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Abstract

We present a novel approach for interactive view-dependent ren-
dering of massive models. Our algorithm combines view-dependent
simplification, occlusion culling, and out-of-core rendering. We
represent the model as a clustered hierarchy of progressive meshes
(CHPM). We use the cluster hierarchy for coarse-grained selective
refinement and progressive meshes for fine-grained local refine-
ment. We present an out-of-core algorithm for computation of a
CHPM that includes cluster decomposition, hierarchy generation,
and simplification. We make use of novel cluster dependencies
in the preprocess to generate crack-free, drastic simplifications
at runtime. The clusters are used for occlusion culling and
out-of-core rendering. We add a frame of latency to the rendering
pipeline to fetch newly visible clusters from the disk and to avoid
stalls. The CHPM reduces the refinement cost for view-dependent
rendering by more than an order of magnitude as compared to
a vertex hierarchy. We have implemented our algorithm on a
desktop PC. We can render massive CAD, isosurface, and scanned
models, consisting of tens or a few hundreds of millions of tri-
angles at10−35 frames per second with little loss in image quality.

Keywords: Interactive display, view-dependent rendering, occlu-
sion culling, external-memory algorithm, levels-of-detail

1 Introduction

Recent advances in acquisition, modeling, and simulation technolo-
gies have resulted in large databases of complex geometric models.
These gigabyte-sized datasets consist of tens or hundreds of mil-
lions of polygons. The enormous size of these datasets poses a
number of challenges in terms of interactive display and manipula-
tion on current graphics systems.

View-dependent simplification and rendering have been actively
researched for interactive display of large datasets [Hoppe 1997;
Luebke and Erikson 1997; Xia et al. 1997]. These algorithms have
many appealing properties because they compute different levels-
of-detail (LODs) over different regions of the model. The selection
of appropriate LODs is based on view-position, local illumination
and other properties such as visibility and silhouettes. Most view-
dependent algorithms precompute a vertex hierarchy of the model
and perform incremental computations between successive frames.
This reduces the “popping” artifacts that can occur while switching
between different LODs. The algorithms generally maintain a cut,
or active vertex front, across the hierarchy and use it for mesh re-
finement. The front is traversed each frame and is updated based
on the change in view parameters. In order to preserve the local
topology, dependencies are introduced between simplification op-
erations.

Current representations and refinement algorithms for view-
dependent rendering do not scale well to large models composed
of tens or hundreds of millions of triangles. The refinement cost is
a function of the front size and may be prohibitively expensive for
massive models. Furthermore, resolving dependencies in the vertex
hierarchy can be expensive (e.g. hundreds of milliseconds or more
per frame).

In addition to reducing the refinement cost, it is necessary to
integrate view-dependent simplification algorithms with occlusion
culling and out-of-core rendering. Occlusion culling computes a set
of potentially visible primitives during each frame and is needed
to handle high depth complexity models. Out-of-core rendering
techniques operate with a bounded memory footprint and are re-
quired to render massive models on commodity graphics systems

Figure 1:This image shows the application of Quick-VDR to a complex isosurface
(100M triangles) generated from a very high resolution 3D simulation of Richtmyer-
Meshkov instability and turbulence mixing. The right inset image shows a zoomed
view. The isosurface has high depth complexity, holes, and a very high genus. Quick-
VDR can render it at11− 21 frames per second on a PC with NVIDIA GeForce
FX5950 card and uses a memory footprint of 600MB.

with limited memory. Algorithms for occlusion culling and out-
of-core techniques also perform computations based on the view
parameters. However, no known algorithms integrate conservative
occlusion culling and out-of-core rendering with vertex hierarchies.

Main Contributions: We present a new view-dependent rendering
algorithm (Quick-VDR) for interactive display of massive models.
We use a novel scene representation, aclustered hierarchy of pro-
gressive meshes(CHPM). The cluster hierarchy is used for coarse-
grained view-dependent refinement. The progressive meshes pro-
vide fine-grained local refinement to reduce the popping between
successive frames without high refinement cost.

Our rendering algorithm uses temporal coherence and occlusion
queries for visibility computations at the cluster level. We account
for visibility events between successive frames by combining fetch-
ing and prefetching techniques for out-of-core rendering. Our ren-
dering algorithm introduces one frame of latency to fetch newly
visible clusters from the disk and to avoid stalling the pipeline.

Quick-VDR relies on an out-of-core algorithm to compute a
CHPM that performs a hierarchical cluster decomposition and sim-
plification. We introduce the concept ofcluster dependenciesbe-
tween adjacent clusters to generate crack-free and drastic simplifi-
cations of the original model.

We have implemented and tested Quick-VDR on a commodity
PC with NVIDIA 5950FX Ultra card. To illustrate the generality of
our approach we have highlighted its performance on several mod-
els: a complex CAD environment (12M triangles), scanned mod-
els (372M triangles), and an isosurface (100M triangles). We can
render these models at10 − 35 frames per second using a limited
memory footprint of400 − 600MB.

Advantages: Our approach integrates view-dependent simplifica-
tion, conservative occlusion culling, and out-of-core rendering for
high quality interactive display of massive models on current graph-
ics systems. As compared to prior approaches, Quick-VDR offers
the following benefits:

1. Lower refinement cost: The overhead of view-dependent re-
finement in the CHPM is one to two orders of magnitude lower
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than vertex hierarchies for large models.
2. Massive models:We are able to compute drastic simplifications

of massive models, using hierarchical simplification with cluster
dependencies, necessary for interactive rendering.

3. Runtime performance: Quick-VDR renders CHPMs using a
bounded memory footprint and exploits the features of current
graphics processors to obtain a high frame rate.

4. Image quality: We significantly improve the frame rate with lit-
tle loss in image quality and alleviate popping artifacts between
successive frames.

5. Generality: Quick-VDR is a general algorithm and applicable
to all types of polygonal models, including CAD, scanned, and
isosurface.

Organization: The rest of the paper is organized in the following
manner. We give a brief overview of related work in Section 2 and
describe our scene representation and refinement algorithm in Sec-
tion 3. Section 4 describes our out-of-core algorithm to generate a
CHPM for a large environment. We present the rendering algorithm
in Section 5 and highlight its performance in Section 6. We com-
pare our algorithm with other approaches in Section 7 and discuss
some of its limitations.

2 Related Work

We give a brief overview of the previous work in view-dependent
rendering, out-of-core rendering, occlusion culling, and hybrid ap-
proaches to massive model rendering.

2.1 View-Dependent Simplification

View-dependent simplification of complex models has been an ac-
tive area of research over the last decade. View-dependent render-
ing originated as an extension of the progressive mesh (PM) [Hoppe
1996]. A PM is a linear sequence of increasingly coarse meshes
built from an input mesh by repeatedly applying edge collapse op-
erations. It provides a continuous resolution representation of an
input mesh and is useful for efficient storage, rendering, and trans-
mission.

Xia and Varshney [1997] and Hoppe [1997] organized the PM as
a vertex hierarchy (or view-dependent progressive mesh (VDPM))
instead of a linear sequence. Luebke and Erikson [1997] developed
a similar approach employing octree-based vertex clustering opera-
tions and used it for dynamic simplification. El-Sana and Varshney
[1999] extended these ideas using a uniform error metric based on
cubic interpolants and reduced the cost of runtime tests.

The Multi-Triangulation(MT) is a multiresolution representation
that has been used for view-dependent rendering [L. De Floriani
1997]. Pajarola [2001] improved the update rate of runtime mesh
selection by exploiting properties of the half-edge mesh represen-
tation and applied it to manifold objects. El-Sana and Bachmat
[2002] presented a mesh refinement prioritization scheme to im-
prove the runtime performance.

2.2 Out-of-core Computation and Rendering

Many algorithms have been proposed for out-of-core simplifica-
tion. These include [Lindstrom and Silva 2001; Shaffer and Gar-
land 2001; Cignoni et al. 2003b] for generating static LODs. Hoppe
[1998] extended the VDPM framework for terrain rendering by de-
composing the terrain data into blocks, generating a block hierarchy
and simplifying each block independently. Prince [2000] extended
this out-of-core terrain simplification to handle arbitrary polygonal
models.

El-Sana and Chang [2000] segment a mesh into sub-meshes
such that the boundary faces are preserved while performing edge-
collapse operations. DeCoro and Pajarola [2002] present an exter-
nal data structure for the half-edge hierarchy and an explicit pag-
ing system for out-of-core management of view-dependent render-
ing. Lindstrom [2003] presents an approach for out-of-core simpli-
fication and view-dependent visualization. Cignoni et al. [2003a]
present an efficient method for out-of-core rendering of terrain data.

2.3 Occlusion Culling

The problem of computing portions of the scene visible from a
given viewpoint has been well-studied [Cohen-Or et al. 2001].

Figure 2:Scan of Michelangelo’s St. Matthew.This9.6GB scanned model consists
of 372M triangles. The right inset image shows clusters in color from a64K cluster
decomposition of the model. Quick-VDR is able to render this model at13−23 frames
per second using a memory footprint of600MB.

Many specialized object-space algorithms have been developed for
architectural models or urban environments. For general environ-
ments, image-based occlusion representations are widely used and
the resulting algorithms use graphics hardware to perform visibil-
ity computations [Greene et al. 1993; Zhang et al. 1997; Klosowski
and Silva 2001]. In some cases, additional graphics processors have
been used for visibility computations [Wonka et al. 2001; Govin-
daraju et al. 2003]. All of these algorithms load the entire scene
graph into main memory.

2.4 Hybrid Algorithms for Rendering Acceleration

Many hybrid algorithms have been proposed that combine model
simplification with visibility culling or out-of-core data manage-
ment. The Berkeley Walkthrough system [Funkhouser et al. 1996]
combines cells and portals based on visibility computation algo-
rithms with static LODs for architectural models. The MMR sys-
tem [Aliaga et al. 1999] combines static LODs with occlusion
culling and out-of-core computation and is applicable to models
that can be partitioned into rectangular cells. The QSplat sys-
tem [Rusinkiewicz and Levoy 2000] uses a compact bounding vol-
ume hierarchy of spheres for view-frustum and backface culling,
level-of-detail control and point-based rendering. Erikson et al.
[2001] and Samanta et al. [2001] use hierarchies of static LODs
(HLODs) and view-frustum culling. Govindaraju et al. [2003] inte-
grate HLODs and conservative occlusion culling for interactive dis-
play of large CAD environments. Yoon et al. [2003] presented an
in-core algorithm to combine view-dependent simplification with
conservative occlusion culling. El-Sana et al. [2001] combined
view-dependent rendering with approximate occlusion culling. The
iWalk system [Correa et al. 2002] partitions the space into cells
and performs out-of-core rendering of large architectural and CAD
models on commodity hardware using non-conservative occlusion
culling.

3 Overview

In this section we introduce some of the terminology and represen-
tations used by Quick-VDR. We also give a brief overview of our
approach for out-of-core hierarchical simplification and rendering.

3.1 View-Dependent Rendering of Massive Datasets

Most of the prior work on view-dependent simplification and ren-
dering of large datasets uses vertex hierarchies such as VDPM.
These approaches augment each edge collapse withdependencyin-
formation related to the local neighborhood at the time of the edge
collapse during construction. This information is used to prevent
“fold-overs” whereby a face normal is reversed at runtime. How-
ever, many issues arise in applying these approaches to massive
datasets composed of tens or hundreds of millions of triangles.
Traversing and refining anactive vertex frontacross a vertex hier-
archy composed of tens of millions of polygons can take hundreds
of milliseconds per frame. Also, resolving the dependencies can
lead to non-localized memory accesses which can be problematic
for out-of-core rendering. Moreover, performing occlusion culling
and out-of-core rendering using vertex hierarchies can become ex-
pensive.
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Figure 3: Power Plant.A rendering of the power plant model using our runtime
algorithm. This model consists of over 12M triangles and has high depth complexity.
It is rendered at an average of33 FPS using400MB of main memory by our system.

3.2 Scene Representation

We propose a novel representation, a clustered hierarchy of pro-
gressive meshes (CHPM), for view-dependent rendering of massive
datasets. The CHPM consists of two parts:

Cluster Hierarchy: We represent the entire dataset as a hierarchy
of clusters, which are spatially localized mesh regions. Each clus-
ter consists of a few thousand triangles. The clusters provide the
capability to perform coarse-grained view-dependent (or selective)
refinement of the model. They are also used for visibility computa-
tions and out-of-core rendering.

Progressive Mesh:We precompute a simplification of each cluster
and represent a linear sequence of edge collapses as a progressive
mesh (PM). The PMs are used for fine-grained local refinement and
to compute an error-bounded simplification of each cluster at run-
time.

We refine the CHPM at two levels. First we perform a coarse-
grained refinement at the cluster level. Next we refine the PMs of
the selected clusters. The PM refinement provides smooth LOD
transitions.

3.2.1 Cluster Hierarchy

Conceptually, a cluster hierarchy is similar to a vertex hierarchy.
However, every node of a cluster hierarchy represents a set of ver-
tices and faces rather than a single vertex. At runtime, we maintain
an active cluster list(ACL), which is similar to an active front in
a vertex hierarchy and perform selective refinement on this list via
the following operations:

• Cluster-split: A cluster in the active cluster list is replaced by
its children.

• Cluster-collapse:Sibling clusters are replaced by their parent.

These operations are analogous to the vertex split and collapse in
a vertex hierarchy but provide a more coarse-grained approach to
selective refinement.

3.2.2 Progressive Meshes and Refinement

A PM is a mesh sequence built from an input mesh by a sequence
of edge collapse operations. The inverse operation, a vertex split,
restores the original vertices and replaces the removed triangles. We
use the notationM0

A to represent the most simplified orbase mesh
of clusterA. Moreover,M i

A is computed by applying a vertex split
operation toM i−1

A (as shown in Fig. 4). Each PM is stored as a
base mesh and a series of vertex split operations. For each cluster
in the ACL we select the position in the edge collapse sequence
that meets the allowed error for the cluster with the least number
of faces. We take advantage of temporal coherence by starting with
the position from the previous frame. In practice, refining a PM is
a very fast operation and requires no dependency checks.

The PMs allow us to perform smooth LOD transitions at the level
of a single cluster. In order to perform globally smooth LOD tran-
sitions we require that the changes to the ACL between successive
frames are also smooth. If clusterC is the parent of clustersA and
B, we set the highest resolution mesh approximation of clusterC ’s
PM to be the union of the base meshes of clusterA andB’s PMs.
That is,Mk

C = M0
A

⋃
M0

B (see Fig. 4). Therefore, the cluster-
collapse and cluster-split operations introduce no popping artifacts.

ACL

Frustum Culled Cluster

Occluded Cluster

Visible Cluster

Inactive Cluster

PMC: M0
C? M1

C? …Mk
C

A B

C

Mk
C=M0

A» M0
B

PMA: M0
A? M1

A? …Mi
A

PMB: M0
B? M1

B? …Mj
B

indicates vertex split

Figure 4:CHPM: Clustered Hierarchy of Progressive Meshes.At runtime the active
cluster list (ACL) represents a front in the cluster hierarchy containing the clusters of
the current mesh (left). Clusters on the ACL are classified as visible, frustum culled,
or occlusion culled. The PMs (right) of visible clusters are refined to meet the screen
space error bound by selecting a mesh from the PM mesh sequence. When the ACL
changes, smooth LOD transitions occur because the most refined mesh of each PM is
equal to the union of the base meshes of its children.

3.3 Simplification Error Bounds

A key issue is computation of errors associated with the LODs gen-
erated at runtime. Each cluster contains progressive mesh that can
be refined within a range of object space error values. We refer to
this range as theerror-rangeof a cluster and is expressed as a pair:
(min-error, max-error). Themax-erroris the error value associated
with the base mesh (M0) and themin-error is the error value asso-
ciated with the highest resolution mesh (e.g.M i

A, M j
B , andMk

C in
Fig. 4).

The allowed runtime error is expressed in screen-space as a
pixels-of-error(POE) value. Using the POE value and the mini-
mum distance between a cluster and the viewpoint, we compute the
maximum object-space error that is allowed for the cluster, called
theerror-bound. View-dependent refinement of each cluster based
on theerror-boundwill be explained in Sec. 5.1.

3.4 Preprocess

Given a large dataset, we compute a CHPM representation. Our
out-of-core algorithm begins by decomposing the input mesh into
a set of clusters. To support transparent accesses on a large mesh
during simplification, we preserve all inter-cluster connectivity in-
formation. The clusters are input to a cluster hierarchy generation
algorithm which builds a balanced hierarchy in a top-down manner.
We perform out-of-core hierarchical simplification using the cluster
hierarchy.

Each cluster should be independently refinable at runtime for ef-
ficiency and out-of-core rendering. For this reason, boundary con-
straints on simplification are introduced during hierarchical simpli-
fication. While guaranteeing crack-free simplifications at runtime,
these constraints can prevent drastic simplification and may dra-
matically increase the number of faces rendered at runtime. To al-
leviate these problems we introducecluster dependenciesthat allow
boundary simplification while maintaining crack-free rendering at
runtime. The role of the dependencies in simplification is detailed
in Sec. 4.4 and at runtime in Sec. 5.2.

3.5 Rendering Algorithm

Quick-VDR uses the CHPM as a scene representation for out-
of-core view-dependent rendering and occlusion culling. Coarse-
grained selective refinement is accomplished by applying cluster-
split and cluster-collapse operations to the ACL. Cluster dependen-
cies assure that consistent cluster boundaries are rendered and that
we are able to compute drastic simplifications. We use temporal co-
herence to accelerate refinement and to perform occlusion culling.

Quick-VDR uses the operating system’s virtual memory man-
ager through a memory mapped file for out-of-core rendering. In
order to overcome the problem of accurately predicting the oc-
clusion events, we introduce one frame of latency in the runtime
pipeline. This allows us to load newly visible clusters to avoid
stalling the rendering pipeline.
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4 Building a CHPM

In this section we present an out-of-core algorithm to compute CH-
PMs for massive models. Our algorithm proceeds in three steps.
First, we decompose the input mesh into a set of clusters. The
decomposition occurs in several passes to avoid loading the entire
input mesh at once. Next, we construct the cluster hierarchy by
repeatedly subdividing the mesh in a top-down manner. Finally,
we compute progressive meshes for each cluster by performing a
bottom-up traversal of the hierarchy.

4.1 Cluster Decomposition

The clusters form the underlying representation for both the prepro-
cessing step as well as out-of-core view-dependent rendering with
occlusion culling. We decompose the model into clusters, which
are spatially localized portions of the input mesh. The generated
clusters should be nearly equally sized in terms of number of trian-
gles for several reasons. This property is desirable for out-of-core
mesh processing to minimize the memory requirements. If the clus-
ter size as well as the number of clusters required in memory at one
time are bounded, then simplification and hierarchy construction
can be performed with a constant memory footprint. Moreover,
enforcing spatial locality and uniform size provides higher perfor-
mance for occlusion culling and selective refinement.

The out-of-core cluster decomposition algorithm proceeds in
four passes. The first three passes only consider the vertices of the
original model and create the clusters while the fourth assigns the
faces to the clusters. We use a variation of the cluster decomposition
algorithm for out-of-core compression of large datasets presented in
[Isenburg and Gumhold 2003]. However, our goal is to decompose
the mesh for out-of-core processing and view-dependent rendering.
As a result, we only compute and store the connectivity informa-
tion used by the simplification algorithm. The four passes of the
algorithm are:

First vertex pass: We compute the bounding box of the mesh.
Second vertex pass:We compute balanced-size clusters of ver-

tices (e.g.2K vertices). Vertices are assigned to cells of a uniform
3D grid which may be subdivided to deal with irregular distribu-
tion of geometry. A graph is built with nodes representing the non-
empty cells weighted by vertex count. Edges are inserted between
each cell and itsk nearest neighbors using an approximate nearest
neighbor algorithm [Arya and Mount 1993] (e.g.k=6). We use
a graph partitioning algorithm [Hendrickson and Leland 1995] to
partition the graph and compute balanced-size clusters.

Third vertex pass: Based on the output of the partitioning, we
assign vertices to clusters and reindex the vertices. The new index
is a cluster/vertex pair that is used to locate the vertex in the de-
composition. A mapping is created that maps the original vertex
indices to the new pair of indices. This mapping can be quite large
so it is stored in a file that can be accessed in blocks with LRU pag-
ing to allow the remainder of the preprocess to operate in a constant
memory size.

Face pass:In the final pass, we assign each face to a single clus-
ter that contains at least one of its vertices. The mapping file created
in the previous pass is used to locate the vertices. The vertices of
faces spanning multiple clusters are marked as constrained for sim-
plification. These vertices make up the boundaries between clusters
and are referred to asshared verticeswhile the remaining vertices
are referred to asinterior vertices.

The resulting cluster decomposition consists of manageable
mesh pieces that can be transparently accessed in an out-of-core
manner for hierarchy generation and simplification, while preserv-
ing all the original connectivity information. Different clusters
computed for the St. Matthew model are shown in Fig. 2.

4.2 Cluster Hierarchy Generation

In this section, we present an algorithm to compute the cluster hi-
erarchy. The clusters computed by the decomposition algorithm
described in the previous section are used as the input to hierarchy
generation. Our goal is to compute a hierarchy of clusters with the
following properties:

Nearly equal cluster sizeAs previously discussed, consistent clus-
ter size is important for memory management, occlusion culling,
and selective refinement. Clusters at all levels of the hierarchy must
possess this property.
Balanced cluster hierarchy During hierarchical simplification,
cluster geometry is repeatedly simplified and merged in a bottom
up traversal. The hierarchy must be well balanced so that merged
clusters have nearly identicalerror-ranges.
Minimize shared vertices The number of shared vertices at the
cluster boundary should be minimized for simplification. Other-
wise, in order to maintain consistent cluster boundaries, the sim-
plification will be over-constrained and may result in lower fidelity
approximations of the original model.
High spatial locality The cluster hierarchy should have high spatial
locality for occlusion culling and selective refinement.

We achieve these goals by transforming the problem of comput-
ing a cluster hierarchy into a graph partitioning problem and com-
pute the hierarchy in a top down manner. Each cluster is repre-
sented as a node in a graph, weighted by the number of vertices.
Clusters are connected by an edge in the graph if they share ver-
tices or are within a threshold distance of each other. The edges
are weighted by the number of shared vertices and the inverse of
the distance between the clusters, with greater priority placed on
the number of shared vertices. The cluster hierarchy is then con-
structed in a top-down manner by recursively partitioning the graph
into halves considering the weights, thus producing a binary tree.
The weights guide the partitioning algorithm [Karypis and Kumar
1998] to produce clusters with spatial locality while tending to-
wards fewer shared vertices. The top down partitioning creates an
almost balanced hierarchy.

4.3 Out-of-Core Hierarchical Simplification

We simplify the mesh by traversing the cluster hierarchy in a
bottom-up manner. Each level of the cluster hierarchy is simpli-
fied in a single pass so the simplification requiresdlog2(n) + 1e
passes wheren is the number of leaf clusters. During each pass
only the cluster being simplified and clusters with which it shares
vertices must be resident in memory.

Simplification operations are ordered by a priority queue based
upon quadric errors [Garland and Heckbert 1997]. We build the
progressive meshes (PMs) for each cluster by applying “half-edge
collapses”. The half-edge collapse, in which an edge is contracted
to one of the original vertices, is used to avoid creation of new ver-
tices during simplification. Edges adjacent to shared vertices are not
collapsed during simplification. The edge collapses and associated
error values are stored along with the most refined mesh of a PM.
After creating the PM, theerror-rangeof the cluster is computed
based on the errors of the PM’s original and base mesh.

When proceeding to the next level up the hierarchy, the mesh
within each cluster’s PM is initialized by merging the base meshes
of the children. Constraints on vertices that are shared by two clus-
ters being merged are removed thereby allowing simplification of
the merged boundary. Since the intermediate clusters should be
nearly the same size as the leaf level clusters, each cluster is sim-
plified to half its original face count at each level of the hierarchy.

As simplification proceeds, a file is created for the progressive
mesh of each cluster. However, handling many small files at run-
time is inefficient. The PM files are merged into one file which can
be memory mapped to allow the OS to perform memory manage-
ment of the PMs and optimize disk access patterns during runtime
rendering. The file is stored in a breadth first manner in an attempt
to match the probable access pattern during runtime refinement.

4.4 Boundary Constraints and Cluster Dependencies

In order to support out-of-core rendering and to allow efficient
refinement at runtime, the PMs of each cluster should be inde-
pendently refinable while still maintaining a crack-free consistent
mesh. To achieve this, our algorithm detects the shared vertices and
restricts collapsing the edges adjacent to them during hierarchical
simplification. As simplification proceeds up the hierarchy, these
constraints are removed because the clusters sharing the vertices
have been merged.
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While these constraints assure crack-free boundaries between
clusters at runtime, they can be overly restrictive. After simpli-
fying several levels of the hierarchy most of the vertices in the base
mesh of the PM are shared vertices. As illustrated in Fig. 5 this
problem arises along boundaries between clusters that are merged
at higher levels in the hierarchy. This can degrade the quality of
simplification, and impedes drastic simplification. In Fig. 5 notice
that the boundaries between clustersA andB and clustersC andD
are merged in the next level of the hierarchy (E andF ). However,
the boundary betweenB andC is not merged until higher up the
hierarchy, but it is already drastically under-simplified compared to
the interior. This constraint problem is common to many hierar-
chical simplification algorithms that decompose a large mesh for
view-dependent rendering [Hoppe 1998; Prince 2000] or compute
hierarchies of static LODs (HLODs) [Erikson et al. 2001; Govin-
daraju et al. 2003; Samanta et al. 2001].

We introducecluster-level dependenciesto address this con-
straint problem. The intuition behind dependencies is that precom-
puted simplification constraints on shared vertices can be replaced
by runtime dependencies. During hierarchical simplification, we
may collapse an edge adjacent to a shared vertex. The clusters
sharing that vertex are marked as dependent upon each other. This
boundary simplification occurs on the merged mesh prior to PM
generation for the cluster. In Fig. 5 clustersE andF are marked
dependent and thereby allow the boundary to be simplified.

At runtime, splitting a cluster forces all its dependent clusters to
split so that the boundaries are rendered without cracks. Likewise,
a parent cluster cannot be collapsed unless all of its dependent clus-
ters have also been collapsed. In Fig. 5, clustersE andF must be
split together and clustersA, B, C, andD must be collapsed to-
gether (assumingE andF are dependent). For example, if clusters
B andF are rendered during the same frame, their boundary will
be rendered inconsistently and may have cracks.

Although cluster dependencies allow boundary simplification,
we need to use them carefully. Since splitting a cluster forces its
dependent clusters to split, dependencies will cause some clusters
to be rendered that are overly conservative in terms of theirerror-
bound. Furthermore, the boundaries change in one frame which
may cause popping artifacts. This can be exacerbated by “chained”
dependencies in which one cluster is dependent upon another clus-
ter which is in turn dependent upon a third cluster, and so on.

To avoid these potential runtime problems, we prioritize clusters
for boundary simplification. At each level of hierarchical simplifi-
cation the clusters are entered into a priority queue. Priorities are
assigned as the ratio of average error of shared vertices to the av-
erage error of interior vertices. A cluster,A, is removed from the
head of the priority queue. For each cluster,B, that shares at leastj
(e.g. 5) vertices withA we apply boundary simplification between
A andB if the following conditions are met:

1. A andB will not be merged within a small number of levels up
the cluster hierarchy (e.g., 2).

2. A andB have similarerror-range.
3. A dependency betweenA andB will not introduce a chain (un-

less all the clusters in the chain share vertices).

This is repeated for each cluster in the priority queue. The first
condition avoids creating dependencies between clusters that are
resolved within only a few additional hierarchy levels. The second
condition discourages dependencies between those clusters that are
unlikely to be simultaneously present in the ACL at runtime. The
third condition prevents long dependency chains and preserves se-
lective refinement at the cluster level. The cluster dependencies en-
sure that a sufficient number of shared vertices are collapsed at each
level of the hierarchy while still generating and rendering crack-free
simplifications at runtime.

5 Interactive Out-of-Core Display

In the previous section, we described an algorithm to compute the
CHPM. In this section, we present a novel rendering algorithm that
uses the CHPM for occlusion culling, view-dependent refinement
and out-of-core rendering. The entire representation including the
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Cluster B Cluster C Cluster DCluster A
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Figure 5:Dependencies.After simplifying leveln of the hierarchy the boundaries
AB, BC, and CD are all under-simplified because they are constrained. When
initializing the base meshes ofE andF prior to simplifying leveln + 1, two of these
boundaries,AB andCD, are no longer constrained because they have been merged.
The boundary BC was not merged and will remain under-simplified. We can, however,
simplify the faces along this boundary if we markE andF as dependent.

PMs is stored on the disk. We load the coarse-grained cluster hi-
erarchy into main memory and keep a working set of PMs in main
memory. The cluster hierarchy without the PMs is typically a few
megabytes for our benchmark models (e.g.5MB for St. Matthew
model). We perform coarse-grained refinement at the cluster level
and fine-grained refinement at the level of PMs. We introduce a
frame of latency in the rendering pipeline in order to fetch the PMs
of newly visible clusters from the disk and avoid stalls in the ren-
dering pipeline.

5.1 View-Dependent Refinement

Our algorithm maintains an active cluster list (ACL), which is a cut
in the tree representing the cluster hierarchy. During each frame, we
refine the ACL based on the current viewing parameters. Specifi-
cally, we traverse the ACL and compute theerror-boundfor each
cluster. Each cluster on the active front whoseerror-boundis less
than themin-error of its error-range is split because the PM can-
not meet theerror-bound. Similarly, sibling clusters that have a
greatererror-boundthanmax-errorare collapsed. Each PM in the
ACL is refined prior to being rendered by choosing the mesh in
the PM mesh sequence with the lowest face count that meets the
error-bound.

5.2 Handling Cluster Dependencies

Our simplification algorithm introduces dependencies between the
clusters so that we can simplify their boundaries during the prepro-
cess. We use these dependencies to generate a crack-free simpli-
fication at runtime. Cluster-collapses occur to reduce the polygon
count in the current refinement. However, prior to collapsing a pair
of sibling clusters we must check the parent’s dependencies. If the
children of any dependent clusters cannot also be collapsed, then
the initial cluster collapse cannot occur. These checks occur at the
cluster level and are relatively inexpensive.

5.3 Rendering Algorithm

Our rendering algorithm combines occlusion culling, view-
dependent refinement, and out-of-core rendering. We first explain
the sequence of operations performed during each frame for occlu-
sion culling and view-dependent refinement. After that we present
the algorithm for out-of-core rendering by introducing one frame
of latency. This extra frame time is used to load the PMs of newly
visible clusters from the disk.

5.4 Conservative Occlusion Culling

We exploit temporal coherence in occlusion culling. Each frame
our algorithm computes a potentially visible set of clusters (PVS)
and a newly visible set (NVS), which is a subset of the PVS. The
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PVS for framei is denoted asPV Si and the NVS asNV Si. An
occlusion representation (ORi), represented as a depth buffer, is
computed by renderingPV Si−1 as an occluder set. UsingORi

we determinePV Si. The overall rendering algorithm is:
Step 1: Refine ACL. The ACL is refined as described in Sec. 5.1
based on the camera parameters for framei.
Step 2: RenderPV Si−1 to computeORi: We refine clusters in
PV Si−1 based on the viewpoint, compute a simplification for each
cluster and render them to computeORi. ORi is represented as
a depth map that is used for occlusion culling. These clusters are
rendered to both the depth and color buffers.
Step 3: ComputeNV Si and PV Si: The bounding boxes of all
the clusters in the ACL are tested for occlusion againstORi. This
test is performed with hardware occlusion queries at the resolution
of image precision.PV Si contains all the clusters with visible
bounding boxes, whileNV Si contains the clusters with visible
bounding boxes that were not inPV Si−1.
Step 4: RenderNV Si: The PMs of clusters inNV Si are refined
and rendered, generating the final image for framei.

5.5 Out-of-Core Rendering

Our algorithm works with a fixed memory footprint of main mem-
ory and graphics card memory. The entire cluster hierarchy is in
main memory and we fetch the PMs of the clusters needed for the
current frame as well as prefetch some PMs of clusters for subse-
quent frames. Additionally, we store the vertices and faces of active
clusters in GPU memory. By rendering the primitives directly from
GPU memory, AGP bus bandwidth requirement is reduced and we
obtain an increased triangle throughput.

Our out-of-core rendering algorithm uses the paging mechanism
of the operating system by mapping a file into read-only logical ad-
dress space [Lindstrom and Pascucci 2002]. To fully take advantage
of this mechanism, we store our view-dependent representation in a
memory coherent manner, as described in Sec 4.3. We use two sep-
arate threads: a fetch thread and a main thread. The fetch thread is
used to prepare data for PMs that are likely to be used in the future.
This thread provides hints to OS and converts the PM data to the
runtime format while a main thread handles refinement, occlusion
culling, and rendering.

5.5.1 LOD Prefetching

When we update clusters in the ACL by performing cluster-collapse
and cluster-split operations, the children and parent clusters are ac-
tivated. The PMs of these clusters may not be loaded in the main
memory and GPU memory. This can stall the rendering pipeline.
To prevent these stalls whenever a cluster is added to the ACL we
prefetch its parent and children clusters. Thus, we attempt to keep
one level of the hierarchy above and below the current ACL in main
memory.

5.5.2 Visibility Fetching

Predicting visibility or occlusion events is difficult, especially in
complex models with high depth complexity and small holes. As a
result, our algorithm introduces a frame of latency in the rendering
pipeline and fetches the PMs of the newly visible cluster in the ACL
from the disk.

In our rendering algorithm visibility events are detected in Step
3, and the newly visible clusters are added toNV Si (Sec. 5.4).
These clusters are then rendered in Step4, which will likely not
allow enough time to load these clusters without stalling. Step2,
renderingORi, is the most time consuming step of the rendering
algorithm. Therefore, we delay the rendering ofNV Si until the
end of Step2 of the next frame and perform rendering ofPV Si−1

and fetching PMs from the disk in parallel using a fetch thread. Our
rendering pipeline is reordered to include a frame of latency thereby
increasing the time allowed to load a cluster to avoid stall.

During framei we perform Steps1 through3 of the rendering
algorithm with the camera parameters for framei. However, we
perform Step4 for frame i − 1 and generate the final image for
framei − 1. The overall pipeline of the algorithm proceeds as:1i,
2i, 3i, 4i−1, 1i+1, 2i+1, 3i+1, 4i, . . ., wherenj refers to Stepn

NVSi

1i Refine ACL

2i Render PVSi-1 to ORi

3i Compute NVSi & PVSi

4i-1 Render NVSi-1

PVSi

Frame i Frame i+1

Buffer 0 Buffer 1

1i+1 Refine ACL

2i+1 Render PVSi to ORi+1

3i+1 Compute NVSi+1 & PVSi+1

4i Render NVSiNVSi-1

PVSi-1

NVSi+1

PVSi+1

Figure 6: Our Rendering Pipeline.In framei occlusion culling is performed for
framei but the final image for framei − 1 is displayed. This allows extra time for
loading the PMs of newly visible clusters. Two off-screen buffers facilitate this inter-
leaving of successive frames. The partial rendering of framei is stored in one buffer
while occlusion culling for framei + 1 occurs in the other buffer.

of framej (as shown in Fig. 6). In this reordered pipeline, the PM
of a cluster inNV Si can be loaded anytime from step3i until step
2i+1 when it must be rendered forORi+1. However, rendering the
already loaded PMs inOR consumes most of the frame time, so
there is almost a full frame time to loadNV S.

To implement this pipeline, we use a pair of off-screen buffers.
One buffer holds the partial rendering of a frame from Step2 so
that it may be composited with the newly visible clusters in Step4
the following frame. The odd numbered frames use the first buffer
while the even-numbered frames use the second buffer, so that each
consecutive pair of frames can render to separate buffers. Fig. 6
illustrates how the buffers are used for two consecutive frames.

6 Implementation and Performance

In this section we describe our implementation and highlight its
performance on massive models.

6.1 Implementation

We have implemented our out-of-core simplification and runtime
system on a dual2.4GHz Pentium-IV PC, with1GB of RAM and a
GeForce Ultra FX5950 GPU with128MB of video memory. Our
system runs on Windows XP and uses the operating system’s vir-
tual memory through memory mapped files. Windows XP imposes
a 2GB limitation for mapping a file to user-addressable address
space. We overcome this limitation by mapping a32MB portion
of the file at a time and remapping when a PM is required from
outside this range.

We use the METIS graph partitioning library [Karypis and Ku-
mar 1998] for cluster computation. We use NVIDIA OpenGL ex-
tension GLNV occlusionquery to perform occlusion queries. We
are able to perform an average of approximately400K occlusion
queries per second on the bounding boxes.

We achieve high throughput from graphics cards by storing the
mesh data on the GPU, thereby reducing the data transferred to
the GPU each frame. We use the GLARB vertexbuffer object
OpenGL extension that performs GPU memory management for
both the vertex and the face arrays. However, we generate some
new faces during each frame by performing vertex splits or edge
collapse operations during local refinement of each PM. In prac-
tice, only a small number of PMs require refinement during each
frame. As a result, we only transmit the faces of these PMs to the
GPU and the other faces are cached in the GPU memory.

6.2 Massive Models

Our algorithm has been applied to three complex models, a coal-
fired power plant composed of more than12 million polygons and
1200 objects (Fig. 3), the St. Matthew model consisting of a sin-
gle 372 million polygon object (Fig. 2), and an isosurface model
consisting of100 million polygons also originally represented as a
single object (Fig. 1). The details of these models are shown in Ta-
ble 1. We generated paths in each of our test models and used them
to test the performance of our algorithm. These paths are shown in
the accompanying video.

6.3 Performance

We have applied our out-of-core CHPM generation preprocess to
each of the models. Table 1 presents preprocessing time for each
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Model PP Isosurface St. Matthew

Triangles (M) 12.2 100 372

Original Size (MB) 485 2, 543 9, 611
Num Clusters (K) 5.8 32 65
Memory footprint used (MB) 32 256 512
Size of CHPM (MB) 625 3, 726 13, 992
Processing time (min) 64 350 2, 369

Table 1: PreprocessPreprocess timings and storage requirements for test models.
We are able to compute a CHPM for each environment using our out-of-core algorithm
and a memory footprint of32− 512MB.

model on the PC. Hierarchical simplification takes approximately
85% of the preprocess time. The remainder of the time is dominated
by the face pass of the cluster decomposition. This pass makes
random accesses to the out-of-core vertex index mapping table to
locate face vertices in the cluster decomposition. We could use an
external sort of the mapping table to improve access patterns as in
[Lindstrom and Silva 2001].

We are able to render all these models at interactive rates (10-30
frames per second) on a single PC. Fig. 7 illustrates the perfor-
mance of the system on a complex path in isosurface model. Table
2 shows the average frame rate, front size, and number of edge col-
lapse and vertex split operations performed for paths in each of our
test models. Table 3 shows the average breakdown of the frame
time for each model. Rendering costs dominate the frame time.

6.3.1 Out-of-core

Our system relies on the underlying operating systems virtual mem-
ory management for paging of PMs and, as discussed in Sec. 5.5.2,
uses a frame of latency to hide load times of newly visible clusters.
The frame rates of a sample path of the isosurface model are shown
in Fig. 7.

6.3.2 Occlusion culling

Occlusion culling is very important for rendering models with high
depth complexity such as the power plant and isosurface models.
Fig. 7 highlights the benefit of occlusion culling by comparing the
frame rate of our system over a path with occlusion culling enabled
and disabled. On average the frame rate is25 − 55% higher when
occlusion culling enabled.

7 Comparisons and Limitations

In this section, we analyze the performance of Quick-VDR. We also
highlight the benefits over prior approaches and describe some of
its limitations.

Refinement Cost of CHPMs vs. Vertex Hierarchies:Most of the
earlier algorithms for view-dependent simplification use a vertex
hierarchy. These algorithm compute an active vertex front in the
hierarchy and handle dependencies at the vertex or edge level.

We compared the refinement cost of CHPM with an implementa-
tion of a vertex hierarchy (VDPM) for an isosurface with about1M
triangles (see Table 4). We have observed that CHPM refinement
cost is one-two orders of magnitude lower, even without occlusion
culling. This lowered cost is due to the following factors:

1. Our clusters consist of thousands of triangles. As a result, the
size of ACL is typically more than one-two orders of magnitude
smaller than the size of active front in a vertex hierarchy.

2. We perform coarse-grained refinement operations at the clus-
ter level and use a single conservative error bound for an entire
cluster. Therefore, refinement of individual PMs is much faster
than it would be by performing per-vertex computations across
an active vertex front.

3. Handling dependencies at the cluster level is significantly
cheaper than those at the vertex level.

Conservative Occlusion Culling:Quick-VDR performs conserva-
tive occlusion culling up to image precision. The occlusion com-
putations are performed at the cluster level. The size of ACL is
typically a few hundred clusters so performing occlusion culling

Model POE Avg Avg Front Avg Avg
FPS Size # Ecol/Vsplit # Tri(K)

Power plant 1 33 1219 410 403
Isosurface 40 16 937 164 765
St. Matthew 1 17 366 802 771

Table 2: Runtime Performance:We highlight the performance on the three bench-
marks. The average frame rate, average front size, and average number of edge col-
lapse and vertex splits are presented for a sample path in each model. All the data is
acquired at512× 512 resolution. We use a400MB memory footprint for the power
plant model and600MB for other models.

Model Refining Occlusion Culling Rendering
Power plant 3.6% 10.7% 85.7%
Isosurface 1.9% 1.9% 96.2%
St. Matthew 4.2% 1.4% 94.4%

Table 3: Runtime Timing Breakdown.This table shows the percentage of frame
time spent on the three major computations of the runtime algorithm. More than85%
of the time is spent in rendering the potential occluders and visible primitives.

takes1 − 10% of the total frame time.

Storage Overhead:Our CHPM implementation requires on aver-
age88MB per million vertices. This is low compared to Hoppe’s
[1997] VDPM representation (224MB) and XFastMesh (108MB)
[DeCoro and Pajarola 2002]. Moreover, CHPM can easily repre-
sent models with non-manifold topologies.

Out-of-Core Computation: Our out-of-core preprocess is able to
construct a CHPM from large datasets using a constant-sized mem-
ory footprint. Moreover, our hierarchical simplification algorithm
produces nearly in-core quality progressive meshes and preserves
the mesh connectivity.

Our current implementation does not achieve the same perfor-
mance of [Lindstrom 2003] in terms of triangles simplified per sec-
ond. Lindstrom [2003] applies external-memory sorts to his out-
of-core data structures to improve the access patterns and we can
also use them to improve the performance of our system. However,
Lindstrom [2003] does not preserve all the faces and vertices in the
leaf level of the hierarchy.

Quick-VDR introduces a frame of latency to fetch PMs of
the newly visible cluster from the disk. This is needed to take
into account the visibility events that can occur between succes-
sive frames. Earlier algorithms that combine visibility computa-
tions with out-of-core rendering decompose large CAD environ-
ments into rectangular cells and do not introduce additional latency
[Aliaga et al. 1999; Correa et al. 2002]. However, it may not be
easy to decompose large isosurfaces for visibility-based prefetch-
ing. Moreover, the MMR system [Aliaga et al. 1999] uses image-
based impostors and can introduce additional popping artifacts. The
iWalk system [Correa et al. 2002] performs approximate occlusion
culling.

Application to Massive Models: Our algorithm has been applied
to complex models composed of a few hundred million polygons.
In contrast, view-dependent algorithms were applied to scanned
models with8 − 10 million triangles [DeCoro and Pajarola 2002],
2M triangle isosurface and the power plant model [Yoon et al. 2003]
or were combined with approximate occlusion culling [El-Sana and
Bachmat 2002]. Lindstrom’s algorithm [2003] does not perform oc-
clusion culling and has been applied it to a47M triangle isosurface.
It is difficult to perform a direct comparisons with these approaches
as they used an older generation of the hardware and it may not have
the same set of features (e.g. occlusion queries). Yoon et al. [2003]
also used clusters for occlusion culling. However, their underly-
ing representation is a vertex hierarchy and their algorithm does not
scale to massive models. The main reasons for the high frame-rate
performance of Quick-VDR on massive models are:

• Low refinement cost during each frame.
• High GPU throughput obtained by rendering PMs directly from

GPU memory
• Significant occlusion culling based on the cluster hierarchy.
• Out-of-core computations at the cluster level.

Limitations The main limitation of our approach is one frame of
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Method Vertex Hierarchy CHPM
Num Dependency Checks 4.2M 223
Refinement Time(ms) 1, 221 32

Table 4: Refinement Performance.A comparison of refinement cost between a
CHPM and vertex hierarchy in a1M triangle isosurface. This table measures the
time to fully refine the mesh from the base mesh.

latency in the rendering pipeline. Our visibility fetching scheme
ameliorates the stalling problem but does not eliminate the prob-
lem. The set of dynamic LODs or simplifications computed by the
CHPM could be smaller than the ones computed using a full ver-
tex hierarchy. This is because of our decomposition of the model
into a cluster and representation of each cluster as a linear sequence
of edge collapses. Moreover, cluster dependencies that force us to
perform additional cluster-split operations might cause popping ar-
tifacts. We use one error bound for the entire cluster. As a result our
simplification error bounds can be more conservative as compared
to the ones used in vertex hierarchies and we may render more tri-
angles per frame to guarantee the screen-space POE bound. Our
occlusion culling algorithm assumes high temporal coherence be-
tween successive frames. Its effectiveness varies as a function of
coherence between successive frames.

8 Conclusion and Future Work

We have presented Quick-VDR, a novel algorithm for view-
dependent rendering of massive models. Quick-VDR represents
the scene using a CHPM and provides us with the ability to per-
form coarse-grained as well as fine-grained refinement. It sig-
nificantly reduces the refinement cost as compared to earlier ap-
proaches based on vertex hierarchies. The cluster hierarchy enables
occlusion culling and out-of-core rendering. Quick-VDR relies on
an out-of-core algorithm to compute a CHPM and combines view-
dependent simplification, occlusion culling and out-of-core render-
ing. Quick-VDR has been applied to massive models with a few
hundred million triangles and can render them at interactive rates
using commodity graphics systems.

Many avenues for future work lie ahead. In addition to overcom-
ing the limitations of the current approach, we would like to use
geomorphing [Hoppe 1996] to smooth the popping artifacts. More-
over, the two level refinement could be extended to consider view-
dependent effects such as specular highlights, silhouettes and shad-
ows. We would also like to explore methods for predicting occlu-
sion events so that we can further improve our out-of-core compu-
tation and eliminate the frame of latency in the rendering pipeline.
Finally, we would like to use the CHPM representation for mul-
tiresolution compression and collision detection between massive
models.
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