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ABSTRACT

This paper considers the value of warehousing contract under probabilistic demands. We consider a
supply chain consisting of a supplier, a retailer and its third-party warehousing partner who pro-
vides the warehousing service to the retailer through an outsourcing contract. A typical contract is
specified by initial space commitment and modification schedule. The retailer decides the order
quantity for the supplier and space commitment for the outsourcing contract. Since there is close
relationship between order quantity and space commitment to minimize the total cost including
ordering cost, inventory carrying cost, shortage cost, and warehousing cost, we develop an analytical
model under probabilistic demands, where the retailer can determine the optimal order size and
space commitment level jointly. We found the closed-form optimum for a single-period case and the
optimal conditions for a two-period case. To evaluate the value of contract flexibility for the two-
period case, we compared the total cost under two policies; one with modification, under which the
base commitment can be changed at the start of each period and the other without modification.
From results of our numerical analysis, we showed that the modification policy is more cost-effective
as the variability of demand increases.
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agement
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1. Introduction

Since the late 1980s logistics outsourcing has been recognized as a strategic weapon that
can provide competitive advantages and help curtail distribution costs (see [2]). As part
of logistics outsourcing, third-party warehousing is growing rapidly over a decade.

In this paper, we consider a supply chain with a single supplier, a retailer and its
third-party warehousing partner (Figure 1). The retailer faces the dynamic market
demands. To satisfy the demands, the retailer issues the purchase order for its sup-
plier. For the purchase order, the supplier delivers the product to the retailer. Even
though the physical inventory of the product is stocked at the third-party warehouse
under the outsourcing contract, the ownership of the inventory belongs to the retailer.
The product inventory is used to fulfill the market demands. Similar to the inventory
movement from the supplier and the retailer, the physical product is transferred from
the third-party warehouse to the end customer and the ownership of the product
from the retailer to the customer. The decision problem faced by the retailer is to de-
termine the order quantity for the supplier and the space commitment size for the

warehousing service provider.

....... Retailer }aun--

Outsourcing
Contract

Third-party
warehouse

Figure 1. Third—party warehousing

The third-party warehousing process is based on the agreement between a re-

tailer and a service provider through the outsourcing contract. The contract generally
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involves a user entering a contract with the warehousing provider for specific ser-
vices at agreed-upon prices over a fixed contract period. One of the most important de-
cisions is how large should be the space the user commits to the service provider. While
the service provider wants to fix the commitment over the contract duration to ensure
stable sales, the user does not want to fix the commitment size so as to deal with the
uncertainty of the space requirement. For resolving this situation, most outsourcing
contract contains the space commitment and certain flexibility by giving the user some
modification opportunities. The more frequently the retailer can modify the space
commitment, the more flexible the outsourcing contract. That is because if the retailer
can change the commitment more frequently, she can cope with the variability of space
requirement. Our research question is whether and how the contract flexibility in terms
of modification frequency can give the benefit of logistical outsourcing.

We consider a supply chain in which a retailer procures a product from a sup-
plier and sells the product to the market. The retailer faces variability of the market
demand and tries to fulfill the demand through the appropriate inventory policy.
This relationship between the demand pattern and the dependent space requirement
caused by physical inventory affects the decision problem, that is, how large space
the user should commit to the third-party warehouse firm. Based on this logic, we
develop an analytical model so that the retailer’s inventory policy and commitment
level be determined jointly. In addition, we analyze the effect of contract flexibility
when demand characteristics and cost parameters vary.

The rest of the paper is organized as follows. In Section 2, we give a brief litera-
ture review. Section 3 develops an analytical model to solve the decision problem for
the retailer. In that section, we extend the single period model to a two-period model
so that we could have a conjecture for the multi-period case. Section 4 gives the re-
sults of our numerical analysis, which show the value of contract flexibility as some

of the key parameters vary. Finally, we draw conclusions and managerial implica-
tions from the results.

2. Literature Review

The literatures to address the benefits of third party logistics are increased in a decade
(e.g. see [3, 5, 10, 11]). Lee [4] summarized the benefits as in Table 1.
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Table 1. Benefits of third party logistics (Lee [4])

Lower labor costs
Daugherty et al. [3] Flexibility
augherty et al.

ghery Access to better information systems

Improved delivery and service

Reduction of transportation cost

Reduction of material management and storage cost
Lieb and Randall [5] Decrease of stock level

Shortened response time to customers’ requests

Improved control of distribution chanrels

Economies of scale and scope
Nemoto and Tezuka [10] Savings on capital investment

Risk-sharing

Better focus on the core businesses

Access to world-class processes, products, services or technology
Better capability of adjusting to changing environmental needs
Persson and Virum [11] Reducing the need for capital investments

Better cash-flow
Reducing operating costs

Exchanging fixed costs with variable costs

Access to resources not available in own organization

For the supply chain contracts, Tsay ef al. [12] gives a broad review which classi-
fies the literatures according to the contract clauses. It contains quantity discounts
and minimum commitments which are similar mechanism to our base commitment
for the space requirement. Cachon [1] includes broader context than Tsay et al. [12]. It
reviews the supply chain contracts as the variations on the newsboy problem under
lots of different conditions.

Without considering the warehouse side, our problem extends the classical
newsboy problem. Khouja [8] is one of the most recent reviews for the newsboy prob-
lem literatures. One of the relevant literatures is Nahmias and Schmidt [9] who de-
veloped an efficient heuristic solution for the multi-item newsboy problem subject to
a single constraint of a specific form. More recently, Matsuyama [6] generalizes the
newsboy problem to multi-period case which consists of multiple ordering cycles.

More relevant to our model, Chen et al. [2] analyzed three types of third-party
warehousing contract. With relaxing the restriction on the range of commitment
change and on modification schedules, they showed the effect of contract flexibility

under dynamic demand patterns. However, they assumed that the space requirement
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was not serially correlated with that of the previous period and did not consider dy-
namic relationship between the market demand and the retailer’s inventory policy.
As another relevant literature, Lee [4] addressed the logistical outsourcing problem
from which our research was originated. She used the similar cost structure with
Chen et al. [2] with a continuous-review inventory model. In her model, she did not
assume the trade-off relationship between the order quantity and the space require-
ments so that the total cost did not include the effect of order quantity change.

In our model, by chasing the root cause of variability of the space requirement,
the order quantity for the supplier is determined to fulfill the dynamic market de-

mand and the retailer decides the appropriate base commitment at the same time.

3. Formulation of Model

3.1 Assumptions

We consider the following inventory model. Items are purchased for a single period
at a cost of ¢ dollars per item. We assume that the purchase leads to immediate de-
livery. The stock is replenished only once at the start of the period and demanded
right away. Shortages are backordered but not at the end of planning horizon. Under
third party warehousing contract, we consider only the opportunity cost of on-hand
inventory because the other factors including the employee fee, space charges and
warehouse maintenance cost are transferred to the third-party warehousing firm
through the outsourcing contract. The opportunity cost of holding inventory means
the income foregone by tying up money in inventory and not investing it elsewhere.
This capital charge for on-hand inventory is given by h dollars per unit item and
charged as a function of excess stock over the amount demanded. The cost of unsatis-
fied demand is given by s dollars per unit (assuming that s>c). It includes the cost
of lost sales, loss of goodwill, customer dissatisfaction, and special administrative

efforts resulting from the inability to meet demand. Denote by Q, the quantity pur-
chased at the beginning of the period. We assume that demand during the period

denoted by D is not known in advance but is a random variable with probability
density f(D), and cumulative distribution function F(D).

Through the outsourcing contract with third-party warehousing service provider,
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the retailer pays the warehousing cost which consists of fixed charge for the space

commitment and variable charge for the overflow. The fixed charge p,B is paid if
the commitment size is B and the cost of per-unit committed space is p,. Denote by

V  the space requirement for inventory. The space requirement for on-hand inven-
tory is assumed to be a linear function of on-hand inventory level. That is, we assume
that space al is required when on-hand inventory level is I and space requirement
per unit item is @. Note that V is a random variable because the demand is a ran-
dom variable and, in turn, the inventory level is also a random variable. If the space
requirement V exceeds the commitment size, the retailer pays the premium charge,

p,(V =B), for the overflow where p, is the premium charge per unit space and

V —B is the level of overflow when the commitment size is B. Therefore, expected

warehousing cost occurred is p,B +p,E[max(0, V - B) | since the space requirement

V isarandom variable. E[] means the expected value of random variable.

3.2 Single-Period Model

In a single-period model, the order-up-to point Q and base commitment level B is

to be determined. The objective is to minimize the total cost occurred during a single
period which is composed of procurement costs, inventory carrying costs, shortage
costs, and warehousing costs. Regarding the order-up-to point, a classical trade-off is
needed between the risk of being short and thereby incurring the shortage costs and
the risk of having an excess and thereby incurring wasted costs of ordering and capi-
tal charge for excess units. Under third party warehousing situation, there exists an-
other trade-off between base commitment cost and premium charge for overflow. For
the warehousing costs, there exist base commitment charge and premium charge for
overflow. If the retailer commits too much, then she should bear the fixed commit-
ment cost even when there is a little on-hand inventory. Conversely, if the retailer
commits too less, then she can not have the benefit of discount by commitment. In
addition, because there is close relationship between order quantity and inventory
level, in turn between order quantity and space requirements, the two decision vari-
ables, Q and B, are to be determined jointly.

3.2.1 Without initial inventory

In this section, we consider an optimal inventory policy having no initial inventory.
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We assume that there is no disposal of the remaining inventory at the end of the pe-
riod. Define TC(Q, B) as the expected total cost under the policy (Q, B). Then

TC(Q, B)=cQ+ [ Q- D)f(D)iD+ J.;s(D—Q)f(D)dDJ{p]BWL [Cptv ~B)f(V)dV} 1)

Total costs consist of five parts. The first part is the ordering cost. The second
part is the inventory carrying costs when the demand is realized under the stock level,
whereas the third is the shortage costs when the demand surpasses the inventory
level. The fourth term is the basic charge for space commitment. The final part is the
premium charge for space overflow when the space requirement is over the base
commitment. The problem is to find the order quantity and the space commitment in
order to minimize the total costs, TC(Q, B).

Proposition 1.
The optimal solution to minimize the TC(Q, B) is Q and B such that

s—c—ap,

Fe)=—, @
a P)

Proof.
See Appendix A. I

We can find Q° from (2) at first, and then get B’ from (3) after substituting the

value of Q into (3). Alternatively, we can state Q" and B as follows.

C s—c—ap1] >
< [ S+h @
B = max{a [Q* ~-F! [ﬂﬂ, 0} (3)
2
Proposition 2.

TC(Q, B) is convex with respect to Qand B.Thus, Q and B guarantees the global

optimum.
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Proof.
See Appendix B. i

In order for (2') to be meaningful, 0< %ﬁ?j—l <1, or s2c+ap, should be
guaranteed. It makes sense in a single period case since the unsatisfied demand cost
includes more than the lost revenue which is greater than the unit purchase cost plus

unit warehousing cost for base commitment.

3.2.2 With the initial inventory
In the previous section 3.2.1, we assumed that there was no initial stock. To relax this
assumption, we now consider the retailer has initial stock, I, at the starting point of
the period. Then optimal ordering and commitment policy is described as follows.
{do not order and set B = B', ifI>QF @
order up to Q° (order Q° ~I) and set B=B°, ifI<Q*

Where Q° =F (wj , B = max{a {QC —F [ﬂﬂ, 0}
s+h P,

and B’ =max 0{1—1—"‘1 {ﬂﬂ,o
|2

B'is derived from (3’) simply by substituting Q for I since the initial stock
level is given. The proof is straightforward from proposition 1 and 2. This optimal
policy gives the possibility of extension to the second-period and multi-period model
because the subsequent periods have positive inventory level or backlogs at the start

of the period.

3.3 Two-Period Model

Based on the results of single period model, we extend it to the two-period case. To
investigate the value of contract flexibility, we compare the optimum total costs un-
der two policies. One is single base commitment policy which can not change the
base commitment through two periods. The other is modification policy under which
the retailer can change the base commitment level at the start of the second period. It

is assumed that there is a sales chance at the end of period 2 with salvage cost I per
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unit on-hand inventory. ! can have any sign. If 1<0, then this means a salvage
value per unit inventory. Therefore, it costs h+! per remaining inventory through
period 2. Through comparing the total costs of these two policies, we can evaluate the

value of contract flexibility in terms of the modification frequency.

3.3.1 Modification of base commitment
In this case, the retailer can change the base commitment. Therefore, the retailer

should decide the commitment level for each period B=(B,, B,) and order quantity
for each period Q=(Q,, Q,). We use the order-up-to policy for each period.

We can formulate the problem as a dynamic programming because the decision
is made at start of each period without being affected by the decision of previous pe-

riod. Define ¢, (I, ;) as the expected cost of following an optimum policy (minimum

cost) from the beginning of period ¢ to final period when the net inventory at the end

of period t is I,. In this section, the final period is period 2. Total costs over two
periods can be denoted by g,(I,) when the initial inventory is I,. Therefore, the
problem faced by the retailer in two period case is to minimize the g,(I;). To obtain
g1(ly), it is necessary to first find g,(I,). By the result of single period case, the op-

timal policy for period 2 is

{do not order and set B = B}, ifl, 2Q, (5)

order (; —1,)andset B=B;, ifl, <Q;

here C:FJ WJ’ . ¢ _p-l KL , and
where (5 (s+h+l B =maxja| Q- F . .0

contler{g]s

Note that the denominator of Q) is s+h+! since it costs inventory carrying

cost as well as salvage costs, h+I, per on-hand inventory of period 2. The cost of

this optimum policy can be expressed as

) L,(I)+W,(I,, BY), i1, >Qf
BT Qs — 1)+ Ly (@) + Wy(QS, BY), F I <O
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L,(x) is defined by the expected holding plus shortage cost for a single period

when there are x units are available. L,(x) can be expressed as

[ Wx-D,)f(D)dD,+ ["s(D,-x)f(D)dD,,  t<T

L,(x) 7)

i [ (h+D)(x-D)f(D,)dD, + ["s(D, - x)f(D,}dD,, t=T

Note that the salvage cost occurs only for the remaining inventory at the last pe-
riod, T=2 in this section. W,(x, y) is the expected warehousing cost for a single
period when base commitment level is y and inventory level at the beginning of

period t is x. W,(x, y) canbe expressed as

Wi y)=py+ [ PV, - V)V,
Y )
=py+ [, « p,(a(x=D,)-y)f(D,)dD,

Note that I, is a random variable that depends upon the on-hand inventory
level of at the end of period 1, thatis, I, =Q, —D,. Thus, (6) can be rearranged as fol-

lows.

(1) = Lz(Q1_D1)+W2(Q1_D1/B£)/ ile_Dleg ©)
BT Qs -0, + D) + Ly Q)+ Wy(QS, BY), Q- D, <

The expected value of g,(I,)is given by

Efg,(ID]= J.()QﬁQEI:Lz(Ql -D)+W,(Q =Dy, Bé):lf(Dl)le (10)

+ [ g Q5 =Q + D))+ L(Q5)+ Wy(Q5, BY) | f(D,)dD,
The expected cost of the following the optimal policy for two periods is given by

$:(1y) = min[cQ, +L,(Q))+ W,(Q,, B)+Elg,(1)]] (11)

B0
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where E[g,(I;)] is given by (10).

Proposition 3.

For period 1, the solution to minimize the total cost over two periods is Q,and B;

such that
—s+(s+h)E(Q})+ apZF[Q; —5] s+ [V F(Q; - D)F(D)D =0 (12)
a 0
F(QI —B—1] B 13)
o P2
Proof.

See Appendix C. B
We can find Q; and B, by solving jointly (12) and (13) after substituting Q;

which can be obtained from (5).

Proposition 4.

.(I,) is convex with respect to Q, and B,.Thus, Q;and B, guarantees the global

optimum.

Proof.
See Appendix D. B

Thus, the optimal policy for period 1 is
do not order and set B= B;, if1, >Q, (14)
order (Q; —I,)andset B=B,, ifl, <Q,

where Q,and B, satisfy (12) and (13).

Proposition 5.

Under modification policy, Q; >Q; and B, 2B, if s>c+ap,.

Proof.
See Appendix E. ll
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3.3.2 No modification of base commitment
In this case, the retailer can not change the base commitment through two periods.
Therefore, the retailer should decide a single B rather than a schedule of base com-

mitment B=(B,, B,). We use the order-up-to Q=(Q,, Q,) policy for each period.

Similar to the modification policy, the optimal policy for period 2 is

do not order, ifl; >2Q; (15)
order (Q;-1,), ifl; <Q;
where QQ; satisfies
c C B*
(C—S)+(S+h+l)F(Qz)+aPzF(Qz ——J=0 16)
a

Equation (16) is induced from the first order condition for period 2 with respect

to Q,. The cost of this optimum policy can be expressed as

. {Lz<11)+w2<11, B), i1, 2 O -

o(Q; ~ 1)+ L (Q)+Wy(Q;, B), i <5

The expected value of g,(I,)is given by

Elg,(1)]= [ *[L,(Q,~ D))+ W,(Q, - D,, B] (D,)dD, .

* Joy [ €@ ~Qu+ D)+ L, (@) + W, (Q5, BY](D,)dD,
The expected cost of the following the optimal policy for two periods is given by

&ilp) = g}gl[CQl +Ly(Q)+Wi(Qy, B) + E[8,(1,)] (19)

where E[g,(I;)] is given by (18).

Proposition 6.

For period 1, the solution to minimize the total cost over two periods is Q;and B’
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such that

—s+(s+h)F(Q;)+ asz[Q; —%] —ap,F(Q; -Q5)

+Hs+h+1) J.Ql G

0

f(Q; - D)F(D)dD (20)

+ap, [P (Q-£)FQ; -5+ jfi‘Qg FQ -D —%')F(D)dD] -0

2p, —sz[QI —B;J- sz[Q; —B;j-pz | % f@-p-£)FDMD=0 @)

0

Proof.
See Appendix F. ll
Wecanfind Q;, Q; and B’ numerically by solving jointly (16), (20) and (21).

Proposition 7.
81(Iy) is convex with respect to Q, and B.Thus, Q,and B guarantees the global

optimum.

Proof.
See Appendix G. ll
Thus, the optimal policy for period 1 is

{do not order and set B=F’, ifI, > Q; 22)

order (Q; —I,)andset B=B", ifI,<Q;

where Q and B’ satisfy (16), (20) and (21).

Proposition 8.

Under no modification policy, Q; >Q5 if s>c+ap,.

Proof.
See Appendix H. i
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3.3.3 Value of contract flexibility and multi-period case
Denote the expected cost of optimal policy for two periods under modification policy
and no modification policy by TC® and TC° for each. The superscript of F means
flexible. TCF is expressed as (11) and TC® as (19). Each optimal quantities for TC*
and TC® are obtained from proposition 3 and 6. A gap between TC' and TC® can
be interpreted as the value of contract flexibility in terms of modification frequency.
The induction of the gap becomes very cumbersome. Therefore, we will show the
behavior of the gap through the numerical example in the next section.

We can extend the two-period model to the multi-period case. Although the
proof can be more cumbersome, based on the proposition 5 and 8, we conjecture that

the optimal ordering and commitment policy have the form as follows.

(1) Under modification policy

At the beginning of period t, t=1,2,---, T,

do not order and set B, = B}, ifl,  >Qf 23)
order (Qf ~1I, ,)andsetB, =B, ifl,_, <Qf

Furthermore, Q; <Q; , <---<Q;<Q; and B; <B; < <B) <B

(ii) Under no modification policy

At the beginning of period t, t=1,2,---, T,
do not order and set B, = B, ifl,, >0Qf 04)
order (QF —1I, ,)and set B, =B", ifl,, <Qf

Furthermore, Q; <Qf , <---<Q; <Q;

4. Numerical Example

Under two-period model, we compare the total costs between modification policy

and no modification policy, i.e. TC" and TC°. Basically, the demands for each pe-

riod are identically normally distributed with mean x and standard deviation o.

The value of basic parameters we used in the numerical analysis is in Table 2. The
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mean and standard deviation of demand are based on the refrigerator’s one-year de-
mand of Korean consumer electronic manufacturer. We arbitrarily chose the rest pa-

rameters to show the examples.

Table 2. Basic parameters

c h l s P P2 a mean |std.dev.| C.V.
60 10 5 240 16 24 0.2 53,014 | 26,507 | 0.5

The value of flexible contract is measured by the gap between E(TC') and
E(TC®) over E(TC°). Formally, Gap=E(TC’)-E(TC"). Gap/E(TC’) is used to mea-
sure the value of flexible contract. We firstly find the optimal solutions for each policy
and then substitute them in the total cost function. Since the demand of period 1 is
not realized, we used the expected total costs, thatis, E(TC) and E(TC’). Compu-
tations are implemented by MATLAB® 6.1 using Pentium® IV PC.

In general, modification policy result in saving in expected total costs. As the coef-
ficients of variation (C.V.) of demand increases, the Gap increases to 0.18% (Figure 2).
Capital charge and salvage cost for inventory have a monotonic effect on the Gap (Fig-
ure 3, 4). That is, the larger the capital charge is, the smaller the value of flexible con-
tract is. Conversely, the larger the salvage cost is, the larger the value is. The change of
shortage costs or ordering costs increases the Gap improvement to a certain point and
decreases afterwards (Figure 5, 6). As the ratio of premium charge over basic charge for
space requirement increases, the degree of Gap improvement increases (Figure 7). In
addition, we analyzed the value of flexible contract with respect to every parameters
based on the uniform distribution demand which has the same mean and standard de-
viation as the normal distribution demand. As a result, there are two parameters that
have different patterns from the normal distribution. For the uniformly distributed de-
mand, the value of flexibility increases as the capital charge for inventory increases
(Figure 8). As the price ratio increases, the value of flexibility decreases so that it has a
reverse pattern from the normally distributed demand (Figure 9). Therefore, we ob-
served that the value of flexible contract with respect to parameters could have a differ-

ent pattern over the various probability distributions of demand.
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5. Conclusion

This paper considers a warehousing contract under dynamic probabilistic demands.
Considering a supply chain consisting of a supplier, a retailer and its third-party
warehousing partner, we found there is a close relationship between the order quan-
tity for the supplier and the space commitment for the warehousing partner. If the
retailer increases the order quantity for the supplier, then the space requirement will
be increased. When we need more warehouse space through a third-party warehous-
ing contract which normally consists of a base charge for the predetermined com-
mitment and a premium charge for the overflow, the larger the base commitment, the
more cost-effective in terms of the unit warehousing cost because the unit charge for
the base commitment is cheaper than the premium charge. In the retailer’s decision
making, there exist two different trade-offs. One is a classical trade-off between the
shortage costs and the inventory capital charge. This trade-off mainly decides the or-
der quantity for the supplier. The other is that between the fixed base commitment
charge and the variable premium charge for the overflow of space requirement. This
trade-off mainly decides the base commitment level. In addition, the decision about
the optimal order quantity affects the space requirement. Therefore, we need to opti-
mize the order quantity and space commitment level jointly. We develop an analyti-
cal model under probabilistic demands that the retailer can determine the optimal
order size and space commitment level. We found the closed-form optimum solution
for the single period and the optimal conditions for two-period case. To evaluate the
value of contract flexibility for the two-period case, we compared the total costs un-
der two policies; modification policy under which the base commitment can be
changed at the start of each period and no modification policy. From the results of
numerical analysis, we showed that the modification policy was more cost-effective
as the variability of demand increased.

Even though this paper is a first step in exploring our research question, there
are a few limitations. We have assumed instantaneous order fulfillments and delivery,
which are unrealistic in some cases. To be more realistic, the continuous demand in a
certain period should have been considered. To do this, this paper can be extended to
the continuous review inventory policy. Space requirement types can be varied rather
than linear increments. For example, the space requirements are increasing nonline-
arly or stepwise. Furthermore, the cost functions can be assumed in other forms.
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Appendices

Appendix A: Proof of Proposition 1
The expected total cost under the policy (Q, B) is as follows.

TC(Q, By=cQ+ [, h(Q-D)f(D)D+ [ S(D—Q)f(D)dD+(PlB+ j;’QmW—B)fW)dV) (A1)

Since V is the space requirement for inventory after satisfying the demand,
Visequalto O for D2Q, and a(Q-D) for 0<D<Q which is the case the inven-

tory remains after the demand is fulfilled. Note that over the range of 0<D<Q the
probability density functions of V, f(V), can be transformed to f(D) by virtue of the

transformation method (see p. 280 of [7]) as follows.

)= 0 2= 10y (A2)

Also, since dV =(-a)dD for 0<D<(Q, the final term of TC(Q, B) can be re-

stated as
[ p.(v =By f(V)aV = [ =p, (a(Q- D)~ B) f(D)dD (A3)

First order conditions for optimality are

arc _ (c—s)+(s+MF(Q)+ pzaF(Q~B} =0 (A4)
oQ a

oac o-2 o _B|_

5 =Pk “pnf(DED=p, pZF[Q a} 0 (A5)

These give the optimal solution as follows.

Q)2 (A6)

F(Q‘ -g-j o (A7)
P
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Appendix B: Proof of Proposition 2

The Hessian of expected total costs is as follows.

&*TC  &*TC ' B B
aQIZ 5Q15’Bl ~ (h+s)f(Q>+ap2f(Q-'a_ -p’.’f Q“g (Bl)
PTC  TC | [ B} 1 ( B
- -p,fl Q-— —p.f| Q-—
8B,0Q, OB} z a o a
TC srcarc ( orc Y
The Hessian matrix is positive definite since —>0and —5—~ >
3Q, 5Q2 0B, OB .8Q,

Therefore, the expected total cost function is convex and Q and B guarantees

the global optimum.

Appendix C: Proof of Proposition 3

Total costs over two periods with initial inventory I, is

(1) = min[cQ, + L,(Q)+ W,(Q,, B)+ Elg,(1,)] (1)

B 20

where

Elg,(1))= [ [L,(Q, - D)+ Wy(Q, - Dy, B) | f(D,)dD,

(€2
+ jQ] . [€(Q5—Q,+ D,)+ L,(Q5)+ W,(Q5, BS) | £(D,)dD,
E[g,(1,)] canbe restated as follows.
Flg. (1= [ % 1,(Q, - D) AD)D, + [ W,(Q, ~D,, B)f(D,)dD,
(A) (B)
+ [ €@~ Q+D)FD)YAD, + [ L(Q5)F(D,)dD, (©3)
© (D)

. jQOOQz W, (Q; B)f(D,)dD,
(E)
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To obtain the first order derivative of E[g,(I,)], we used the Liebnitz’s rule for

each term.
For part (A),
2(_;2“1) = —sF(Q, ~Q5)+(s+h+D) [ F(Q, D) f(D)dD, + L @) f(Q, - Q%) (€4
since
L@ -D)= [ " (h+1XQ,~D, ~D)f(D,)dD, + [, s(D;~Q,+D,)f(D,)dD, (C5)
and
ﬂ%:-sﬂsmuw(g—m (C6)
For part (B),

If I>F* (%) orI2Q5-%, then B;=a(Q1—Dl—Q;_+%).

B
c B %7 c_B
Wz(Ql _le B£)=apl (Ql_Dl —Qz +%)+ _[0 apz(Qz —%_Dz)f(Dz)dDz

o(B)
8Q,

=ap,FQ,-Q)+(p,B, +K) f(Q - Q) (C8)

where k= IOQZ  ap,(Q. -2~ D,)f(D,)dD, which is independentof D,.

o

For part (C),

%((® ®
00 Ja DD, =cFQ -Q0) ¢ (©)

For part (D),

D) e s
6(Ql) - IQI o o f(D)AD, ~ L Q) Q- Q) = ~L (@) Qi - Q) (C10)
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since L,(Q;) isindependentof Q, and thus f%éiél:().
1

For part (E),
G(E) * W, (O, B) ¢ ¢ oy ¢ ¢ ¢
—5_51_: -erQé WAE’E : )f(Dl)le —Wz(sz Bz)f(Q1 ”Qz) —MWZ(QN Bz)f(Ql ~Q2)

(C11)

since W,(Q;, B;) isindependentof Q, and thus W=O

Summing up the each derivative from part (A) to (E),

OE(g, (1))

= (s ap)FQ, Q)+ (s+h+D) [ FQ - D)ADYD, —c  (C12)

since W,(Q;, B))=p,B; +k.

Thus, the first order optimal condition of g,(I,) with respectto Q, is

9,U,) _
aQ,

z
) -5

—s+(s +h)F(QI)+ap2F[Ql —£]+(s+ h+ z)jQ f(Q,-D,)F(D,)dD, =0 (C13)
o 0

since

[ F@ -D) (DD, *‘(SJ-% }F (@ -Q)+ [\ AQ = D)F(DMD, (C14)

s+h+l 0

This gives equation (14).

The first order optimal condition of g,(I,) withrespectto B, is

dg.(1,) o-b B
galBO = 1"!0 “pzf(Dl)dD\=p1-sz[Q1—“ai]:0 (C15)
1
E
since ¢,(I,) isindependentof B, and thus a_[gg(_lﬂ =0.

1

This gives equation (15).
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Appendix D: Proof of Proposition 4
The Hessian of g,(I,)is

e (I B
T s apes 02
< “ (D1)
(o] FQOFQ -0+ [ 1@, - DIFDND |
Pl Ol () B
2008, _ oBoo, P/ (Ql aj ()
&’ g:(1) _P _ B
b).L flo-2) (03)

Hessian is positive definite since

2
P8ily) | g g T8 T8 (Pt g
0Q. 6Q} oB? | 0B,Q,

Therefore, g,(I,) is convex with respect to Q, and B, and thusQjand B;

guarantees the global optimum.

Appendix E: Proof of Proposition 5
The first order condition for optimality for period 1 is

M = _S+(S+h)F(Ql) + (ZPZF[QI _El—j
an a (El)
+s+h+D) [ F(Q, - D,)F(D,)dD, =0
og.(ly) _ _B\_
By, pZF(Ql a]_o (E2)

Because of the second equality, the first condition can be restated as

ag. (I Q5
%=(apl ~5)+(s+H)F(Q)+(s+h+D) [ f(Q,~D)F(D,)dD, =0 (E3)
1
2
Since agl—(fo) >0, if 6g_1(10_2 <0 at a certain point of Q,, the optimal solution

1 1
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Q, is larger than the point.

¢ agl(IO) _C(5+h)‘(s_ap1)l
At Q, =0QF, = E4
Q=0 aQ, s+h+l (E4)
. . a4 s—c—ap
=F1 =2
since Q; ( s+h+l ]

% <0. Therefore,

1

Assuming that s—c—ap, 20 to exist a positive Q;,

Q=0

Since F (Ql —%J =F [Qg —%) = z—l and Q; >Q;, B, should be larger than
2

B, .Thatis, B, >B,.

Appendix F: Proof of Proposition 6

Total costs over two periods with initial inventory I, is

8,(I;) =min[cQ, + L,(Q,)+ Wi(Q,, B)+El8, (1)1 (F1)

B20

where

E[gZ(Il)]: J‘OQFQEI:LZ(Q1 _D1)+W2(Q1 _D1/B)]f(D1)dD1

+ [0 o [eQ=Qi+ D)+ (@) + Wy(Qs, B) [F(D,)dD,

(F2)

E[g,(1;)] can be restated as follows.

L,(Q, D) f(D)D, + [ “ W,(Q,~D,, B)f(D,)dD,
(4) (B)

+ o o Qi =Qu+D)ADYD, + [0 L(Q)f(D)AD; (F3)
(©) (D)

+ oo Wa(Q3, BYf(D,)dD,
(B)

Fg, ()= [

0
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To obtain the first order derivative of E[g,(I,)], we used the Liebnitz’s rule for

each term.
For part (A),
A4) _ 05 ‘ ‘
o sF(Q, Q2)+(s+h+l)j F(Q,-D,)f(D)dD, + L,(Q) f(Q, -Q,) (F4)
since
L,(Q,-D)= IQI (h+1)(Q, - D, ~D,)f(D,)dD, + I; (D, =Q +D)f(D,)dD,  (F5)
and
DO = —s+(s+h+DF(Q,-D,) (F6)
For part (B),
W,(Q,-D,, B)=ap B+ j @b p,(a(Q, - D, -D,)-B)f(D,)dD, F7)
oW, ~-D, \-Dy-2 B
LalQll—_) = IOQ ap, f(D,)dD, = ap,F(Q, - D, _Z) (E8)
Sl =ap, [} FQ ~D, -1 (D)AD, + Wi(Q3, BFQ, ~Q) (F9)
For part (C),
xC) _ - ‘
%0, - [s o (COOF(D)AD, = cF(Q, ~Q5) ~c (F10)
For part (D),
D) _ =  a c c ; c
20~ Joo i fOMD - LQ)FQ,-Q)=-L@)fQ-Q)  FID
since L,(Q;) isindependentof Q, and thus %?5): 0.

For part (E),

S0 Lo S (D )AD, -, (5, BFQ, ~Q0) = QS BIFQ~Q)) (12
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W, (Q5, B) =0

since W,(Q;, B) isindependentof Q, and thus %

Summing up the each derivative from part (A) to (E),

&I _ SF(Q, - Q) +(s+h+1) f"gi F(Q, - D,)f(D,)dD,

oQ, (F13)

0,-Q;
+ap, jo F(Q,-D,-2)f(D,)dD, - ¢

Thus, the first order optimal condition of g,(I,) withrespectto Q, is

98,(1,)

B
Q. ={c—8)+(s+h)F(Q,)+ asz{Ql —;J

He=9)F(Q - Q) +(s+h+D) [ * F(Q,~D,)f(D,)dD, (F14)

Q]’Qé
+ap, |, F(Q,-D,-)f(D,)dD,-c=0

By integrating by parts,

’ +h+l 0 f(Q, - DyE(D,)dD, (F15)

;" FQ =D, (DD, = (S:ﬂjz—‘(@l -0+ [

J-OQrQ§ F(Ql _Dl _’E)f(Dl)de _ F(Q; _%)F(Ql _Q;)_,. J'QﬁQE f(Q1 _D1 - 5)P(Dl)le (F16)

0

Thus,
%) _ (s myF@Q)) +ap2F(Ql —EJ—ar’lF(Ql -
aQ, ¢
+(s+h+1) J.oQ] o f(Q, - D,)F(D,)dD, 17

vap, [P(Q; ~BFQ, -+ [* % fQ, - D, —g)F(DI)le} ~0

0

This gives equation (22).
Next, we find the first order condition for B. Different from the modification pol-

icy, we need to start from finding LEEACH)! because E[g,(l;)] isafunctionof B.

0B
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E[gz(Il)]—IQl QZ[L (Q,—D,)+W,(Q, - D,,B) ] f(D,)dD,

(F18)
oo [c(Q5—Q, + D)+ L,(Q5) + W,y (%, B) [f(D,)dD,

OE[g,(I)] _ (a-o dW,(Q,-D,, B) - OW,(Q;,B)
T = _[0 Tf(D1)dD1 + J.QrQE 2B f(D1)dD1 (F19)
W,(Q,-D,,B)=p,B+ [ *p,(a(Q,~ D, - D,)- B)f(D,)dD, (F20)
OW,(Q,-D,, B) _ B
2B [ (Ql D, a) (F21)
W,(Q5, B)=p,B+ [ " p,(@(Q5 - D,)- BA(D,)dD, (£22)
W, (Q;, B) _
2B PP, (Qz _;) (F23)
A8, [0 R(Q, D, ~£) fD,)aD, ~p,F(0-£)[1-F(0, 5] (F24)
%%Ql: 2p, —sz(Ql _g)_sz(Qg _g)_pz J-OQl_ng(Ql -D, _%)F(D])le (F25)
Since

Lal—Qé F(Q,-D, -} f(D,)dD, = F(Q; ~2)F(Q, - Q)
(F26)

Q-G
+ [ f(Q -D,~£)E(D,)dD,
This gives equation (23).

Appendix G: Proof of Proposition 7
The Hessian of g¢,(0) is

ajé(z)_( +h)f(Q1)+s+h+l[P(Qz)f(Q1 Q)+ [ sz(Ql—D)f(D)dD]
+ap2[ (Qz__]f(Ql Q)+ JQI “ ( - ——]f(D)dD+f[Q -—H(Gn

+(C_s)f(Q1 _Q2

6281(10) _ azgl(IO) _ _E Q-9 - _E
3008 ~ aBoQ, p{f(Ql a)+j0 f(Q1 D ajf(D)dD} (G2)
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@g() _p, B, (oo B - . B
W——{f (0-2)s (% 1[0 -0-2] 0w+ oot a]f(D)dD} (©3)

a

Hessian is positive definite since

2 2 2 2 2
i) | g P800 T (F8l))
0Q, oQ, OB 0BoQ,

Therefore, g,(I,) is convex with respect to Q and B and thus Q and B

guarantees the global optimum.

Appendix H: Proof of Proposition 8

The first order condition for optimality for period 1 is

§&9ﬁ=—s+@+maQo+amF@z—Ej—amP&a—Qp

oQ, a
+(s+h+1) jOQ“QE f(Q, - D)E(D)dD (H1)
rap, [P(Qg ~2)FQ-Q)+ [ F(Q-D —g)P(D)dD} =0

3g,(1,) _ 003

=2 nF(Q -8R (0 2)-p

0

f(Q1 -D, —g)F(Dl)dD1 =0 (H2)

Also, the first order condition for period 2 is

0g,(1,)

= (c—s)+(s+h+l)F(Q§)+ap2F(Q; —EJ =0. (H3)
oQ, a

Pl o ()
2 4

1 0 1

Since <0 at a certain point of Q,, the optimal solution

Q, is larger than the point.

98.(1,)

At Q1=Q§, 20

=-5+(s+ h)F(Q§)+ap2F(Q§ —g) =—c—IF(Q;)<0. (H4)

og, (I
Assuming that s—c—ap, 20 to exist a positive Q;, gal—éoz <0 at Q =0Q;.

1

Therefore, Q, >Q;.



