) 
and (28) – (8) are also viable. In this case the optimal 
solution reverts to that for the full problem. 

Incomplete Disassembly 

Determining the depth of disassembly, the extent to which 
components should be subtracted, is also a vital part of 
creating an optimal process plan. 

Depending on the motives for disassembly, the “best” 
cause of action maybe to halt the plan partway through its 
execution and leave the rest of the assembly as it is. This 
is particularly true when balancing the value of the 
recovered elements with the cost of obtaining them and 
when performing maintenance. 

To this end, a robust solution method for discovering the 
optimal ordering of removal of parts must incorporate the 
option of incomplete disassembly. Formulating the 
problems such that they are optimized using HGA admits 
this possibility. 

This is done by inserting an extra choice when each “OR” 
function is encountered. This choice uses a dummy 

operation – operation (0) – and is a potential dead-end, 
allowing the resolution routine to stop at this point if it is 
deemed to be the optimal result. 

 

Figure 7: Including partial disassembly into the 
hierarchical structure. Note that the repeated sub-

hierarchy denoted by the star is omitted. 

Figure 7 illustrates the new solution hierarchy structure for 
the leftmost branch of the graph associated with the 
photocopier when applying this methodology. As 
previously, an algorithm has been constructed to 
automate the generation of this arrangement of the 
operation data. 

The value associated with selecting operation (0) depends 
on the stage of disassembly and often corresponds to 
cost of disposing of what remains of the assemblage.  

From Figure 7 it can be seen that the full structure of the 
problem must be used, it is no longer practical to 
condense the representation. However, although 
supplementary levels can be added to the hierarchy in 
doing this; including partial disassembly predominantly 
increases the width of the graph. HGA is specifically 
designed to cope with wide hierarchies, hence the speed 
and efficiency of optimization is not impaired. 

Furthermore, in this situation, the benefit of finding the 
optimal paths for repeated/shared sub-hierarchies as a 
precursor to solving the main body of the problem 
becomes more pertinent. 

By way of an example, regard the cost of the operations 
as being zero in all cases. The recovered profit is then a 
comparison between the cost of disposing of the 
remaining subassembly and of disposing/recycling its 
potential children.  



 

The optimization criterion is taken to be that 
disassembling any subassembly must be advantageous. 
Thus disassembly only continues as long as the 
disposal/recycling cost of two children is less than the 
disposal of their parent (i.e. the profit is positive). To do 
this, the operation (0) is given zero value. 

The optimal sequence of operations, as can be seen in 
Figure 7, is: (1) – (3), i.e. by performing operations (1) and 
(3) a profit is achieved; after this the cost of disposal of 
the rest of the subassembly is less than the disposal of its 
children. 
 
5 SUMMARY AND CONCLUSIONS 

This paper introduces a Hierarchical Genetic Algorithm, 
which has previously been used to optimize a number of 
engineering problems and successfully utilizes it to find 
the optimal disassembly path from the group of all feasible 
process plans derived from AND/OR information. 

Products are often considered as modular systems, with 
the resulting AND/OR data that represents them having a 
hierarchical configuration. This structure can be exploited 
by solving using HGA. 

The advantages of using HGA to optimize problems best 
depicted by AND/OR graphs is highlighted through the 
solution of several assemblies from the literature. In all 
cases, the optimal disassembly path can be found using 
the methodology. Additionally, by using the antecedents 
to convert the problem definition into that required for 
HGA, the size of the structure is condensed. 

However, with the possibility of combinatorial explosion 
with AND/OR graphs, even with a reduction in the number 
of solution paths, there is still the difficulty that the 
problem may get unmanageable. For very large examples, 
by combining HGA with “lumping” – where the product is 
first separated into principle modules – and “branch and 
bound” techniques [18], an efficient strategy may be built 
to find the optimal disassembly path for even highly 
complex systems. 
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